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Abstract

In this article, we prove four results which are typical applications of the inverse
function theorem. The first is, of course, the implicit function theorem. The students
should draw pictures (as was done by me in the calss) for all of the proofs so as to see the
idea of the proof more clearly. Learn these proofs well. If you bring to my attention any
errors of omission or commission, I may include pictures for your benefit later!

Theorem 1 (Implicit function theorem). Let Ω ⊂ Rn+k = Rn ×Rk be open. Let f : Ω→ Rk

be C1. Assume that for some (a, b) ∈ Ω where a ∈ Rn and b ∈ Rk we have
1. f(a, b) = 0.
2. D2f(a, b) is nonsingular.

Then there exists a neighbourhood Ω′ of (a, b) in Rn × Rk, an open set U ⊂ Rn containing a
and a C1-map g on U such that

i. D2f(x, y) is nonsingular for all (x, y) ∈ Ω′,
ii. {(x, y) ∈ Ω′ : f(x, y) = 0} = {(x, g(x)) : x ∈ U}.

Proof. Let F : Ω→ Rn × Rk be defined as follows: F (x, y) = (x, f(x, y)). Then F is C1 and
the derivative DF (a, b) can be written in the matrix form(

In×n 0
D1f(a, b) D2f(a, b)

)
.

This is clearly nonsingular.

Hence by the inverse function theorem, there exists a neighbourhood Ω′ of (a, b) in Ω such
that F (Ω′) is a neighbourhood of F (a, b) = (a, 0) in Rn × Rk. Let pX and pY denote the
projections onto Rn and Rk respectively. Let

U := {x ∈ X : (x, 0) ∈ F (Ω′)}.

Since F (Ω′) is open, so is U . Consider g(x) := pY ◦ F−1(x, 0) for x ∈ U . Clearly, g is C1

on U . Also, if (x, y) ∈ Ω′, then F (x, y) = 0 iff x ∈ U and F (x, y) = (x, 0). Applying F−1

to both sides, we get F (x, y) = (x, 0) iff (x, y) = F−1(x, 0) = (x, g(x)). This proves (ii) and
completes the proof of the theorem.
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Theorem 2. Let S ⊂ Rn be a surface. Let (V, ϕ, U) be a patch (or chart) in S. Let W ⊂ Rm

be open and F : W → Rn be smooth. Assume that F (W ) ⊂ U . Then the map ϕ−1◦F : W → V
is smooth.

Proof. Note that while we know that ϕ : V → Rn is smooth, since the domain of the in-
verse ϕ−1 is U , which is not an open set in Rn, it makes no sense (so far) to talk of the
differentiability of ϕ−1.

Fix w ∈ W . Let p = F (W ) ad let q ∈ V be such that ϕ(q) = p. We write ϕ(x, u) =
x(u, v) = (x1(u, v), . . . , xn(u, v)). Since Dϕ(q) has rank 2, we may assume without loss of
generality that the submatrix (

∂x1
∂u

∂x1
∂v

∂x2
∂u

∂x2
∂v

)
(q)

has nonzero determinant.

Draw pictures as I did in the class now to understand the rest of the proof. We extend ϕ
to Φ: V × Rn−2 → Rn as follows:

Φ(u, v, t3, . . . , tn) := (x1(u, v), x2(u, v), x3(u, v) + t3, . . . , xn(u, v) + tn)

Clearly, Φ is smooth. The Jacobian of Φ at (q, 0) is

DΦ(q, t) =


∂x1
∂u

∂x1
∂v 0 . . . 0

∂x2
∂u

∂x2
∂v 0 . . . 0

∂x3
∂u

∂x3
∂v 1 . . . 0

...
...

...
. . .

...
∂xn
∂u

∂xn
∂v 0 . . . 1

 (q)

Clearly this is nonsingular at (q, 0). Hence by the inverse function theorem there exists a
neighbourhood V ′ := V1 × V2 3 (q, 0) in Rn such that Φ is 1-1 on V ′, the image U ′ := Φ(V ′)
is open in Rn containing Φ(q, 0) = p and Φ−1 : U ′ → V ′ is smooth. Observe that for points
(q′, 0) ∈ V ′, Φ(q′, 0) = ϕ(q′) ∈ U ′∩U . Hence if x(u) ∈ U ∩U ′, then Φ−1(x(u)) = ϕ−1(x(u)) =
(u, v). Since F : W → U is continuous there exists a open set W ′ 3 w such that F (W ′) ⊂
U ∩ U ′. As F (W ′) ⊂ U ∩ U ′, we have p′ = F (w′) ∈ U ∩ U ′ and so Φ−1(p′) = ϕ−1(p′) and
hence ϕ−1 ◦ F = Φ−1 ◦ F on W ′. Since F and Φ−1 are smooth, Φ−1 ◦ F and hence ϕ−1 ◦ F
are smooth on W ′. Since w ∈W was arbitrary, the theorem is proved.

Corollary 3. Let S ⊂ Rn be a surface. Let (Vi, ϕi, Ui), i = 1, 2 be two patches of S. Then
the map ϕ−12 ◦ ϕ1 as a map from the open set ϕ−11 (U1 ∩ U2) in R2 to R2 is smooth.

Theorem 4. Let S ⊂ R3 be a surface. Then it is locally a graph of a function defined on an
open subset V ⊂ R2.

Proof. What we are asked to prove is that given a point p ∈ S, we need to establish the
existence of an open set V ′ ⊂ R2, a smooth function f : V ′ → R and an open set U ′ 3 p in S
such that U ′ is the graph of f .
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We choose a patch at p, say, (V, ϕ, U). As usual, we write ϕ(u, v) = (x(u, v), y(u, v), z(u, v)).
Let q ∈ V be such that ϕ(q) = p. Since the rank of Dϕ(q′) is 2 at all q′ ∈ V , we assume
without loss of generality that the submatrix(∂x

∂u
∂x
∂v

∂y
∂u

∂y
∂v

)
(q)

has nonzero determinant. Consider the map ψ : V → R2 given by ψ(u, v) = (x(u, v), y(u, v)).
This map is smooth and has a nonsingular Jacobian at q ∈ V . Hence by the inverse function
theorem, there exists an open set V ′ in V containing q with the following properties: (i) ψ is
1-1 on V ′, (ii) the image ψ(V ′) is an open set, say W , containing (p1, p2) where p = (p1, p2, p3)
and (iii) the inverse ψ−1 : W → V ′ is smooth. Let (s, t) be the coordinates in W . Note that
(s, t) = (x(u, v), y(u, v)) for a unique (u, v) ∈ V ′. The map

(s, t) 7→ ψ−1(s, t) = (u, v) 7→ (x(u, v), y(u, v), z(u, v)) 7→ z(u, v)

is smooth, as its is the composition π ◦ ϕ ◦ ψ−1. Call it f . It is clear that the graph
{(s, t, f(s, t)) : (s, t) ∈ W} = ϕ(V ′). Since ϕ is a homeomorphism, ϕ(V ′) is open in S
containing p.

Theorem 5. Let S ⊂ Rn be a surface. Let f : S → R be smooth. Given p ∈ S, there exists
an open set U 3 p in Rn and a smooth function g : U → R such that f = g |S.

Proof. We keep the notation in the proof of Theorem 2. Proceeding as in the proof over there,
we arrive V ′,Φ, U ′. Now consider the function g : U ′ → R defined by

x = (x1, . . . , xn) 7→ (u, v, t3, . . . , tn) := Φ−1(x) 7→ (u, v) 7→ ϕ(u, v) 7→ f ◦ ϕ(u, v).

That is, g = (f ◦ϕ)◦π ◦Φ−1, where π : R2×Rn−2 → R2 is the projection. Since f is assumed
to be smooth on S, and ϕ is a patch, the composite f ◦ ϕ is smooth. It follows that g is
smooth on U ′. Also, g(p′) = f(p′) for p′ ∈ U ′ ∩ S. tj = 0 for j ≥ 3.
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