Limit Inferior and Limit Superior

S. Kumaresan kumaresa@gmail.com

1. **Limit Inferior and Limit Superior.** Given a bounded sequence (a_n) of real numbers, let $A_n := \{x_k : k \geq n\}$. Consider the numbers

$$
s_n := \inf\{a_k : k \ge n\} \equiv \inf A_n
$$
 and $t_n := \sup\{a_k : k \ge n\} \equiv \sup A_n$.

If $|x_k|$ ≤ *M* for all *n*, then −*M* ≤ *s_n* ≤ *t_n* ≤ *M* for all *n*. The sequence (s_n) is an increasing sequence of reals bounded above while $\left(t_{n}\right)$ is a decreasing sequence of reals bounded below. Let

 $\liminf a_n := \lim s_n \equiv 1$.u.b. $\{s_n\}$ and $\limsup a_n := \lim t_n \equiv \text{g.l.b. } \{t_n\}.$

In case, the sequence (a_n) is not bounded above, then its lim sup is defined to be $+\infty$. Similarly, the liminf of a sequence not bounded below is defined to be $-\infty$.

- 2. Let (x_n) be the sequence where $x_n = (-1)^{n+1}$. Then $\liminf x_n = -1$ and $\limsup x_n = 1$.
- 3. For any bounded sequence (x_n) , we have $\liminf x_n \leq \limsup x_n$. *Hint:* $s_n \leq t_n$.
- 4. Let (a_n) be a bounded sequence of real numbers with $t := \limsup a_n$. Let $\varepsilon > 0$. Then (a) There exists $N \in \mathbb{N}$ such that $a_n < t + \varepsilon$ for $n \geq N$. (b) $t - \varepsilon < a_n$ for infinitely many *n*. (c) In particular, there exists infinitely many $r \in \mathbb{N}$ such that $t - \varepsilon < a_r < t + \varepsilon$.

Proof. Let $A_k := \{x_n : n \ge k\}.$

(a) Note that $\limsup a_n = \inf t_n$ in the notation used above. Since $t + \varepsilon$ is greater than the greatest lower bound of (t_n) , $t + \varepsilon$ is not a lower bound for t_n 's. Hence there exists $N \in \mathbb{N}$ such that $t + \varepsilon > t_N$. Since t_N is the least upper bound for $\{x_n : n \geq N\}$, it follows that $t + \varepsilon > x_n$ for all $n \ge N$.

(b) $t - \varepsilon$ is less than the greatest lower bound of t_n 's and hence is certainly a lower bound for t_n 's. Hence, for any $k \in \mathbb{N}$, $t - \varepsilon$ is less than t_k , the least upper bound of $\{a_n : n \geq k\}$. Therefore, $t - \varepsilon$ is not an upper bound for $\{a_n : n \geq k\}$. Thus, there exists n_k such that a_{n_k} > *t* − ε . For $k = 1$, let n_1 be such that a_{n_1} > $t - \varepsilon$. Since $t - \varepsilon$ is not an upper bound of A_{n_1+1} there exists $n_2 \ge n_1 + 1 > n_1$ such that $t - \varepsilon < a_{n_2}$. Proceeding this way, we get a subsequence (a_{n_k}) such that $t - \varepsilon < a_{n_k}$ for all $k \in \mathbb{N}$. \Box

- 5. Analogous results for liminf: Let (a_n) be a bounded sequence of real numbers with $s :=$ $\liminf a_n$. Let $\varepsilon > 0$. Then
	- (a) There exists *N* ∈ *N* such that $a_n > t \varepsilon$ for $n \geq N$.

(b) $t + \varepsilon > a_n$ for infinitely many *n*.

(c) In particular, there exists infinitely many $r \in \mathbb{N}$ such that $s - \varepsilon < a_r < s + \varepsilon$.

- 6. Understand the last two results by applying them to the sequence with $x_n = (-1)^{n+1}$.
- 7. A sequence (x_n) in $\mathbb R$ is convergent iff (i) its bounded and (ii) $\limsup x_n = \liminf x_n$, in which case $\lim x_n = \lim \sup x_n = \lim \inf x_n$.

Proof. Assume that $x_n \to x$. Then (x_n) is bounded. Then $s = \liminf x_n$ and $t = \limsup x_n$ exist. We need to show that $s = t$. Note that $s \le t$. Let $\varepsilon > 0$ be given. Then there exists $N \in \mathbb{N}$ such that

$$
n \ge N \implies x - \varepsilon < x_n < x + \varepsilon.
$$

In particular, $x - \varepsilon < s_N := \inf\{x_n : n \ge N\}$ and $t_N := \sup\{x_n : n \ge N\} < x + \varepsilon$. But we have

 $s_N \leq \liminf x_n \leq \limsup x_n \leq t_N$.

Hence it follows that

$$
x - \varepsilon < s_N \le s \le t \le t_N < x + \varepsilon.
$$

Thus, $|s-t| \leq 2\varepsilon$. This being true for all $\varepsilon > 0$, we deduce that $s = t$. Also, $x, s \in (x-\varepsilon, x+\varepsilon)$ for each $\varepsilon > 0$. Hence $x = s$ and hence $x = s = t$.

Let $s = t$ and $\varepsilon > 0$ be given. Using Items 5 and 4, we see that there exists $N \in \mathbb{N}$ such that

$$
n \ge N \implies s - \varepsilon < x_n \text{ and } x_n < s + \varepsilon.
$$

8. A traditional proof of the Cauchy completeness of $\mathbb R$ runs as follows.

Proof. Let (x_n) be a Cauchy sequence of real numbers. Then it is bounded and hence $s =$ lim inf x_n and $t = \limsup x_n$ exist as real numbers. It suffices to show that $s = t$. Since $s \le t$ always, we need only show that $t \leq s$, that is, $t \leq s + \varepsilon$ for any give $\varepsilon > 0$. Since (x_n) is Cauchy there exists $N \in \mathbb{N}$ such that

$$
m, n \ge N \implies |x_n - x_m| < \varepsilon/2
$$
, in particular, $|x_n - x_N| < \varepsilon/2$.

It follows that for $n \geq N$,

$$
x_N - \varepsilon/2 \leq g.l.b. \ \{x_n : n \geq N\} \leq l.u.b. \ \{x_n : n \geq N\} \leq x_N + \varepsilon/2.
$$

Hence, we obtain

$$
t_n :=
$$
l.u.b. $\{x_n : n \ge N\} \le g$.l.b. $\{x_n : n \ge N\} + \varepsilon = s_n + \varepsilon$, for $n \ge N$.

Taking limits, we get $\lim t_n \leq \lim s_n + \varepsilon$.

- 9. Exercises on limit superior and inferior.
	- (a) Consider $(x_n) := (1/2, 2/3, 1/3, 3/4, 1/4, 4/5, \ldots, 1/n, n/(n+1), \ldots)$. Then lim sup = 1 and $\liminf x_n = 0$.
	- (b) Find the limsup and liminf of the sequences whose *n*-th term is given by: i. $x_n = (-1)^n + 1/n$

```
\Box
```
 \Box

ii. $x_n = 1/n + (-1)^n/n^2$ iii. $x_n = (1 + 1/n)^n$ iv. $x_n = \sin(n\pi/2)$.

There is a formula for the radius of convergence of a power series $\sum_{n=0}^{\infty} a_n (z-a)^n$ in terms of the coefficients *aⁿ* .

10. ***Hadamard formula for the radius of convergence** The radius of convergence ρ of $\sum_{n=0}^{\infty} c_n(z-\mu)$ *a*) *n* is given by

$$
\frac{1}{\rho} = \limsup |c_n|^{1/n}
$$
 and
$$
\rho = \liminf |c_n|^{-1/n}.
$$

Proof. Let $\frac{1}{\beta} := \limsup |c_n|^{1/n}$. We wish to show that $\rho = \beta$.

If *z* is given such that $|z-a| < \beta$, choose μ such that $|z-a| < \mu < \beta$. Then $\frac{1}{\mu} > \frac{1}{\beta}$ *β* and hence there exists *N* (by the last lemma) such that $|c_n|^{1/n} < \frac{1}{\mu}$ $\frac{1}{\mu}$ for all $n \geq N$. It follows that $|c_n|\mu^n$ < 1 for *n* ≥ *N*. Hence ($|c_n|\mu^n$) is bounded, say, by *M*. Hence, $|c_n|$ ≤ *M* μ^{-n} for all *n*. Consequently,

$$
|c_n(z-a)^n| \le M\mu^{-n}|z-a|^n = M\left(\frac{|z-a|}{\mu}\right)^n.
$$

Since $\frac{|z-a|}{\mu} < 1$, the convergence of $\sum c_n(z-a)^n$ follows.

Let $|z - a| > \beta$ so that $\frac{1}{|z - a|} < \frac{1}{\beta}$ $\frac{1}{\beta}$. Then $\frac{1}{|z-a|} < |c_n|^{1/n}$ for infinitely many *n*. Hence $|c_n||z |a|^n \geq 1$ for infinitely many *n* so that the series $\sum c_n(z-a)^n$ is divergent. We therefore conclude that $\rho = \beta$.

The other formula for the radius of convergence is proved similarly.

 \Box