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1. Limit Inferior and Limit Superior. Given a bounded sequence (a,) of real numbers, let
A, :={x; : k > n}. Consider the numbers

s, :=inf{a; : k > n} =infA, and t, := sup{ay : k = n} = supA,.

If |[x;| < M for all n, then —M <s, < t, < M for all n. The sequence (s,,) is an increasing
sequence of reals bounded above while (t,,) is a decreasing sequence of reals bounded below.
Let

liminfa, :=lims, =Lu.b. {s,} and limsupa, :=limt, = g.Lb. {t,}.

In case, the sequence (a,) is not bounded above, then its limsup is defined to be +0c0.
Similarly, the liminf of a sequence not bounded below is defined to be —oo.

2. Let (x,) be the sequence where x,, = (—1)"*!. Then liminfx, = —1 and limsup x,, = 1.
3. For any bounded sequence (x,,), we have liminfx, < limsup x,. Hint: s, < t,,.

4. Let (a,) be a bounded sequence of real numbers with t :=limsupa,,. Let € > 0. Then
(a) There exists N € N such that a, < t + ¢ forn > N.
(b) t — ¢ < a,, for infinitely many n.
(c) In particular, there exists infinitely many r € Nsuch that t —e <a, <t +e¢.

Proof. Let Ay :={x,:n>k}.

(a) Note that limsupa, = inft, in the notation used above. Since t + ¢ is greater than the
greatest lower bound of (t,,), t + ¢ is not a lower bound for t,’s. Hence there exists N € N
such that t + € > ty. Since ty is the least upper bound for {x, : n > N}, it follows that
t+e>x,foralln>N.

(b) t — ¢ is less than the greatest lower bound of ¢,’s and hence is certainly a lower bound
for t,’s. Hence, for any k € N, t — ¢ is less than ¢, the least upper bound of {a, : n > k}.
Therefore, t — ¢ is not an upper bound for {a, : n > k}. Thus, there exists n; such that
a, >t—e¢. For k =1, let n; be such that a,, >t —e¢. Since t — ¢ is not an upper bound
of A, 41 there exists ny > n; +1 > n; such that t — ¢ < a,,,. Proceeding this way, we get a
subsequence (a,, ) such that t —¢ < a,, forall k €N. O

5. Analogous results for liminf: Let (a,) be a bounded sequence of real numbers with s :=
liminfa,. Let € > 0. Then
(a) There exists N € N such that a, > t —¢ forn > N.
(b) t + & > a,, for infinitely many n.
(c) In particular, there exists infinitely many r € N such thats—e <a, <s+e¢.



6. Understand the last two results by applying them to the sequence with x,, = (—1)"*.
7. A sequence (x,) in R is convergent iff (i) its bounded and (ii) limsupx, = liminfx,, in

which case lim x,, = limsup x,, = liminf x,,.

Proof. Assume that x, — x. Then (x,,) is bounded. Then s = liminfx, and t = limsup x,,
exist. We need to show that s = t. Note that s < t. Let € > 0 be given. Then there exists
N € N such that

n=N —= x—e<x,<x+e.

In particular, x —& < sy :=inf{x, : n > N} and ty :=sup{x, : n > N} < x +¢. But we have
sy <liminfx, <limsupx, < ty.

Hence it follows that
X—e<sy<s<t<ty<x+te.

Thus, |s—t| < 2¢. This being true for all ¢ > 0, we deduce thats = t. Also, x,s € (x—e, x+¢)
for each € > 0. Hence x =s and hence x =s = t.

Let s =t and € > 0O be given. Using Items 5 and 4, we see that there exists N € N such that

n>N — s—e<x,and x, <s+e.

8. A traditional proof of the Cauchy completeness of R runs as follows.

Proof. Let (x,) be a Cauchy sequence of real numbers. Then it is bounded and hence s =
liminfx, and t = limsup x,, exist as real numbers. It suffices to show thats = t. Sinces <t
always, we need only show that t < s, that is, t < s+ ¢ for any give £ > 0. Since (x,,) is
Cauchy there exists N € N such that

mn>N = |x,—x,,| < €&/2, in particular, |x, —xy| < /2.
It follows that for n > N,
xy—€/2<glb. {x,:n>N}<Lub.{x,:n>N}<xy+e/2.
Hence, we obtain
tp:=Lub.{x,:n>N}<glb. {x,:n>N}+e=s,+¢, forn=>N.
Taking limits, we get limt,, < lims, + ¢. O
9. Exercises on limit superior and inferior.

(a) Consider (x,):=(1/2,2/3,1/3,3/4,1/4,4/5,...,1/n,n/(n+1),...). Then limsup =
1 and liminfx, = 0.

(b) Find the limsup and liminf of the sequences whose n-th term is given by:
i x,=C-1)"+1/n



10.

ii. x,=1/n+(-=1)"/n?
iii. x,=(1+1/n)"
iv. x, =sin(nn/2).

. . . oo .
There is a formula for the radius of convergence of a power series Y. =0 dn(z —a)" in terms
of the coefficients a,,.

*Hadamard formula for the radius of convergence The radius of convergence p of Z:Z oCn(z—
a)" is given by

1
—= limsuplcnll/” and p = liminflcnl_l/”.
Jel

Proof. Let = limsup |c,|"/™. We wish to show that p = .

If z is given such that |z —a| < f3, choose u such that |z —a| < u < 5. Then % > % and
hence there exists N (by the last lemma) such that |cn|1/ < ﬁ for all n > N. It follows that

|c,Ju™ <1 for n > N. Hence (|c,|u™) is bounded, say, by M. Hence, |c,| < Mu™" for all n.
Consequently,

— n
|Cn(z_a)n|SM.u_n|Z—a|”:M(|Z al) '
u

|z—a|

Since < 1, the convergence of >’ cn(z —a)" follows.

Let [z —a| > B so that =al aI . Then To=a] al <lc, |1/ for infinitely many n. Hence |c,||z —

a|® > 1 for infinitely many n so that the series Y. c,(z — a)" is divergent. We therefore
conclude that p = f3.

The other formula for the radius of convergence is proved similarly. O



