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1. Limit Inferior and Limit Superior. Given a bounded sequence (an) of real numbers, let
An := {xk : k ≥ n}. Consider the numbers

sn := inf{ak : k ≥ n} ≡ inf An and tn := sup{ak : k ≥ n} ≡ sup An.

If |xk| ≤ M for all n, then −M ≤ sn ≤ tn ≤ M for all n. The sequence (sn) is an increasing
sequence of reals bounded above while (tn) is a decreasing sequence of reals bounded below.
Let

lim inf an := lim sn ≡ l.u.b. {sn} and lim sup an := lim tn ≡ g.l.b. {tn}.

In case, the sequence (an) is not bounded above, then its lim sup is defined to be +∞.
Similarly, the lim inf of a sequence not bounded below is defined to be −∞.

2. Let (xn) be the sequence where xn = (−1)n+1. Then lim inf xn = −1 and lim sup xn = 1.

3. For any bounded sequence (xn), we have lim inf xn ≤ lim sup xn. Hint: sn ≤ tn.

4. Let (an) be a bounded sequence of real numbers with t := lim sup an. Let ε > 0. Then
(a) There exists N ∈ N such that an < t + ε for n≥ N .
(b) t − ε < an for infinitely many n.
(c) In particular, there exists infinitely many r ∈ N such that t − ε < ar < t + ε.

Proof. Let Ak := {xn : n≥ k}.

(a) Note that lim sup an = inf tn in the notation used above. Since t + ε is greater than the
greatest lower bound of (tn), t + ε is not a lower bound for tn’s. Hence there exists N ∈ N
such that t + ε > tN . Since tN is the least upper bound for {xn : n ≥ N}, it follows that
t + ε > xn for all n≥ N .

(b) t − ε is less than the greatest lower bound of tn’s and hence is certainly a lower bound
for tn’s. Hence, for any k ∈ N, t − ε is less than tk, the least upper bound of {an : n ≥ k}.
Therefore, t − ε is not an upper bound for {an : n ≥ k}. Thus, there exists nk such that
ank
> t − ε. For k = 1, let n1 be such that an1

> t − ε. Since t − ε is not an upper bound
of An1+1 there exists n2 ≥ n1 + 1 > n1 such that t − ε < an2

. Proceeding this way, we get a
subsequence (ank

) such that t − ε < ank
for all k ∈ N.

5. Analogous results for lim inf: Let (an) be a bounded sequence of real numbers with s :=
lim inf an. Let ε > 0. Then

(a) There exists N ∈ N such that an > t − ε for n≥ N .
(b) t + ε > an for infinitely many n.
(c) In particular, there exists infinitely many r ∈ N such that s− ε < ar < s+ ε.
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6. Understand the last two results by applying them to the sequence with xn = (−1)n+1.

7. A sequence (xn) in R is convergent iff (i) its bounded and (ii) lim sup xn = lim inf xn, in
which case lim xn = limsup xn = lim inf xn.

Proof. Assume that xn → x . Then (xn) is bounded. Then s = lim inf xn and t = lim sup xn
exist. We need to show that s = t. Note that s ≤ t. Let ε > 0 be given. Then there exists
N ∈ N such that

n≥ N =⇒ x − ε < xn < x + ε.

In particular, x −ε < sN := inf{xn : n≥ N} and tN := sup{xn : n≥ N}< x +ε. But we have

sN ≤ lim inf xn ≤ limsup xn ≤ tN .

Hence it follows that
x − ε < sN ≤ s ≤ t ≤ tN < x + ε.

Thus, |s−t| ≤ 2ε. This being true for all ε > 0, we deduce that s = t. Also, x , s ∈ (x−ε, x+ε)
for each ε > 0. Hence x = s and hence x = s = t.

Let s = t and ε > 0 be given. Using Items 5 and 4, we see that there exists N ∈ N such that

n≥ N =⇒ s− ε < xn and xn < s+ ε.

8. A traditional proof of the Cauchy completeness of R runs as follows.

Proof. Let (xn) be a Cauchy sequence of real numbers. Then it is bounded and hence s =
lim inf xn and t = limsup xn exist as real numbers. It suffices to show that s = t. Since s ≤ t
always, we need only show that t ≤ s, that is, t ≤ s + ε for any give ε > 0. Since (xn) is
Cauchy there exists N ∈ N such that

m, n≥ N =⇒ |xn − xm|< ε/2, in particular, |xn − xN |< ε/2.

It follows that for n≥ N ,

xN − ε/2≤ g.l.b. {xn : n≥ N} ≤ l.u.b. {xn : n≥ N} ≤ xN + ε/2.

Hence, we obtain

tn := l.u.b. {xn : n≥ N} ≤ g.l.b. {xn : n≥ N}+ ε = sn + ε, for n≥ N .

Taking limits, we get lim tn ≤ lim sn + ε.

9. Exercises on limit superior and inferior.

(a) Consider (xn) := (1/2, 2/3, 1/3,3/4,1/4, 4/5, . . . , 1/n, n/(n+ 1), . . .). Then limsup =
1 and lim inf xn = 0.

(b) Find the limsup and liminf of the sequences whose n-th term is given by:

i. xn = (−1)n + 1/n
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ii. xn = 1/n+ (−1)n/n2

iii. xn = (1+ 1/n)n

iv. xn = sin(nπ/2).

There is a formula for the radius of convergence of a power series
∑∞

n=0 an(z− a)n in terms
of the coefficients an.

10. *Hadamard formula for the radius of convergence The radius of convergenceρ of
∑∞

n=0 cn(z−
a)n is given by

1
ρ
= limsup |cn|1/n and ρ = lim inf |cn|−1/n.

Proof. Let 1
β := lim sup |cn|1/n. We wish to show that ρ = β .

If z is given such that |z − a| < β , choose µ such that |z − a| < µ < β . Then 1
µ >

1
β and

hence there exists N (by the last lemma) such that |cn|1/n <
1
µ for all n≥ N . It follows that

|cn|µn < 1 for n ≥ N . Hence (|cn|µn) is bounded, say, by M . Hence, |cn| ≤ Mµ−n for all n.
Consequently,

|cn(z − a)n| ≤ Mµ−n|z − a|n = M
�

|z − a|
µ

�n

.

Since |z−a|
µ < 1, the convergence of

∑

cn(z − a)n follows.

Let |z − a| > β so that 1
|z−a| <

1
β . Then 1

|z−a| < |cn|1/n for infinitely many n. Hence |cn||z −
a|n ≥ 1 for infinitely many n so that the series

∑

cn(z − a)n is divergent. We therefore
conclude that ρ = β .

The other formula for the radius of convergence is proved similarly.
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