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1 A Fundamental Existence Theorem for Matrix Equations

Theorem 1. Let J := [t0, t1] ⊂ R be an interval. Let A,F : J →M(n,R) be continuous n×n
matrix valued functions. Then the matrix DE

X ′(t) = A(t)X(t) + F (t), X(t0) = X0, (1)

for a given matrix X0 has a unique solution on the entire interval J .

Proof. The given problem is equivalent to solving the matrix valued integral equation

X(t) = X0 +

∫ t

t0

(A(s)X(s) + F (s)) ds. (2)

We adopt the Picard iteration scheme:

X0(s) := X0, Xm(t) := X0 +

∫ t

t0

(A(s)Xm−1(s) + F (s)) ds.

Let M > 0 be such that ‖A(s)‖ ≤M for s ∈ J . We prove by induction that

‖Xm(t)−Xm−1(t)‖ ≤
Mm

m!
(t− t0)m, (3)

for all t ∈ J and m ∈ N. As in the case of Picard’s local existence theorem, we conclude that
(Xm) is uniformly Cauchy on J and hence they converge to an X which satisfies the integral
equation (2).

We now prove that the solution is unique. Let X1 and X2 be solutions of the DE (1).
Then their difference Y := X1 −X2 is a solution of the homogeneous problem IV problem

Y ′(t) = A(t)Y (t), Y (t0) = 0. (4)

1



If we set g(t) :=
∫ t
t0
‖Y (s)‖ ds, we see that

g′(t) = ‖Y (t)‖ = ‖Y (t)− Y (t0)‖ =

∥∥∥∥∫ t

t0

Y ′(s)

∥∥∥∥
≤

∫ t

t0

∥∥Y ′(s)∥∥ ds
=

∫ t

t0

‖A(s)Y (s)‖ ds

≤ M

∫ t

t0

‖Y (s)‖

= Mg(t).

Hence we have
g′(t)−Mg(t) ≤ 0, (t ∈ J).

But then
d

dt
(g(t)e−Mt) = [g′(t)−Mg(t)]e−Mt ≤ 0, (t ∈ J),

so that the function t 7→ g(t)e−Mt is decreasing. Since g(t0) = 0 and is nonnegative by
definition, it follows that g = 0 on J .

A matrix DE X ′(t) = A(t)X(t) + F (t) is said to be homogeneous if F = 0.

Theorem 2. Let the notation be as in the last theorem. Let X be a solution of (1). The
Wronskian W (t) := detX(t) of the solution satisfies the scalar DE

W ′(t) = (TrA(t))W (t).

This implies that if X(τ) is invertible for some τ ∈ J , then X(t) is invertible for all t ∈ J .

Proof. We use Ex. 3 given below. Let x1(t), . . . , xn(t) be the columns of X(t). We have

W ′(t) =
n∑
k=1

det(x1, . . . , x
′
k(t), . . . , xn(t))

=

n∑
k=1

det(x1, . . . , A(t)xk(t), . . . , xn(t))

= Tr(A(t)) det(x1(t), . . . , xn(t))

= Tr(A(t))W (t).

Integrating this DE, we find that W (t) = ce
∫ t
t0

TrA(s) ds
for the constant c = W (t0). The last

statement of the theorem follows from this observation.

Ex. 3. Let xi : J → Rn be differentiable functions. Let X(t) := (x1(t), . . . , xn(t)) where xj
is considered as the j-th column of X. Show that

d

dt
det(X(t)) =

n∑
k=1

det(x1(t), . . . , x
′
k(t), . . . , xn(t)).

Hint: Recall that det is a multilinear function. The derivative can be found from the first
principles. Or, use the Laplace expansion.
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2 Linear Systems: x′ = Ax+ f

We use the above theorem to deduce all the results concerning the first order system

x′(t) = A(t)x(t) + f(t),

where A : J → M(n,R) and f : J → Rn are continuous functions. Written componentwise,
we have

x′i(t) = ai1(t)x1(t) + · · ·+ ain(t)xn(t) + fi(t), (1 ≤ i ≤ n).

Theorem 4. Let J := [t0, t1] ⊂ R be an interval. let A : J → M(n,R) and f : J → Rn be
continuous functions. Consider the nonhomogeneous first order system

x′(t) = A(t)x(t) + f(t) (5)

and the corresponding homogeneous system

x′(t) = A(t)x(t) (6)

(a) For any given vector x0 ∈ Rn, the system (5) has a unique solution with x(t0) = x0.
(b) If x1(t), . . . , xn(t) are n solutions of (6), then the following are equivalent.

(i) x1., . . . , xn are linearly dependent on J .
(ii) det(x1(t), . . . , xn(t)) = 0 for all t ∈ J .
(iii) det(x1(t), . . . , xn(t)) = 0 for some t ∈ J .

(c) The solution set of the homogeneous system x′(t) = A(t)x(t) is a vector space of dimen-
sion n. Any basis of the space of solutions is known as a fundamental set.

(d) If xp is a particular solution of the nonhomogeneous system (5), then any solution is
of the form xp + x where x is a solution of the associated homogeneous system.

(e) Let (x1, . . . , xn) be a fundamental set of the homogeneous system. Let X(t) := (x1(t), . . . , xn(t))
be the matrix whose i-th column is xi(t). If c(t) is any solution of the equation

X(t)c′(t) = f(t)

then
x(t) := X(t)c(t)

is a solution of the nonhomogeneous equation.
(f) Let (x1, . . . , xn) be a fundamental set for the homogeneous system. Assume that uk are

real valued functions such that

u′k(t) =
det(x1(t), . . . , xk−1(t), f(t), xk+1(t), . . . , xn(t))

det(x1(t), . . . , xn(t))
.

Then x(t) := u1(t)x1(t) + · · ·+ un(t)xn(t) is a solution of the nonhomogeneous system (5).

Proof. (a) follows trivially, if we apply Theorem 1 toX0 := (x0, . . . , x0) and F (t) := (f(t), . . . , f(t)).
Then X(t) is of the form X(t) = (x(t), . . . , x(t)).

(b) Let X(t) := (x1(t), . . . , xn(t)). Then x1, . . . , xn are solutions of x′ = Ax iff X is a
solution of X ′ = AX.
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(c) Let xk be the unique solution of x′ = Ax with x(t0) = ek, the k-th basic vector of Rn.
(Existence of xk is assured by (a). ) Let y be any solution of the homogeneous system. Then
y(t0) =

∑
k ckek. If we let x(t) :=

∑
k ckxk, then x is a solution of the homogeneous system

such that x(t0) = y(t0). By the uniqueness, it follows that y = x.

(d) is trivial, if we observe that the difference of any two solutions of the nonhomogeneous
system is a solution of the homogeneous system.

(e) If x(t) = X(t)c(t), then by the product rule, we have

x′(t) = X ′(t)c(t) +X(t)c′(t) = A(t)X(t)c′(t) + f(t) = A(t)x(t) + f(t).

(f) For any fixed t ∈ J , the vector c(t) := (c1(t), . . . , cn(t)) (considered as a column vector)
is, by Cramer’s rule, the solution of the linear system X(t)c′(t) = f(t). Hence t 7→ X(t)c(t)
is a solution of the nonhomogeneous equation (1) by (e). But,

X(t)c(t) = c1(t)x1(t) + · · ·+ cn(t)xn(t),

by the definition of matrix multiplication.

Remark 5. Note that the equation X(t)c′(t) = f(t) in (e) of the above theorem says that
c is an anti-derivative of X(t)−1f(t), e.g., c(t) =

∫ t1
t0
X(s)−1f(s) ds. Thus (f) of the last

theorem allows us to solve for the nonhomogeneous system given a fundamental set for the
homogeneous system. This is known as the method of variation of parameters.

If the matrix function A(t) = A is a constant matrix, we then have an explicit represen-
tation of the solution of the non-homogeneous equation.

Theorem 6. Let A be a constant matrix. Let J = [t0, t1] ⊂ R be an interval. Let f : J → Rn
be continuous. Then the unique solution of the initial value problem

x′(t) = Ax(t) + f(t), x(t0) = x0

is given by

x(t) = e(t−t0)Ax0 +

∫ t

t0

e(t−s)Af(s) ds.

Proof. Multiply the DE by e−tA on the left to obtain

e−tAx′(t)− e−tAAx(t) = e−tAf(t).

The LHS of this equation is the derivative the function t 7→ e−tAx(t). So, upon integration,
we get

e−tAx(t) =

∫ t1

t0

e−sAf(s) ds+ c.

The constant vector is identified by taking t as t0.

Let A be a constant matrix. We want to solve x′ = Ax with IC x(0) = x0 explicitly. This

is easily done. Let x(t) := etAx0 where etA :=
∑∞

k=0
(tA)k

k! . Then the standard results about
the exponential of matrices tell us that the problem is solved. (See Exer. 7 below.) However,
it is usually very difficult to compute the exponential of any matrix A. Before attending to
this, we establish some useful results.
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Ex. 7 (Exponential Map in M(n,R)). The following set of exercises introduces the expo-
nential map in M(n,R) and its properties:

1. For X ∈M(n,R), X := (xij), let

‖X ‖∞ := max
1≤i,j≤n

|xij |

be the max norm. It is equivalent to the operator norm ‖ ‖ on elements of M(n,R)
viewed as linear operators on Rn. We shall use the operator norm in the following.

2. We have ‖AB‖ ≤ ‖A‖ ‖B‖ for all A,B ∈M(n,R) and
∥∥Ak∥∥ ≤ ‖A‖k.

3. A sequence Ak → A in the operator norm if and only if akij → aij for all 1 ≤ i, j ≤ n as

k →∞. Here we have Ak := (akij), etc.

4. If
∑∞

k=0 ‖Ak ‖ is convergent, then
∑∞

k=0Ak is convergent to an element A of M(n,R).

5. For any X ∈M(n,R), the series
∑∞

k=0
Xk

k! is convergent. We denote the sum by exp(X)
or by eX .

6. For a fixed X ∈ M(n,R) the function f(t) := etX satisfies the matrix differential
equation f ′(t) = Xf(t), with the initial value f(0) = I. Hint: Note that the (i, j)-th
entry of f(t) is a power series in t and use (4).

7. Set g(t) := etXe−tX and conclude that etX is invertible for all t ∈ R and for all X ∈
M(n,R).

8. There exists a unique solution for f ′(t) = Af(t) with initial value f(0) = B given by
f(t) = etAB. Hint: If g is any solution, consider h(t) = g(t) e−tA.

9. Let A, B ∈M(n,R). If AB = BA then we have

eA+B = eAeB = eBeA = eB+A.

Hint: Consider φ(t) := et(A+B) − etAetB.

10. For A, X ∈M(n,R) we have eAXA
−1

= AeXA−1.

Definition 8. We say that a matrix X(t) with columns xi(t) is a fundamental matrix if
{xi : 1 ≤ i ≤ n} is a basis of solutions of the DE x′ = Ax. Note that by the fundamental
theorem for linear systems such a matrix exists.

Lemma 9. A matrix X(t) is a fundamental matrix for x′ = Ax iff X ′(t) = AX(t) and
detX(t) 6= 0.

Proof. Let xj be the j-th column of X. Observe that the matrix equation X ′ = AX is
equivalent the n vector equations x′j(t) = Axj(t). By the standard uniqueness argument, the
n solutions xj(t) are linearly independent iff x1(0), . . . , xn(0) are linearly independent. The
latter are linearly independent iff detX(0) 6= 0.

Lemma 10. The matrix etA is a fundamental solution of x′ = Ax.
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Proof. Obvious in view of the last lemma.

Lemma 11. Let X(t) and Y (t) be two fundamental solutions of x′ = Ax. Then there exists
a constant matrix C such that Y (t) = X(t)C.

Proof. Each column yi of Y can be written as a linear combination of the columns xj of X:

yi = c1ix1 + · · ·+ cnixn.

Then C := (cij) is as required.

Theorem 12. Let X(t) be a fundamental matrix of x′ = Ax. Then

etA = X(t)X−1(0). (7)

In other words, any fundamental matrix X(t) is of the form X(t) = etAX(0).

Proof. Immediate consequence of the last two lemmas.

Ex. 13. Let xj be the solution of the initial value problem x′ = Ax with xj(0) = ej . Show
that etA = (x1, . . . , xn).

Ex. 14. Let X and Y be fundamental matrices of x′ = Ax with Y = XC for a constant
matrix C. Show that detC 6= 0.

Ex. 15. Let X(t) be a fundamental matrix of x′ = Ax and C a constant matrix with
detC 6= 0. Show that Y (t) = X(t)C is a fundamental matrix of x′ = Ax.

Ex. 16. Let X be a fundamental solution of x′ = Ax. Prove that the solution of the IV
problem x′ = Ax, x(t0) = x0 is x(t) = X(t)(X(t0)

−1x0.

Ex. 17. Let X be a fundamental matrix of x′ = Ax. Show that X(t)X(t0)
−1 = e(t−t0)A.

Theorem 18 (Nonhomogeneous Equation-Variation of Parameters). The solution of the IV
problem x′ = Ax+ f(t), x(t0) = x0 is given by

x(t) = X(t)X−1(t)x0 +X(t)

∫ t

t0

X−1(s)f(s) ds, (8)

where X is a any fundamental matrix of the homogeneous equation x′ = Ax.

Proof. Let x1, . . . , xn be a set of n linearly independent solutions of the homogeneous system
x′ = Ax. We seek a solution x of the IV problem for the nonhomogeneous system in the form

x(t) = u1(t)x1(t) + · · ·+ un(t)xn(t).

This can be written as x(t) = X(t)u(t) in an obvious notation. Assuming that x(t) solves the
IV problem and plucking the expression for x(t) in the equation x′ = Ax+ f , we get

X ′(t)u(t) +X(t)u′(t) = AX(t)u(t) + f(t). (9)
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Since X is a fundamental matrix X ′(t) = AX(t) so that the first terms on either side of (9)
are equal. Hence, (9) reduces to

X(t)u′(t) = f(t).

Thus, u′ = X−1(t)f(t) so that

u(t) = u(t0) +

∫ t

t0

X−1(s)f(s) ds

= X−1(t0)(x0) +

∫ t

t0

X−1(s)f(s) ds.

The result (8) follows from this.

Remark 19. Theorem 6 is a special case of the last theorem if we take X(t) = etA. Note
that the Green’s kernel in this case is G(t, s) = e(t−s)A.

3 Linear Equations of Higher Order

An n-th order linear ODE is of the form

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = f(t), (10)

where the coefficient function aj and f are assumed to be continuous functions on an interval
J ⊂ R. The homogeneous linear equation associated to (10) is

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0. (11)

The crucial observation is that the study of such equations can be reduced to the study
of first order systems considered above. If y is a solution of the DE (10), then the functions

x1 := y, x2 := y′, x3 := y′′, . . . , xn−1 = y(n−2), xn := y(n−1)

satisfy the following differential equations

x′1 = x2, x
′
2 = x3, . . . , x

′
n−1 = xn, x

′
n = −(an−1xn + an−2xn−1 + · · ·+ a1x2 + a0x1) + f. (12)

We introduce the matrix valued function

A(t) :=


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−a0 −a1 . . . . . . −an−1

 .

With this notation, the differential equations in (12), can be recast as
x′1(t)
x′2(t)

...
x′n−1(t)
x′n(t)

 = A(t)


x1(t)
x2(t)

...
xn−1(t)
xn(t)

+


0
0
...
0
f(t)


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or, in an obvious notation
x′(t) = A(t)x(t) + F (t). (13)

Ex. 20. Every solution y of (10) is a solution of (13). Conversely, if x(t) is a solution of (13),
then y(t) := x1(t) is a solution of (10).

The matrix A above is called the companion matrix of DE (10).

The following theorem is more or less an immediate consequence of Theorem 4.

Theorem 21. Let J := [t0, t1] ⊂ R be an interval. Let a0, a1, . . . , an−1 : J → R and f : J → R
be continuous. Let L(y) := y(n)(t) + an−1y

(n−1)(t) + · · · + a1(t)y
′ + a0(t)y(t). Consider the

nonhomogeneous equation L(y) = f and the homogeneous equation L(y) = 0.
(a) Given any numbers βj ∈ R, for 0 ≤ j ≤ k− 1, there is a unique solution y of L(y) = f

with y(j)(t0) = βj.
(b) If y1, . . . , yn are solutions of the homogeneous equation L(y) = 0, then their Wronskian

determinant

W (y1, . . . , yn)(t) :=


y1(t) y2(t) . . . yn(t)
y′1(t) y′2(t) . . . y′n(t)

...
...

...

y
(n−1)
1 (t) y

(n−1)
2 (t) . . . y

(n−1)
n (t).


satisfies the differential equation: W ′(t) = −an−1(t)W (t).

(c) If y1, . . . , yn are n solutions of the homogeneous equation L(y) = 0, then the following
are equivalent:

(i) y1, . . . , yn are linearly independent on J .
(ii) W (y)(t) = 0 for all t ∈ J .
(iii) W (y)(τ) = 0 for some τ ∈ J .

(d) The set of solutions of the homogeneous equation L(y) = 0 is an n-dimensional vector
space. Any basis of the space of solutions is called a fundamental set.

(e) If yp is a particular solution of the nonhomogeneous system, then any solution of the
nonhomogeneous system is of the form yp+y where y is a solution of the homogeneous system.

(f) Let {yj : 1 ≤ j ≤ n} be a fundamental set of the space of solutions of L(y) = 0. If
u1, . . . , un are solutions of the matrix equation

y1 y2 . . . yn
y′1 y′2 . . . y′n
...

...
...

y
(n−1)
1 y

(n−1)
2 . . . y

(n−1)
n .



u′1(t)
u′2(t)

...
u′n(t)

 =


0
0
...

f(t)


then

y(t) := u1(t)y1(t) + · · ·+ un(t)yn(t)

is a solution of the nonhomogeneous equation L(y) = f .
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Let D : f 7→ f ′ denote the differential operator. If p(X) := Xn+an−1X
n−1+· · ·+a1X+a0,

then we let
p(D)(y) := y(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0(t)y.

The polynomial p is called the characteristic polynomial of the differential operator p(D).

Theorem 22. Given a differential operator

p(D)(y)(t) := y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1y

′(t) + a0y(t)

with constant coefficients. Let λj be the roots of p with multiplicity mj, (1 ≤ j ≤ k). Any
solution y of the homogeneous equation p(D)y = 0 is of the form

y(t) = eλ1tp1(t) + · · ·+ eλktpk(t)

where pj is an arbitrary polynomial of degree at most mj. That is, a basis of the solution is

{eλjttr : 1 ≤ j ≤ k, 0 ≤ r ≤ mj − 1}.

Proof. Follows from the next three lemmas.

Lemma 23. Let Vr := Cr(R) be the vector space of all r-times continuously differentiable
functions on R. Let D : Vr → Vr−1 be the derivation map f 7→ f ′.

(a) If f ∈ Vr, then (D − λI)rf = eλtDr(e−λtf).
(b) A function f ∈ Vr lies in the kernel of (D − λI)r iff it is of the form

f(t) = eλt(b0 + b1t+ · · ·+ br−1t
r−1).

Proof. (a) is proved by induction. To prove (b), observe that (D−λI)rf = 0 iffDr(e−λtf) = 0,
by (a).

Lemma 24. Let p ∈ K[X] be a polynomial over a field K with a decomposition p = p−1 · · · pk
where pj are relatively prime. Let A : V → V be a linear endomorphism of the K-vector space
V . Then we have

ker p(A) = ker p1(A)⊕ · · · ⊕ ker pk(A).

Proof. Let qj := p/pj = p1 · · · pj−1pj+1 · · · pk. We first show that the sum is direct. Let
v1 + · · · + vk = 0 where vj ∈ ker pj(A). Note that qi(A)vj = 0 whenever i 6= j. Since pi and
qi are relatively prime, there exist polynomials a and b such that ap1 + bq1 = 1. Then,

vi = a(A)pi(A)vi + b(A)bqi(A)vi

= b(A)qi(A)(−
∑
j 6=i

vj)

= −
∑
j 6=i

b(A)qi(A)vj

=
∑
j 6=i

0.
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In the displayed equation, the inclusion ⊇ is obvious. To prove the reverse inclusion, note
that qj are relatively prime. Hence there exist polynomials rj such that

∑
j rjqj = 1. Let

v ∈ ker p(A). Then vi := ri(A)qi(A)v ∈ ker pi(A) because

pi(A)vi = pi(A)qri(A)qi(A)v = ri(A)pi(A)qi(A) = ri(A)p(A)v = 0.

It is easily seen that v =
∑

i vi.

Lemma 25. Let p(λ) := λn+an−1λ
n−1 + · · ·+a1λ+a0 = (λ−λ1)m1 · · · (λ− glk)mk . Then a

basis solutions of the homogeneous equation p(D)y = 0 is {eλjttr : 1 ≤ j ≤ k, 0 ≤ r ≤ mj−1}.

Proof. Let pi(λ) := (λ − λi)mi . Then p(D) = p1(D) · · · pk(D). The result follows from the
last two lemmas.

We now apply our knowledge about the n-th order homogeneous equation to compute etA

of a matrix A!

Theorem 26. Let p be the characteristic polynomial of A. Let y1, . . . , yn be a basis for the
set of solutions of the homogeneous n-th order equation p(D)y = 0. Then there exist matrices
A1, . . . , An such that

etA = y1(t)A1 + · · ·+ yn(t)An. (14)

Proof. We have p(t) := det(A− tI). Let etA = (uij(t)). Then,

(p(D)uij(t)) = p(D)etA = p(A)etA = 0,

by Cayley-Hamilton theorem. Thus every entry uij of etA satisfies the DE p(D)uij = 0, hence
can be written as linear combination of yj ’s.

Remark 27. We now give an algorithm to find the exponential of a matrix. Given a matrix
A, we find its characteristic polynomial p(t). We find a basis {yj : 1 ≤ j ≤ n} of solutions
of p(D)y = 0. From the last result we know that there exist matrices Aj such that etA =
y1A1 + · · ·+ ynAn. To find these matrices Aj , we differentiate the equation (14) n− 1 times
with respect to t. We thus obtain n equations a follows.

etA = y1(t)A1 + · · ·+ yn(t)An

AetA = y′1(t)A1 + · · ·+ y′n(t)An
...

An−1etA = y(n−1)(t)A1 + · · ·+ y(n−1)(t)An.

Evaluate them at t = 0 and solve for Aj by the standard Gaussian elimination method.

Example 28. Consider

(
0 −s
s 0

)
. Following the above steps, we obtain etA =

(
cos st − sin st
sin st cos st

)
.

Ex. 29. (i) Find etA where A =

(
0 1
−14 −9

)
.

(ii) Transform the equation y′′ + 9y′ + 14y = 0 with y(0) = 0 and y′(0) = −1 into a vector
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DE.

(iii) Solve the IV problem in (ii). Ans: etA = 1
5

(
7e−2t − 2e−7t e−2t − e−7t
−14e−2t + 14e−7t −2e−2t + 7e−7t

)
and

y(t) = 1
5(−e−2t + e−7t).

Ex. 30. Solve x′′ + x = 3 with x(π) = 1 and x′(π) = 2 using the methods of exponential
matrix and variation of parameters. Ans: 3 + 2 cos t− 2 sin t.

Ex. 31. Solve x′′ + 2x′ − 8x = et with x(0) = 1 and x′(0) = −4 using the methods of
exponential matrix and variation of parameters. Ans: 31

30e
−4t + 1

6e
2t − 1

5e
t.

Ex. 32. Compute the exponential of the following matrices by any method:

(i)

(
1 1
4 1

)
. Ans:

(
1
2(e−t + e3t) 1

4(e3t − e−t)
−e−t + e3t 1

2(e−t + e3t)

)
.

(ii)

(
1 −1
1 1

)
. Ans:

(
et cos t −et sin t
et sin t et cos t

)
.

(iii)

2 1 0
0 2 0
0 0 2

.

(iv)

(
0 1
−4 −4

)
. Ans: e−2t

(
1 + 2t t
−4t 1− 2t

)
.

Ex. 33. Compute etA by solving a third order DE where A =

2 0 1
1 0 1
1 −2 0

.

We now briefly indicate how one can solve a linear system by the eigen value-eigen vector
method. Given the system x′ = Ax with a constant matrix A. Assume that A has distinct
eigen values, say, λj , 1 ≤ j ≤ n. Let vj be a nonzero eigen vector of A with eigen value
λj . Then xj(t) := eλjtvj is a solution. Also, {xj : 1 ≤ j ≤ n} is a fundamental set for the
equation x′ = Ax. Even if the eigen values are complex, by Ex. 35, we can find real valued
solutions. However, if A has eigen values with multiplicity, one requires a little more work.
We refer the reader to Braun’s book (especially sections 3.6–3.8) for more details.

Remark 34. A fall-out of this approach is another method of computing etA. Let x1(t), . . . , xn(t)
be linearly independent solutions of x′ = Ax. Then the matrix X(t) := (x1(t), . . . , xn(t)) is a
fundamental matrix so that etA = X(t)X−1(0). (Ex. 17!)

Ex. 35. Let x(t) = f(t) + ig(t) be a solution of x′ = Ax. Then f and gare real valued
solutions of x′ = Ax.

Ex. 36. Find all the solutions of x′ = Ax using eigen methods where

(i) A =

3 2 4
2 0 2
4 2 3

x.

(ii) A =

1 0 0
3 1 −2
2 2 1

.
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Ex. 37. Solve the given initial value problem.

(i) x′ =

(
1 1
4 1

)
x, x(0) =

(
2
3

)
.

(ii) x′ =

−3 0 2
1 −1 0
−2 −1 0

x with x(0) =

 0
−1
−2

.

Ex. 38. Solve the IV problem

x′ =

1 0 0
2 1 −2
3 2 1

x+

 0
0

et cos 2t

 , x(0) = e2 + e3

by two different methods viz., by finding the exponential of A and by eigen method.

Ex. 39. Find etA if A =

1 1 1
0 3 2
0 0 5

 by methods of Remarks 27 and 34. Which do you find

is easier?
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