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1 A Fundamental Existence Theorem for Matrix Equations

Theorem 1. Let J := [tg,t1] C R be an interval. Let A,F: J — M(n,R) be continuous nxn
matriz valued functions. Then the matriz DE

X'(t)=At)X(t) + F(t),  X(to) = Xo, (1)

for a given matriz Xo has a unique solution on the entire interval J.

Proof. The given problem is equivalent to solving the matrix valued integral equation
X(t) =Xo+ /tt (A(s)X (s) + F(s)) ds. (2)
0
We adopt the Picard iteration scheme:
Xo(s) := Xo, Xn(t) :=Xo+ /tt (A(8)Xm—1(s) + F(s)) ds.
0

Let M > 0 be such that || A(s)|| < M for s € J. We prove by induction that
m

1 Xn(8) = X a ()] < ot — 1), Q

for all t € J and m € N. As in the case of Picard’s local existence theorem, we conclude that
(Xn) is uniformly Cauchy on J and hence they converge to an X which satisfies the integral
equation (2).

We now prove that the solution is unique. Let X; and X5 be solutions of the DE (1).
Then their difference Y := X; — X5 is a solution of the homogeneous problem IV problem

Y'(t) = A()Y (),  Y(to)=0. (4)



If we set g(t) := j;to |Y(s)] ds, we see that

JO=IYOI=1Y®O Yt = ]

[

/ 1¥"(s)]] ds

= | 1As)Y ()]l ds

to

IN

t
< M [ Y (s)]l
to
= My(t).
Hence we have
g'(t) — Mg(t) <0, (teld).

But then p

S0 =[g'(t) - Mg(t)]e™™ <0, (te ),
so that the function t +— g(t)e"M! is decreasing. Since g(tg) = 0 and is nonnegative by
definition, it follows that ¢ =0 on J. O

A matrix DE X'(t) = A(¢t)X (t) + F(t) is said to be homogeneous if F' = 0.

Theorem 2. Let the notation be as in the last theorem. Let X be a solution of (1). The
Wronskian W (t) := det X (¢) of the solution satisfies the scalar DE

W' (t) = (Tr A(t))W (¢).
This implies that if X (T) is invertible for some T € J, then X (t) is invertible for allt € J.

Proof. We use Ex. 3 given below. Let x(),...,x,(t) be the columns of X (¢). We have

W) = ) det(wy,... ah(t),...,2n(t))
k=1

= > det(@r o AT, (D))
k=1

= TR(A®) det(za(t), . .. mn(t))
— (AW ().

t
Integrating this DE, we find that W (t) = celio AL o the constant ¢ = W (to). The last
statement of the theorem follows from this observation. O

Ex. 3. Let z;: J — R"™ be differentiable functions. Let X (t) := (x1(%),...,zn(t)) where x;
is considered as the j-th column of X. Show that

%det(X(t)) = det(xy(t), ..., 24 (1), ..., zn(t)).
k=1

Hint: Recall that det is a multilinear function. The derivative can be found from the first
principles. Or, use the Laplace expansion.



2 Linear Systems: 2/ = Az + f

We use the above theorem to deduce all the results concerning the first order system
(t) = A(t)x(t) + f (1),

where A: J — M(n,R) and f: J — R" are continuous functions. Written componentwise,
we have

i) = ap (w1 (t) + -+ am(O)zn () + fi(1), (1 <i<n).

Theorem 4. Let J := [tog,t1] C R be an interval. let A: J — M(n,R) and f: J — R" be
continuous functions. Consider the nonhomogeneous first order system

'(t) = A(t)z(t) + f(t) (5)
and the corresponding homogeneous system
2'(t) = A(t)z(t) (6)

(a) For any given vector xo € R™, the system (5) has a unique solution with x(tg) = xg.
(b) If z1(t), ..., zn(t) are n solutions of (6), then the following are equivalent.
(i) 1., ..., 2, are linearly dependent on J.
(ii) det(x1(t),...,zn(t)) =0 for all t € J.
(iii) det(x1(t),...,xzn(t)) =0 for somet € J.

(¢) The solution set of the homogeneous system x'(t) = A(t)x(t) is a vector space of dimen-
sion n. Any basis of the space of solutions is known as a fundamental set.

(d) If zp is a particular solution of the nonhomogeneous system (5), then any solution is
of the form x, + x where x is a solution of the associated homogeneous system.

(e) Let (z1,...,xy) be a fundamental set of the homogeneous system. Let X (t) := (z1(¢), ..., zn(t))
be the matriz whose i-th column is x;(t). If c(t) is any solution of the equation

then

s a solution of the nonhomogeneous equation.
(f) Let (x1,...,zp) be a fundamental set for the homogeneous system. Assume that uy are
real valued functions such that

(1) = det(@1(t), ..., zp—1(t), f(t), a1 (L), - -, 2a(t))
R det(z1(t),- .., an(t))

Then x(t) == ur(t)x1(t) + - - - + un(t)zn(t) is a solution of the nonhomogeneous system (5).

Proof. (a) follows trivially, if we apply Theorem 1 to Xo := (zo, ..., 2zo) and F(t) := (f(t),..., f(t)).
Then X (¢) is of the form X (t) = (z(t),...,z(t)).

(b) Let X(t) := (21(¢),...,2n(t)). Then z1,...,z, are solutions of 2’ = Az iff X is a
solution of X’ = AX.



(c) Let xy be the unique solution of 2/ = Ax with z(t9) = ey, the k-th basic vector of R”™.
(Existence of zy, is assured by (a). ) Let y be any solution of the homogeneous system. Then
y(to) = D) crer. If we let x(t) := >, cpay, then x is a solution of the homogeneous system
such that z(tg) = y(tp). By the uniqueness, it follows that y = x.

(d) is trivial, if we observe that the difference of any two solutions of the nonhomogeneous
system is a solution of the homogeneous system.

(e) If z(t) = X (t)c(t), then by the product rule, we have
2/ (t) = X'(t)e(t) + X ()¢ (t) = AR)X (1) () + f(t) = A(t)x(t) + f(1).
(f) For any fixed ¢t € J, the vector ¢(t) := (ci(t), ..., cn(t)) (considered as a column vector)

is, by Cramer’s rule, the solution of the linear system X (¢)c/(t) = f(t). Hence t — X (t)c(t)
is a solution of the nonhomogeneous equation (1) by (e). But,

X()e(t) = cr(t)zi(t) + - - + cn(t)zn(?),
by the definition of matrix multiplication. O

Remark 5. Note that the equation X (¢)/(t) = f(t) in (e) of the above theorem says that
c is an anti-derivative of X (t)71f(t), e.g., c(t) = ;;1 X(s)"1f(s)ds. Thus (f) of the last
theorem allows us to solve for the nonhomogeneous system given a fundamental set for the
homogeneous system. This is known as the method of variation of parameters.

If the matrix function A(t) = A is a constant matrix, we then have an explicit represen-
tation of the solution of the non-homogeneous equation.

Theorem 6. Let A be a constant matriz. Let J = [tg,t1] C R be an interval. Let f: J — R"
be continuous. Then the unique solution of the initial value problem

a'(t) = Az(t) + f(t),  z(to) =0
s given by

t
z(t) = et Az, + / =941 () ds.

to

Proof. Multiply the DE by e *4 on the left to obtain
e A2 (t) — e M Ax(t) = e TS (1),

The LHS of this equation is the derivative the function ¢t — e~*4z(t). So, upon integration,

we get
t1
e ut) = / e A f(s)ds +ec.
to
The constant vector is identified by taking t as . O

Let A be a constant matrix. We want to solve ' = Az with IC 2(0) = x¢ explicitly. This
is easily done. Let x(t) := ez where !4 := 32 %. Then the standard results about
the exponential of matrices tell us that the problem is solved. (See Exer. 7 below.) However,
it is usually very difficult to compute the exponential of any matrix A. Before attending to

this, we establish some useful results.



Ex. 7 (Exponential Map in M (n,R)). The following set of exercises introduces the expo-
nential map in M (n,R) and its properties:

1. For X € M(n,R), X = (z;5), let

1Kl = max ]
be the max norm. It is equivalent to the operator norm || || on elements of M (n,R)

viewed as linear operators on R™. We shall use the operator norm in the following.
2. We have ||AB|| < ||A||||B|| for all A, B € M(n,R) and HA’“H < ||AH/IC

3. A sequence A; — A in the operator norm if and only if afj — a;j for all 1 <i,j <nas
k — oco. Here we have Ay := (afj), etc.

4. If Y7722 [| Ax || is convergent, then » 72, A is convergent to an element A of M(n,R).

5. For any X € M(n,R), the series > ;7 Xk—,k is convergent. We denote the sum by exp(X)
or by eX.

6. For a fixed X € M(n,R) the function f(t) := !X satisfies the matrix differential
equation f'(t) = X f(t), with the initial value f(0) = I. Hint: Note that the (i, j)-th
entry of f(t) is a power series in ¢ and use (4).

7. Set g(t) := e"Xe X and conclude that e!X is invertible for all ¢ € R and for all X €
M(n,R).

8. There exists a unique solution for f/(t) = Af(t) with initial value f(0) = B given by
f(t) = e B. Hint: If g is any solution, consider h(t) = g(t) e 4.

9. Let A, B€ M(n,R). If AB = BA then we have

A+B _ A B _  BoA _ B+A

(& =€ € =e€

Hint: Consider ¢(t) := et(A+B) _ tAetB,
10. For A, X € M(n,R) we have eAX4™" = 4¢X A1,

Definition 8. We say that a matrix X (¢) with columns z;(t) is a fundamental matriz if
{z; : 1 < i < n} is a basis of solutions of the DE 2’ = Axz. Note that by the fundamental
theorem for linear systems such a matrix exists.

Lemma 9. A matriz X (t) is a fundamental matriz for ' = Az iff X'(t) = AX(t) and
det X () # 0.

Proof. Let xj be the j-th column of X. Observe that the matrix equation X’ = AX is
equivalent the n vector equations #’;(t) = Ax;(t). By the standard uniqueness argument, the
n solutions x;(t) are linearly independent iff 21(0),...,x,(0) are linearly independent. The
latter are linearly independent iff det X (0) # 0. O

A

Lemma 10. The matriz e is a fundamental solution of x' = Ax.



Proof. Obvious in view of the last lemma. O

Lemma 11. Let X (t) and Y (t) be two fundamental solutions of ' = Ax. Then there exists
a constant matriz C' such that Y (t) = X (¢)C.

Proof. Each column y; of Y can be written as a linear combination of the columns z; of X:
Yi = C1i%1 + +++ + CniTn.
Then C := (c¢;;) is as required. O
Theorem 12. Let X (t) be a fundamental matriz of ' = Ax. Then
e = X ()X 10). (7)

In other words, any fundamental matriz X (t) is of the form X (t) = 4 X(0).

Proof. Immediate consequence of the last two lemmas. O

Ex. 13. Let z; be the solution of the initial value problem 2/ = Az with z;(0) = e;. Show
that et = (z1,...,2,).

Ex. 14. Let X and Y be fundamental matrices of 2’ = Ax with Y = X for a constant
matrix C. Show that det C' # 0.

Ex. 15. Let X(t) be a fundamental matrix of ' = Az and C a constant matrix with
det C' # 0. Show that Y () = X (¢)C is a fundamental matrix of 2/ = Ax.

Ex. 16. Let X be a fundamental solution of 2/ = Ax. Prove that the solution of the IV
problem 2’ = Az, x(tg) = zo is z(t) = X (¢)(X (to) 'z0.

Ex. 17. Let X be a fundamental matrix of 2’ = Az. Show that X (t)X (t)~! = elt=t0)4,
Theorem 18 (Nonhomogeneous Equation-Variation of Parameters). The solution of the IV

problem ' = Ax + f(t), x(to) = xo is given by

£(t) = XX (ao+ X (8) [ X(5)f(s) ds, (8)

to

where X is a any fundamental matriz of the homogeneous equation x' = Ax.

Proof. Let x1,...,x, be a set of n linearly independent solutions of the homogeneous system
' = Ax. We seek a solution x of the IV problem for the nonhomogeneous system in the form

x(t) = ur(t)z1(t) + - - - + un(t)xn(t).

This can be written as x(t) = X (¢)u(t) in an obvious notation. Assuming that x(t) solves the
IV problem and plucking the expression for z(t) in the equation 2’ = Ax + f, we get

X'(tyu(t) + X ()u'(t) = AX (t)u(t) + f(1). (9)



Since X is a fundamental matrix X'(t) = AX () so that the first terms on either side of (9)
are equal. Hence, (9) reduces to

Thus, v’ = X () f(t) so that

ut) = wuto)+ [ X' (s)f(s)ds

The result (8) follows from this. O

Remark 19. Theorem 6 is a special case of the last theorem if we take X (t) = e*4. Note
that the Green’s kernel in this case is G(t, s) = elt=9)4,

3 Linear Equations of Higher Order

An n-th order linear ODE is of the form
Y+ a1y 4+ ary +agy = f(L), (10)

where the coefficient function a; and f are assumed to be continuous functions on an interval
J C R. The homogeneous linear equation associated to (10) is

Y + a1y + -+ ary + agy = 0. (11)

The crucial observation is that the study of such equations can be reduced to the study
of first order systems considered above. If y is a solution of the DE (10), then the functions

x1 =y, 0=y w3 =9", .. wp1 = y(”_2),$n = y(”_l)
satisfy the following differential equations
vy =20, 7h =x3,..., 2, 1 =xn, 0 = —(@n_1Tn + Ap_2Tp_1 + -+ a1w2 + agz1) + f. (12)

We introduce the matrix valued function

0 1 0o ... 0

0 0 1 0

A(t) = : : : i :

0 0 0o ... 1

—ag —G1 .. ... —Qp_1

With this notation, the differential equations in (12), can be recast as

z (t) x1(t) 0
(1) (1) 0
—Am | o |+
2y (1) Taa(t) 0
! (t) T, () f(t)



or, in an obvious notation

Z'(t) = At)z(t) + F(t). (13)

Ex. 20. Every solution y of (10) is a solution of (13). Conversely, if z(t) is a solution of (13),
then y(t) := x1(t) is a solution of (10).

The matrix A above is called the companion matriz of DE (10).

The following theorem is more or less an immediate consequence of Theorem 4.

Theorem 21. Let J := [tg,t1] C R be an interval. Let ag,ay,...,an—1:J = Rand f: J >R
be continuous. Let L(y) := y "™ (t) + an_1y™ V() + - 4+ a1(t)y’ + ao(t)y(t). Consider the
nonhomogeneous equation L(y) = f and the homogeneous equation L(y) = 0.

(a) Given any numbers 5; € R, for 0 < j <k —1, there is a unique solution y of L(y) = f
with y9) (to) = B;.

(b) Ify1,...,yn are solutions of the homogeneous equation L(y) = 0, then their Wronskian
determinant

Wy .. yn)(t) = : : :
RO N Al () NRRR e ()

satisfies the differential equation: W'(t) = —an—1(t)W(t).
(¢) If y1,...,yn are n solutions of the homogeneous equation L(y) = 0, then the following
are equivalent:
(i) y1,---,yn are linearly independent on J.
(i) W (y)(t) =0 for allt € J.
(iii) W (y)(1) =0 for some T € J.
(d) The set of solutions of the homogeneous equation L(y) = 0 is an n-dimensional vector
space. Any basis of the space of solutions is called a fundamental set.
(e) If yp is a particular solution of the nonhomogeneous system, then any solution of the
nonhomogeneous system is of the form y,+y where y is a solution of the homogeneous system.
(f) Let {y; : 1 < j < n} be a fundamental set of the space of solutions of L(y) = 0. If

Ui, . .., Uy are solutions of the matriz equation
Y1 Y2 - Un uy (t) 0
vl yh .. un, ub(t) B 0
-1 -1 -1 ‘ ,
i Y ) N )
then

y(t) = w(yr(t) + - + un(t)yn(t)

is a solution of the nonhomogeneous equation L(y) = f.



Let D: f + f’ denote the differential operator. If p(X) := X" +a, 1 X" 1+ -+a1 X +ao,
then we let
p(D)(y) == y™ + an_1y™ Y 4 a1y + aolt)y.

The polynomial p is called the characteristic polynomial of the differential operator p(D).

Theorem 22. Given a differential operator
p(D)()(t) =y (1) + a1y D (8) + - + a1y (1) + aoy (1)

with constant coefficients. Let \; be the roots of p with multiplicity m;, (1 < j < k). Any
solution y of the homogeneous equation p(D)y = 0 is of the form

y(t) = Mpi(t) + -+ i)
where p; is an arbitrary polynomial of degree at most m;. That is, a basis of the solution is

{eNHT 1< j<k0<r<m;—1}

Proof. Follows from the next three lemmas. O

Lemma 23. Let V, := C"(R) be the vector space of all r-times continuously differentiable
functions on R. Let D: V, — V,_1 be the derivation map f — f'.

(a) If f € V., then (D — XI)"f = eMD" (e M f).

(b) A function f €V, lies in the kernel of (D — XI)" iff it is of the form

f(t) = e)\t(bo +byt+ -+ briltr—l)'

Proof. (a) is proved by induction. To prove (b), observe that (D—\I)"f = 0iff D"(e=* f) = 0,
by (a). O

Lemma 24. Letp € K[X] be a polynomial over a field K with a decompositionp =p—1---py
where p; are relatively prime. Let A: V — V be a linear endomorphism of the K-vector space
V. Then we have

kerp(A) = kerpi(A) @ --- @ ker pi(A).

Proof. Let q; == p/p; = p1---DPj—1Pj+1---pr. We first show that the sum is direct. Let
v1 + -+ + v, = 0 where v; € kerp;(A). Note that ¢;(A)v; = 0 whenever i # j. Since p; and
q; are relatively prime, there exist polynomials a and b such that ap; + bg; = 1. Then,
vi = a(A)pi(A)v; + b(A)bg;(A)v;
= b(A)g(A)(= ) vy)

i
= =) b(A)g(A)w;
i
= > o.
j#i



In the displayed equation, the inclusion 2O is obvious. To prove the reverse inclusion, note
that g; are relatively prime. Hence there exist polynomials r; such that Zj rjq; = 1. Let
v € kerp(A). Then v; :=r;(A)g;(A)v € ker p;(A) because

pi(A)vi = pi(A)qri(A)qi(A)v = ri(A)pi(A)gi(A) = ri(A)p(A)v = 0.
It is easily seen that v =), v;. O

Lemma 25. Let p(A) := A"+ an 1 A" 1+ -+ ad+ag = (A= A1)™ -+ (A—glp)™. Then a
basis solutions of the homogeneous equation p(D)y = 0 is {eN%" 11 < j < k,0<r <m;—1}.

Proof. Let pi(A) :== (A — A\;)™. Then p(D) = p1(D)---px(D). The result follows from the
last two lemmas. O

We now apply our knowledge about the n-th order homogeneous equation to compute et4

of a matrix A!

Theorem 26. Let p be the characteristic polynomial of A. Let y1,...,yn be a basis for the
set of solutions of the homogeneous n-th order equation p(D)y = 0. Then there exist matrices
Aq,..., A, such that

e =y () A1 + - + ya(t) Ay (14)

Proof. We have p(t) := det(A — tI). Let ! = (u;;(t)). Then,

(p(D)ui;(t)) = p(D)e = p(A)et =0,

by Cayley-Hamilton theorem. Thus every entry u;; of e!4 satisfies the DE p(D)u;j = 0, hence
can be written as linear combination of y;’s. O

Remark 27. We now give an algorithm to find the exponential of a matrix. Given a matrix
A, we find its characteristic polynomial p(t). We find a basis {y; : 1 < j < n} of solutions
of p(D)y = 0. From the last result we know that there exist matrices A; such that etd =
Y141+ -+ ynAy. To find these matrices Aj, we differentiate the equation (14) n — 1 times
with respect to t. We thus obtain n equations a follows.

etA = U (t)Al +---+ yn(t)An
At = YA+ F () A,
An—letA _ y(n—l) (t)Al 4ot y(n_l)(t)An.

Evaluate them at ¢t = 0 and solve for A; by the standard Gaussian elimination method.

Example 28. Consider (2 _8> . Following the above steps, we obtain e*4 = (COS st —sin St> .

sin st cos st

0 1
: : tA —
Ex. 29. (i) Find " where A = <_14 _9>.

(ii) Transform the equation y” + 9y’ + 14y = 0 with y(0) = 0 and %'(0) = —1 into a vector

10



DE.
Te—2t _ 9Tt e~ _ =Tt
. .. L tA 1
(iii) Solve the IV problem in (ii). Ans: e = ¢ (_14€2t G de- Tt _9e-2 4 7e-Tt and
y(t) = 2(—e 2+ 7).

Ex. 30. Solve 2" + z = 3 with z(r) = 1 and 2/(7) = 2 using the methods of exponential
matrix and variation of parameters. Ans: 3 + 2cost — 2sint.

Ex. 31. Solve 2” + 22/ — 8z = €' with 2(0) = 1 and 2/(0) = —4 using the methods of

exponential matrix and variation of parameters. Ans: %e*“ + %th — %et.

Ex. 32. Compute the exponential of the following matrices by any method:
11 Llet+e3) Lt —e)
: ) 1
(®) <4 1>' Ans: ( —e t 4¢3t %(e‘t + e3t) ’
(1 =1 elcost —elsint
(i) <1 1 > Ans.< tsint elcost )

2
(i) [0
0

. 0 1 o (1+2t t
(iv) <_4 _4>.Ans.e <—4t 1—2t>'

Ex. 33. Compute e/ by solving a third order DE where A =

10
20
0 2

0
0

— = N

1

1
-2 0
We now briefly indicate how one can solve a linear system by the eigen value-eigen vector
method. Given the system 2’ = Az with a constant matrix A. Assume that A has distinct
eigen values, say, A\j, 1 < j < n. Let v; be a nonzero eigen vector of A with eigen value
Aj. Then z;(t) := eAjtvj is a solution. Also, {z; : 1 < j < n} is a fundamental set for the
equation ' = Axz. Even if the eigen values are complex, by Ex. 35, we can find real valued

solutions. However, if A has eigen values with multiplicity, one requires a little more work.
We refer the reader to Braun’s book (especially sections 3.6-3.8) for more details.

Remark 34. A fall-out of this approach is another method of computing e*4. Let z1(t),. .., z,(t)
be linearly independent solutions of &’ = Az. Then the matrix X (t) := (z1(¢),...,z,(t)) is a
fundamental matrix so that et4 = X (¢)X~1(0). (Ex. 17!)

Ex. 35. Let z(t) = f(t) + ig(t) be a solution of 2’ = Ax. Then f and gare real valued
solutions of ' = Auz.

Ex. 36. Find all the solutions of 2/ = Az using eigen methods where

32 4
)A=[2 0 2]|a
42 3
10 0
A= (3 1 -2
2 2 1

11



Ex. 37. Solve the given initial value problem.

(i) o = (i }) 2, 2(0) = (g)

-3 0 2 0
(i)z’=[1 -1 0]z withz(0)=|-1
-2 -1 0 -2

Ex. 38. Solve the IV problem

1 0 O 0
=121 -2)z+ 0 , z(0) =e2+e3
3 2 1 el cos 2t

by two different methods viz., by finding the exponential of A and by eigen method.

111
Ex. 39. Find e if A= [0 3 2| by methods of Remarks 27 and 34. Which do you find
0 05

is easier?
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