Linear ODE: Systems of First Order and n-th Order

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

1 A Fundamental Existence Theorem for Matrix Equations

Theorem 1. Let $J := [t_0, t_1] \subset \mathbb{R}$ be an interval. Let $A, F: J \to M(n, \mathbb{R})$ be continuous $n \times n$ matrix valued functions. Then the matrix DE

$$
X'(t) = A(t)X(t) + F(t), \t X(t_0) = X_0,
$$
\t(1)

for a given matrix X_0 has a unique solution on the entire interval J.

Proof. The given problem is equivalent to solving the matrix valued integral equation

$$
X(t) = X_0 + \int_{t_0}^t (A(s)X(s) + F(s)) ds.
$$
 (2)

We adopt the Picard iteration scheme:

$$
X_0(s) := X_0, \quad X_m(t) := X_0 + \int_{t_0}^t (A(s)X_{m-1}(s) + F(s)) \ ds.
$$

Let $M > 0$ be such that $||A(s)|| \leq M$ for $s \in J$. We prove by induction that

$$
||X_m(t) - X_{m-1}(t)|| \le \frac{M^m}{m!} (t - t_0)^m,
$$
\n(3)

for all $t \in J$ and $m \in \mathbb{N}$. As in the case of Picard's local existence theorem, we conclude that (X_m) is uniformly Cauchy on J and hence they converge to an X which satisfies the integral equation (2).

We now prove that the solution is unique. Let X_1 and X_2 be solutions of the DE (1). Then their difference $Y := X_1 - X_2$ is a solution of the homogeneous problem IV problem

$$
Y'(t) = A(t)Y(t), \t Y(t_0) = 0.
$$
\t(4)

If we set $g(t) := \int_{t_0}^t ||Y(s)|| ds$, we see that

$$
g'(t) = ||Y(t)|| = ||Y(t) - Y(t_0)|| = \left\| \int_{t_0}^t Y'(s) \right\|
$$

\n
$$
\leq \int_{t_0}^t ||Y'(s)|| ds
$$

\n
$$
= \int_{t_0}^t ||A(s)Y(s)|| ds
$$

\n
$$
\leq M \int_{t_0}^t ||Y(s)||
$$

\n
$$
= Mg(t).
$$

Hence we have

$$
g'(t) - Mg(t) \le 0, \qquad (t \in J).
$$

But then

$$
\frac{d}{dt}(g(t)e^{-Mt}) = [g'(t) - Mg(t)]e^{-Mt} \le 0, \qquad (t \in J),
$$

so that the function $t \mapsto g(t)e^{-Mt}$ is decreasing. Since $g(t_0) = 0$ and is nonnegative by definition, it follows that $g = 0$ on J. \Box

A matrix DE $X'(t) = A(t)X(t) + F(t)$ is said to be homogeneous if $F = 0$.

Theorem 2. Let the notation be as in the last theorem. Let X be a solution of (1) . The **Wronskian** $W(t) := \det X(t)$ of the solution satisfies the scalar DE

$$
W'(t) = (\text{Tr}\,A(t))W(t).
$$

This implies that if $X(\tau)$ is invertible for some $\tau \in J$, then $X(t)$ is invertible for all $t \in J$.

Proof. We use Ex. 3 given below. Let $x_1(t), \ldots, x_n(t)$ be the columns of $X(t)$. We have

$$
W'(t) = \sum_{k=1}^{n} \det(x_1, ..., x'_k(t), ..., x_n(t))
$$

=
$$
\sum_{k=1}^{n} \det(x_1, ..., A(t)x_k(t), ..., x_n(t))
$$

=
$$
\text{Tr}(A(t)) \det(x_1(t), ..., x_n(t))
$$

=
$$
\text{Tr}(A(t))W(t).
$$

Integrating this DE, we find that $W(t) = ce^{\int_{t_0}^{t} \text{Tr }A(s) ds}$ for the constant $c = W(t_0)$. The last statement of the theorem follows from this observation. \Box

Ex. 3. Let $x_i: J \to \mathbb{R}^n$ be differentiable functions. Let $X(t) := (x_1(t), \ldots, x_n(t))$ where x_j is considered as the j -th column of X . Show that

$$
\frac{d}{dt}\det(X(t))=\sum_{k=1}^n\det(x_1(t),\ldots,x_k'(t),\ldots,x_n(t)).
$$

Hint: Recall that det is a multilinear function. The derivative can be found from the first principles. Or, use the Laplace expansion.

2 Linear Systems: $x' = Ax + f$

We use the above theorem to deduce all the results concerning the first order system

$$
x'(t) = A(t)x(t) + f(t),
$$

where $A: J \to M(n, \mathbb{R})$ and $f: J \to \mathbb{R}^n$ are continuous functions. Written componentwise, we have

$$
x'_{i}(t) = a_{i1}(t)x_{1}(t) + \cdots + a_{in}(t)x_{n}(t) + f_{i}(t), \quad (1 \leq i \leq n).
$$

Theorem 4. Let $J := [t_0, t_1] \subset \mathbb{R}$ be an interval. let $A: J \to M(n, \mathbb{R})$ and $f: J \to \mathbb{R}^n$ be continuous functions. Consider the nonhomogeneous first order system

$$
x'(t) = A(t)x(t) + f(t)
$$
\n(5)

and the corresponding homogeneous system

$$
x'(t) = A(t)x(t)
$$
\n⁽⁶⁾

(a) For any given vector $x_0 \in \mathbb{R}^n$, the system (5) has a unique solution with $x(t_0) = x_0$.

(b) If $x_1(t), \ldots, x_n(t)$ are n solutions of (6), then the following are equivalent.

(i) x_1, \ldots, x_n are linearly dependent on J.

(ii) det $(x_1(t), \ldots, x_n(t)) = 0$ for all $t \in J$.

(iii) det $(x_1(t), \ldots, x_n(t)) = 0$ for some $t \in J$.

(c) The solution set of the homogeneous system $x'(t) = A(t)x(t)$ is a vector space of dimension n. Any basis of the space of solutions is known as a fundamental set.

(d) If x_p is a particular solution of the nonhomogeneous system (5), then any solution is of the form $x_p + x$ where x is a solution of the associated homogeneous system.

(e) Let (x_1, \ldots, x_n) be a fundamental set of the homogeneous system. Let $X(t) := (x_1(t), \ldots, x_n(t))$ be the matrix whose *i*-th column is $x_i(t)$. If $c(t)$ is any solution of the equation

$$
X(t)c'(t) = f(t)
$$

then

$$
x(t) := X(t)c(t)
$$

is a solution of the nonhomogeneous equation.

(f) Let (x_1, \ldots, x_n) be a fundamental set for the homogeneous system. Assume that u_k are real valued functions such that

$$
u'_{k}(t) = \frac{\det(x_1(t), \ldots, x_{k-1}(t), f(t), x_{k+1}(t), \ldots, x_n(t))}{\det(x_1(t), \ldots, x_n(t))}.
$$

Then $x(t) := u_1(t)x_1(t) + \cdots + u_n(t)x_n(t)$ is a solution of the nonhomogeneous system (5).

Proof. (a) follows trivially, if we apply Theorem 1 to $X_0 := (x_0, \ldots, x_0)$ and $F(t) := (f(t), \ldots, f(t))$. Then $X(t)$ is of the form $X(t) = (x(t), \ldots, x(t)).$

(b) Let $X(t) := (x_1(t), \ldots, x_n(t))$. Then x_1, \ldots, x_n are solutions of $x' = Ax$ iff X is a solution of $X' = AX$.

(c) Let x_k be the unique solution of $x' = Ax$ with $x(t_0) = e_k$, the k-th basic vector of \mathbb{R}^n . (Existence of x_k is assured by (a).) Let y be any solution of the homogeneous system. Then $y(t_0) = \sum_k c_k e_k$. If we let $x(t) := \sum_k c_k x_k$, then x is a solution of the homogeneous system such that $x(t_0) = y(t_0)$. By the uniqueness, it follows that $y = x$.

(d) is trivial, if we observe that the difference of any two solutions of the nonhomogeneous system is a solution of the homogeneous system.

(e) If $x(t) = X(t)c(t)$, then by the product rule, we have

$$
x'(t) = X'(t)c(t) + X(t)c'(t) = A(t)X(t)c'(t) + f(t) = A(t)x(t) + f(t).
$$

(f) For any fixed $t \in J$, the vector $c(t) := (c_1(t), \ldots, c_n(t))$ (considered as a column vector) is, by Cramer's rule, the solution of the linear system $X(t)c'(t) = f(t)$. Hence $t \mapsto X(t)c(t)$ is a solution of the nonhomogeneous equation (1) by (e). But,

$$
X(t)c(t) = c_1(t)x_1(t) + \cdots + c_n(t)x_n(t),
$$

by the definition of matrix multiplication.

Remark 5. Note that the equation $X(t)c'(t) = f(t)$ in (e) of the above theorem says that c is an anti-derivative of $X(t)^{-1}f(t)$, e.g., $c(t) = \int_{t_0}^{t_1} X(s)^{-1}f(s) ds$. Thus (f) of the last theorem allows us to solve for the nonhomogeneous system given a fundamental set for the homogeneous system. This is known as the method of variation of parameters.

If the matrix function $A(t) = A$ is a constant matrix, we then have an explicit representation of the solution of the non-homogeneous equation.

Theorem 6. Let A be a constant matrix. Let $J = [t_0, t_1] \subset \mathbb{R}$ be an interval. Let $f: J \to \mathbb{R}^n$ be continuous. Then the unique solution of the initial value problem

$$
x'(t) = Ax(t) + f(t),
$$
 $x(t_0) = x_0$

is given by

$$
x(t) = e^{(t-t_0)A}x_0 + \int_{t_0}^t e^{(t-s)A}f(s) ds.
$$

Proof. Multiply the DE by e^{-tA} on the left to obtain

$$
e^{-tA}x'(t) - e^{-tA}Ax(t) = e^{-tA}f(t).
$$

The LHS of this equation is the derivative the function $t \mapsto e^{-tA}x(t)$. So, upon integration, we get

$$
e^{-tA}x(t) = \int_{t_0}^{t_1} e^{-sA}f(s) \, ds + c.
$$

The constant vector is identified by taking t as t_0 .

Let A be a constant matrix. We want to solve $x' = Ax$ with IC $x(0) = x_0$ explicitly. This is easily done. Let $x(t) := e^{tA}x_0$ where $e^{tA} := \sum_{k=0}^{\infty}$ $(tA)^k$ $\frac{A}{k!}$. Then the standard results about the exponential of matrices tell us that the problem is solved. (See Exer. 7 below.) However, it is usually very difficult to compute the exponential of any matrix A . Before attending to this, we establish some useful results.

 \Box

Ex. 7 (Exponential Map in $M(n,\mathbb{R})$). The following set of exercises introduces the exponential map in $M(n, \mathbb{R})$ and its properties:

1. For $X \in M(n,\mathbb{R})$, $X := (x_{ij})$, let

$$
||X||_{\infty} := \max_{1 \le i,j \le n} |x_{ij}|
$$

be the max norm. It is equivalent to the operator norm $\|\ \|$ on elements of $M(n, \mathbb{R})$ viewed as linear operators on \mathbb{R}^n . We shall use the operator norm in the following.

- 2. We have $||AB|| \le ||A|| ||B||$ for all $A, B \in M(n, \mathbb{R})$ and $||A^k|| \le ||A||^k$.
- 3. A sequence $A_k \to A$ in the operator norm if and only if $a_{ij}^k \to a_{ij}$ for all $1 \le i, j \le n$ as $k \to \infty$. Here we have $A_k := (a_{ij}^k)$, etc.
- 4. If $\sum_{k=0}^{\infty} ||A_k||$ is convergent, then $\sum_{k=0}^{\infty} A_k$ is convergent to an element A of $M(n, \mathbb{R})$.
- 5. For any $X \in M(n, \mathbb{R})$, the series $\sum_{k=0}^{\infty} \frac{X^k}{k!}$ $\frac{X^{\kappa}}{k!}$ is convergent. We denote the sum by $\exp(X)$ or by e^X .
- 6. For a fixed $X \in M(n,\mathbb{R})$ the function $f(t) := e^{tX}$ satisfies the matrix differential equation $f'(t) = X f(t)$, with the initial value $f(0) = I$. Hint: Note that the (i, j) -th entry of $f(t)$ is a power series in t and use (4).
- 7. Set $g(t) := e^{tX}e^{-tX}$ and conclude that e^{tX} is invertible for all $t \in \mathbb{R}$ and for all $X \in$ $M(n,\mathbb{R}).$
- 8. There exists a unique solution for $f'(t) = Af(t)$ with initial value $f(0) = B$ given by $f(t) = e^{tA}B$. Hint: If g is any solution, consider $h(t) = g(t) e^{-tA}$.
- 9. Let $A, B \in M(n, \mathbb{R})$. If $AB = BA$ then we have

$$
e^{A+B} = e^A e^B = e^B e^A = e^{B+A}.
$$

Hint: Consider $\phi(t) := e^{t(A+B)} - e^{tA}e^{tB}$.

10. For $A, X \in M(n, \mathbb{R})$ we have $e^{AXA^{-1}} = Ae^{X}A^{-1}$.

Definition 8. We say that a matrix $X(t)$ with columns $x_i(t)$ is a fundamental matrix if $\{x_i : 1 \le i \le n\}$ is a basis of solutions of the DE $x' = Ax$. Note that by the fundamental theorem for linear systems such a matrix exists.

Lemma 9. A matrix $X(t)$ is a fundamental matrix for $x' = Ax$ iff $X'(t) = AX(t)$ and $\det X(t) \neq 0.$

Proof. Let x_i be the j-th column of X. Observe that the matrix equation $X' = AX$ is equivalent the *n* vector equations $x'_{j}(t) = Ax_{j}(t)$. By the standard uniqueness argument, the n solutions $x_j(t)$ are linearly independent iff $x_1(0), \ldots, x_n(0)$ are linearly independent. The latter are linearly independent iff det $X(0) \neq 0$. \Box

Lemma 10. The matrix e^{tA} is a fundamental solution of $x' = Ax$.

Proof. Obvious in view of the last lemma.

Lemma 11. Let $X(t)$ and $Y(t)$ be two fundamental solutions of $x' = Ax$. Then there exists a constant matrix C such that $Y(t) = X(t)C$.

Proof. Each column y_i of Y can be written as a linear combination of the columns x_i of X:

$$
y_i = c_{1i}x_1 + \cdots + c_{ni}x_n.
$$

Then $C := (c_{ij})$ is as required.

Theorem 12. Let $X(t)$ be a fundamental matrix of $x' = Ax$. Then

$$
e^{tA} = X(t)X^{-1}(0). \tag{7}
$$

In other words, any fundamental matrix $X(t)$ is of the form $X(t) = e^{tA} X(0)$.

Proof. Immediate consequence of the last two lemmas.

Ex. 13. Let x_j be the solution of the initial value problem $x' = Ax$ with $x_j(0) = e_j$. Show that $e^{tA} = (x_1, ..., x_n)$.

Ex. 14. Let X and Y be fundamental matrices of $x' = Ax$ with $Y = XC$ for a constant matrix C. Show that det $C \neq 0$.

Ex. 15. Let $X(t)$ be a fundamental matrix of $x' = Ax$ and C a constant matrix with det $C \neq 0$. Show that $Y(t) = X(t)C$ is a fundamental matrix of $x' = Ax$.

Ex. 16. Let X be a fundamental solution of $x' = Ax$. Prove that the solution of the IV problem $x' = Ax$, $x(t_0) = x_0$ is $x(t) = X(t)(X(t_0)^{-1}x_0)$.

Ex. 17. Let X be a fundamental matrix of $x' = Ax$. Show that $X(t)X(t_0)^{-1} = e^{(t-t_0)A}$.

Theorem 18 (Nonhomogeneous Equation-Variation of Parameters). The solution of the IV problem $x' = Ax + f(t)$, $x(t_0) = x_0$ is given by

$$
x(t) = X(t)X^{-1}(t)x_0 + X(t)\int_{t_0}^t X^{-1}(s)f(s) ds,
$$
\n(8)

where X is a any fundamental matrix of the homogeneous equation $x' = Ax$.

Proof. Let x_1, \ldots, x_n be a set of n linearly independent solutions of the homogeneous system $x' = Ax$. We seek a solution x of the IV problem for the nonhomogeneous system in the form

$$
x(t) = u_1(t)x_1(t) + \cdots + u_n(t)x_n(t).
$$

This can be written as $x(t) = X(t)u(t)$ in an obvious notation. Assuming that $x(t)$ solves the IV problem and plucking the expression for $x(t)$ in the equation $x' = Ax + f$, we get

$$
X'(t)u(t) + X(t)u'(t) = AX(t)u(t) + f(t).
$$
\n(9)

 \Box

 \Box

Since X is a fundamental matrix $X'(t) = AX(t)$ so that the first terms on either side of (9) are equal. Hence, (9) reduces to

$$
X(t)u'(t) = f(t).
$$

Thus, $u' = X^{-1}(t)f(t)$ so that

$$
u(t) = u(t_0) + \int_{t_0}^t X^{-1}(s) f(s) ds
$$

= $X^{-1}(t_0)(x_0) + \int_{t_0}^t X^{-1}(s) f(s) ds.$

The result (8) follows from this.

Remark 19. Theorem 6 is a special case of the last theorem if we take $X(t) = e^{tA}$. Note that the Green's kernel in this case is $G(t, s) = e^{(t-s)A}$.

3 Linear Equations of Higher Order

An n-th order linear ODE is of the form

$$
y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = f(t),
$$
\n(10)

where the coefficient function a_j and f are assumed to be continuous functions on an interval $J \subset \mathbb{R}$. The homogeneous linear equation associated to (10) is

$$
y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0y = 0.
$$
 (11)

The crucial observation is that the study of such equations can be reduced to the study of first order systems considered above. If y is a solution of the DE (10), then the functions

$$
x_1 := y, x_2 := y', x_3 := y'', \ldots, x_{n-1} = y^{(n-2)}, x_n := y^{(n-1)}
$$

satisfy the following differential equations

$$
x'_1 = x_2, x'_2 = x_3, \dots, x'_{n-1} = x_n, x'_n = -(a_{n-1}x_n + a_{n-2}x_{n-1} + \dots + a_1x_2 + a_0x_1) + f. \tag{12}
$$

We introduce the matrix valued function

$$
A(t) := \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -a_0 & -a_1 & \dots & \dots & -a_{n-1} \end{pmatrix}.
$$

With this notation, the differential equations in (12), can be recast as

$$
\begin{pmatrix} x_1'(t) \\ x_2'(t) \\ \vdots \\ x_{n-1}'(t) \\ x_n'(t) \end{pmatrix} = A(t) \begin{pmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_{n-1}(t) \\ x_n(t) \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ f(t) \end{pmatrix}
$$

or, in an obvious notation

$$
x'(t) = A(t)x(t) + F(t).
$$
 (13)

Ex. 20. Every solution y of (10) is a solution of (13). Conversely, if $x(t)$ is a solution of (13), then $y(t) := x_1(t)$ is a solution of (10).

The matrix A above is called the *companion matrix* of DE (10).

The following theorem is more or less an immediate consequence of Theorem 4.

Theorem 21. Let $J := [t_0, t_1] \subset \mathbb{R}$ be an interval. Let $a_0, a_1, \ldots, a_{n-1} : J \to \mathbb{R}$ and $f : J \to \mathbb{R}$ be continuous. Let $L(y) := y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \cdots + a_1(t)y' + a_0(t)y(t)$. Consider the nonhomogeneous equation $L(y) = f$ and the homogeneous equation $L(y) = 0$.

(a) Given any numbers $\beta_j \in \mathbb{R}$, for $0 \leq j \leq k-1$, there is a unique solution y of $L(y) = f$ with $y^{(j)}(t_0) = \beta_j$.

(b) If y_1, \ldots, y_n are solutions of the homogeneous equation $L(y) = 0$, then their Wronskian determinant

$$
W(y_1, \ldots, y_n)(t) := \begin{pmatrix} y_1(t) & y_2(t) & \ldots & y_n(t) \\ y'_1(t) & y'_2(t) & \ldots & y'_n(t) \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)}(t) & y_2^{(n-1)}(t) & \ldots & y_n^{(n-1)}(t) \end{pmatrix}
$$

satisfies the differential equation: $W'(t) = -a_{n-1}(t)W(t)$.

(c) If y_1, \ldots, y_n are n solutions of the homogeneous equation $L(y) = 0$, then the following are equivalent:

(i) y_1, \ldots, y_n are linearly independent on J.

(ii) $W(y)(t) = 0$ for all $t \in J$.

(iii) $W(y)(\tau) = 0$ for some $\tau \in J$.

(d) The set of solutions of the homogeneous equation $L(y) = 0$ is an n-dimensional vector space. Any basis of the space of solutions is called a fundamental set.

(e) If y_p is a particular solution of the nonhomogeneous system, then any solution of the nonhomogeneous system is of the form y_p+y where y is a solution of the homogeneous system.

(f) Let $\{y_j : 1 \leq j \leq n\}$ be a fundamental set of the space of solutions of $L(y) = 0$. If u_1, \ldots, u_n are solutions of the matrix equation

$$
\begin{pmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{pmatrix} \begin{pmatrix} u'_1(t) \\ u'_2(t) \\ \vdots \\ u'_n(t) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ f(t) \end{pmatrix}
$$

then

$$
y(t) := u_1(t)y_1(t) + \cdots + u_n(t)y_n(t)
$$

is a solution of the nonhomogeneous equation $L(y) = f$.

Let $D: f \mapsto f'$ denote the differential operator. If $p(X) := X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$, then we let

$$
p(D)(y) := y^{(n)} + a_{n-1}y^{(n-1)} + \dots + a_1y' + a_0(t)y.
$$

The polynomial p is called the *characteristic polynomial* of the differential operator $p(D)$.

Theorem 22. Given a differential operator

$$
p(D)(y)(t) := y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \dots + a_1y'(t) + a_0y(t)
$$

with constant coefficients. Let λ_j be the roots of p with multiplicity m_j , $(1 \leq j \leq k)$. Any solution y of the homogeneous equation $p(D)y = 0$ is of the form

$$
y(t) = e^{\lambda_1 t} p_1(t) + \dots + e^{\lambda_k t} p_k(t)
$$

where p_i is an arbitrary polynomial of degree at most m_i . That is, a basis of the solution is

$$
\{e^{\lambda_j t}t^r : 1 \le j \le k, 0 \le r \le m_j - 1\}.
$$

Proof. Follows from the next three lemmas.

Lemma 23. Let $V_r := C^r(\mathbb{R})$ be the vector space of all r-times continuously differentiable functions on \mathbb{R} . Let $D: V_r \to V_{r-1}$ be the derivation map $f \mapsto f'$.

- (a) If $f \in V_r$, then $(D \lambda I)^r f = e^{\lambda t} D^r (e^{-\lambda t} f)$.
- (b) A function $f \in V_r$ lies in the kernel of $(D \lambda I)^r$ iff it is of the form

$$
f(t) = e^{\lambda t} (b_0 + b_1 t + \dots + b_{r-1} t^{r-1}).
$$

Proof. (a) is proved by induction. To prove (b), observe that $(D - \lambda I)^{r} f = 0$ iff $D^{r}(e^{-\lambda t} f) = 0$, by (a) .

Lemma 24. Let $p \in \mathbb{K}[X]$ be a polynomial over a field \mathbb{K} with a decomposition $p = p-1 \cdots p_k$ where p_j are relatively prime. Let $A: V \to V$ be a linear endomorphism of the K-vector space V. Then we have

$$
\ker p(A) = \ker p_1(A) \oplus \cdots \oplus \ker p_k(A).
$$

Proof. Let $q_j := p/p_j = p_1 \cdots p_{j-1} p_{j+1} \cdots p_k$. We first show that the sum is direct. Let $v_1 + \cdots + v_k = 0$ where $v_j \in \text{ker } p_j(A)$. Note that $q_i(A)v_j = 0$ whenever $i \neq j$. Since p_i and q_i are relatively prime, there exist polynomials a and b such that $ap_1 + bq_1 = 1$. Then,

$$
v_i = a(A)p_i(A)v_i + b(A)bq_i(A)v_i
$$

= $b(A)q_i(A)(-\sum_{j\neq i} v_j)$
= $-\sum_{j\neq i} b(A)q_i(A)v_j$
= $\sum_{j\neq i} 0$.

In the displayed equation, the inclusion ⊇ is obvious. To prove the reverse inclusion, note that q_j are relatively prime. Hence there exist polynomials r_j such that $\sum_j r_j q_j = 1$. Let $v \in \ker p(A)$. Then $v_i := r_i(A)q_i(A)v \in \ker p_i(A)$ because

$$
p_i(A)v_i = p_i(A)qr_i(A)q_i(A)v = r_i(A)p_i(A)q_i(A) = r_i(A)p(A)v = 0.
$$

It is easily seen that $v = \sum_i v_i$.

Lemma 25. Let $p(\lambda) := \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_1\lambda + a_0 = (\lambda - \lambda_1)^{m_1} \cdots (\lambda - g l_k)^{m_k}$. Then a basis solutions of the homogeneous equation $p(D)y = 0$ is $\{e^{\lambda_j t}t^r : 1 \leq j \leq k, 0 \leq r \leq m_j - 1\}.$

Proof. Let $p_i(\lambda) := (\lambda - \lambda_i)^{m_i}$. Then $p(D) = p_1(D) \cdots p_k(D)$. The result follows from the last two lemmas. \Box

We now apply our knowledge about the *n*-th order homogeneous equation to compute e^{tA} of a matrix A!

Theorem 26. Let p be the characteristic polynomial of A. Let y_1, \ldots, y_n be a basis for the set of solutions of the homogeneous n-th order equation $p(D)y = 0$. Then there exist matrices A_1, \ldots, A_n such that

$$
e^{tA} = y_1(t)A_1 + \dots + y_n(t)A_n.
$$
 (14)

Proof. We have $p(t) := \det(A - tI)$. Let $e^{tA} = (u_{ij}(t))$. Then,

$$
(p(D)u_{ij}(t)) = p(D)e^{tA} = p(A)e^{tA} = 0,
$$

by Cayley-Hamilton theorem. Thus every entry u_{ij} of e^{tA} satisfies the DE $p(D)u_{ij} = 0$, hence can be written as linear combination of y_j 's. \Box

Remark 27. We now give an algorithm to find the exponential of a matrix. Given a matrix A, we find its characteristic polynomial $p(t)$. We find a basis $\{y_j : 1 \le j \le n\}$ of solutions of $p(D)y = 0$. From the last result we know that there exist matrices A_j such that $e^{tA} =$ $y_1A_1 + \cdots + y_nA_n$. To find these matrices A_i , we differentiate the equation (14) $n-1$ times with respect to t . We thus obtain n equations a follows.

$$
e^{tA} = y_1(t)A_1 + \dots + y_n(t)A_n
$$

\n
$$
Ae^{tA} = y'_1(t)A_1 + \dots + y'_n(t)A_n
$$

\n
$$
\vdots
$$

\n
$$
A^{n-1}e^{tA} = y^{(n-1)}(t)A_1 + \dots + y^{(n-1)}(t)A_n.
$$

Evaluate them at $t = 0$ and solve for A_i by the standard Gaussian elimination method.

Example 28. Consider $\begin{pmatrix} 0 & -s \\ 0 & 0 \end{pmatrix}$ s 0 $\left(\begin{array}{ll} \text{Following the above steps, we obtain } e^{tA} = \begin{pmatrix} \cos st & -\sin st \\ \sin st & \cos st \end{pmatrix}. \end{array} \right)$

Ex. 29. (i) Find e^{tA} where $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ -14 -9 . (ii) Transform the equation $y'' + 9y' + 14y = 0$ with $y(0) = 0$ and $y'(0) = -1$ into a vector

DE.

(iii) Solve the IV problem in (ii). Ans: $e^{tA} = \frac{1}{5}$ 5 $\int 7e^{-2t} - 2e^{-7t}$ $e^{-2t} - e^{-7t}$ $-14e^{-2t} + 14e^{-7t} - 2e^{-2t} + 7e^{-7t}$) and $y(t) = \frac{1}{5}(-e^{-2t} + e^{-7t}).$

Ex. 30. Solve $x'' + x = 3$ with $x(\pi) = 1$ and $x'(\pi) = 2$ using the methods of exponential matrix and variation of parameters. Ans: $3 + 2\cos t - 2\sin t$.

Ex. 31. Solve $x'' + 2x' - 8x = e^t$ with $x(0) = 1$ and $x'(0) = -4$ using the methods of exponential matrix and variation of parameters. Ans: $\frac{31}{30}e^{-4t} + \frac{1}{6}$ $\frac{1}{6}e^{2t} - \frac{1}{5}$ $\frac{1}{5}e^t$.

Ex. 32. Compute the exponential of the following matrices by any method:

(i)
$$
\begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}
$$
. Ans: $\begin{pmatrix} \frac{1}{2}(e^{-t} + e^{3t}) & \frac{1}{4}(e^{3t} - e^{-t}) \\ -e^{-t} + e^{3t} & \frac{1}{2}(e^{-t} + e^{3t}) \end{pmatrix}$.
\n(ii) $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$. Ans: $\begin{pmatrix} e^t \cos t & -e^t \sin t \\ e^t \sin t & e^t \cos t \end{pmatrix}$.
\n(iii) $\begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.
\n(iv) $\begin{pmatrix} 0 & 1 \\ -4 & -4 \end{pmatrix}$. Ans: $e^{-2t} \begin{pmatrix} 1+2t & t \\ -4t & 1-2t \end{pmatrix}$.

Ex. 33. Compute e^{tA} by solving a third order DE where $A =$ $\overline{1}$ 1 0 1 $1 -2 0$ \setminus \cdot

We now briefly indicate how one can solve a linear system by the eigen value-eigen vector method. Given the system $x' = Ax$ with a constant matrix A. Assume that A has distinct eigen values, say, λ_j , $1 \leq j \leq n$. Let v_j be a nonzero eigen vector of A with eigen value λ_j . Then $x_j(t) := e^{\lambda_j t} v_j$ is a solution. Also, $\{x_j : 1 \le j \le n\}$ is a fundamental set for the equation $x' = Ax$. Even if the eigen values are complex, by Ex. 35, we can find real valued solutions. However, if A has eigen values with multiplicity, one requires a little more work. We refer the reader to Braun's book (especially sections 3.6–3.8) for more details.

Remark 34. A fall-out of this approach is another method of computing e^{tA} . Let $x_1(t), \ldots, x_n(t)$ be linearly independent solutions of $x' = Ax$. Then the matrix $X(t) := (x_1(t), \ldots, x_n(t))$ is a fundamental matrix so that $e^{tA} = X(t)X^{-1}(0)$. (Ex. 17!)

Ex. 35. Let $x(t) = f(t) + ig(t)$ be a solution of $x' = Ax$. Then f and gare real valued solutions of $x' = Ax$.

Ex. 36. Find all the solutions of $x' = Ax$ using eigen methods where

(i)
$$
A = \begin{pmatrix} 3 & 2 & 4 \\ 2 & 0 & 2 \\ 4 & 2 & 3 \end{pmatrix} x.
$$

(ii) $A = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 1 & -2 \\ 2 & 2 & 1 \end{pmatrix}.$

Ex. 37. Solve the given initial value problem.

(i)
$$
x' = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix} x, x(0) = \begin{pmatrix} 2 \\ 3 \end{pmatrix}.
$$

\n(ii) $x' = \begin{pmatrix} -3 & 0 & 2 \\ 1 & -1 & 0 \\ -2 & -1 & 0 \end{pmatrix} x$ with $x(0) = \begin{pmatrix} 0 \\ -1 \\ -2 \end{pmatrix}.$

Ex. 38. Solve the IV problem

$$
x' = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \\ e^t \cos 2t \end{pmatrix}, \qquad x(0) = e_2 + e_3
$$

by two different methods viz., by finding the exponential of A and by eigen method.

Ex. 39. Find e^{tA} if $A =$ $\sqrt{ }$ $\overline{1}$ 1 1 1 0 3 2 0 0 5 \setminus by methods of Remarks 27 and 34. Which do you find is easier?