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Definition 1. A subset A ⊂ X of a topological space is said to be nowhere dense in X,
if given any nonempty open set U , we can find a nonempty open subset V ⊂ U such that
A ∩ V = ∅.

This definition is equivalent to the standard one found in all text-books: A is nowhere
dense in X iff the interior of the closure of A in X is empty: Int (A) = ∅.

Reason: Let us assume that A ⊂ X is nowhere dense according to our definition. We claim
that Int (A) = ∅. Suppose not, that is, there exists a nonempty open set U ⊂ Int (A).
This means that every point of U is a limit point of A. In particular, if V ⊂ U is a
nonempty open set, then every x ∈ V is a limit point of A and hence V ∩A 6= ∅. Then A
cannot be nowhere dense according to our definition.

Conversely, let us assume that Int (A) = ∅. Let U be a nonempty open set. If every

nonempty open subset V of U meets A nontrivially, then every point of U is a limit point

of A and hence U ⊂ A. Hence IntA cannot be empty, a contradiction.

I prefer the first one. It gives us a better geometric intuition as it uses only the primitive
concept of topology.

Example 2. Let V be any proper vector subspace of Rn. Then V is nowhere dense in Rn.
This is a typical example of a nowhere dense set.

More generally, let X be a normed linear space. Let V be any proper vector subspace of X.
Then V is nowhere dense in X. (So are its translates, since translation is a homeomorphism.
In particular, any line in R2 is a nowhere dense set.)

Reason: Suppose not. Then there exists an open ball B(p, r) ⊂ V . Since B(p, r) =

p+B(0, r) and V is vector subspace, we conclude that B(0, r) = B(p, r)− p ⊂ V . Given

any nonzero vector x ∈ X, the vector y = r
2‖x‖x ∈ B(0, r) ⊂ V . Since x is a scalar

multiple of y and V is a vector subspace, it follows that x ∈ V . Since x ∈ X is an

arbitrary nonzero vector, we conclude that V = X. This contradicts our assumption that

V is proper vector subspace.

We shall give the formulation of Baire category theorem in a form which will be more
useful than the one which uses the notion of category.
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Theorem 3 (Baire Category Theorem). Let (X, d) be a complete metric space.
(1) Let Un be open dense subsets of X, for n ∈ N. Then ∩nUn is dense in X.
(2) Let Fn be nonempty closed subsets of X such that X = ∪nFn. Then at least one of Fn’s

has nonempty interior. In other words, a complete metric space cannot be a countable union
of nowhere dense closed subsets.

Proof. We first observe that both the statements are equivalent. For, G is open and dense iff
its complement F := X \G is closed and nowhere dense.

Reason: Let G be open and dense. Then F := X \ G is closed. If U := Int (F ) is not
empty, then U ∩G = ∅. This contradicts the density of G.

Conversely, if F is closed and nowhere dense, then G := X \F is open. If G is not dense,

then there exists a nonempty open set U such that U ∩G = ∅. Hence U ⊂ F . But then

Int (F ) ⊃ U and hence Int (F ) s not empty, a contradiction.

Hence any one of them follows from the other by taking complements. So, we confine ourselves
to proving the first.

Let U := ∩nUn. We have to prove that U is dense in X. Let x ∈ X and r > 0 be
given. We need to show that B(x, r) ∩ U 6= ∅. Since U1 is dense and B(x, r) is open there
exists x1 ∈ B(x, r) ∩ U1. Since B(x, r) ∩ U1 is open, there exists r1 such that 0 < r1 < 1/2
and B[x1, r1] ⊂ B(x, r) ∩ U1. We repeat this argument for the open set B(x1, r1) and the
dense set U2 to get x2 ∈ B(x1, r1) ∩ U2. Again, we can find r2 such that 0 < r2 < 2−2 and
B[x2, r2] ⊂ B(x1, r1) ∩ U2. Proceeding this way, we get for each n ∈ N, xn and rn with the
properties

B[xn, rn] ⊂ B(xn−1, rn−1) ∩ Un and 0 < rn < 2−n.

Clearly, the sequence (xn) is Cauchy: if m ≤ n,

d(xm, xn) ≤ d(xn, xn−1) + · · ·+ d(xm+1, xm) ≤
n∑

k=m

2−k.

Since
∑

k 2−k is convergent, it follows that (xn) is Cauchy. (Or, xn ∈ B[xk, rk] for all n ≥ k
and hence d(xm, xn) ≤ 2rk for m,n ≥ k.)

Since X is complete, there exists x0 ∈ X such that xn → x0. Since x0 is the limit of the
sequence (xn)n≥k in the closed set B[xk, rk], we deduce that x0 ∈ B[xk, rk] ⊂ B(xk−1, rk−1)∩
Uk for all k. In particular, x0 ∈ B(x, r) ∩ Uk for all k.

Remark 4. The importance of our formulation is this. The first statement tells us of a
typical way in which Baire category can be used. Imagine that we are on the look-out for
an element x ∈ X with some specific properties. Further assume that the sets of elements
which have properties “arbitrarily close” to the one desired are dense open sets in X. Then
the result says that there exists at least one element with the desired property. Thus the first
formulation is useful when we are interested in the existence problems. This vague way of
remembering is well-illustrated in some of the applications below. See especially the existence
of everywhere continuous nowhere differentiable function.

The second formulation says that X cannot be a countable union of “hollow” sets. A
typical application: Rn cannot be the union of a countable collection of lower dimensional
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subspaces. Another instance: a complete normed linear space cannot be countable dimen-
sional. See Proposition 5 below. More importantly, it might lead us to an open set when the
space is written as a countable union of closed sets.

Proposition 5. Let X be an infinite dimensional complete normed linear space. Then X
cannot be countable dimensional.

Proof. Let, if possible, {en : n ∈ N} be a (Hamel/algebraic) basis of X. This means that
any vector x ∈ X is a finite linear combination of en’s. If we let Fn stand for the vector
subspace spanned by {ek|1 ≤ k ≤ n}, then Fn is finite dimensional and we have X = ∪nFn.
It is well-known that all norms on a finite dimensional vector space are equivalent so that any
finite dimensional normed linear space is necessarily complete. In view of this we conclude
that each Fn is closed in X. Since Fn is finite dimensional, Fn is a proper vector subspace of
X. By Example 2, Fn is nowhere dense for each n. We have thus shown that the complete
metric space X is the union of the countable family {Fn} of nowhere dense closed sets, a
contradiction.

Example 6. There exists no metric d1 on Q such that a set is open in d1-topology iff it
is open in the standard topology and such that the metric space (Q, d1) is complete. Hint:
Q = ∪r∈Q{r} is a countable union of nowhere dense closed sets.

Ex. 7. An amusing exercise: Let (xn) be any sequence of real numbers. Show that the set
{x ∈ R : x 6= xn, n ∈ N} is dense in R. Hence conclude that R is uncountable.

Show that Q cannot be written as the intersection of a countable family of open subsets
of R.

The next result is a beautiful application of Baire’s theorem which uses both the versions!
To put it in perspective, recall that the pointwise limit of a sequence of continuous functions
need not be continuous while the uniform limit is. However, the poinwise limit cannot be too
wild.

Theorem 8. Let X be a complete metric space. Let fn : X → R be a sequence of continuous
functions. Assume that there exists a function f : X → R such that fn(x) converges to f(x)
for each x ∈ X. Then there exists a dense subset D of X such that each point of D is a point
of continuity of f .

Proof. Fix ε > 0. Define, for each k ∈ N,

Ek(ε) := {x ∈ X : |fn(x)− fm(x)| ≤ 1/k, for all m,n ≥ n}.

Then we claim that Ek(ε) is closed for each k.

Reason: Fix m,n ≥ k. Then the set Em,n
k (ε) := {x ∈ X : |fn(x) − fm(x)| ≤ 1/k} is a

closed subset of X, since |fn − fm| is continuous. Now, since Ek(ε) = ∩m,n≥kE
m,n
k (ε),

the claim follows.

It is easy to show that X = ∪kEk(ε).
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Reason: Let x0 ∈ X. Since fn(x0) → f(x0), the sequence (fn(x0)) is Cauchy. Hence for

the given ε > 0, there exists k0 such that for m,n ≥ k0, we have |fm(x0)−fn(x0)| ≤ 1/k0.

Hence we conclude that x0 ∈ Ek0(ε).

Since Xis a complete metric space, at least one of Ek(ε) should have nonempty interior.
Let Uε := ∪kInt (Ek(ε)). Then Uε is a nonempty open subset of X.

Let Un := U1/n. We claim that each Un is dense in X.

Reason: It is enough if we show that every closed ball B := B[x, r] meets Un nontrivially.
(Why?)

Reason: To show a set A is dense in a metric space, it suffices to show that
A ∩B(x, r) 6= ∅ for any x ∈ Xand r > 0. Assume that A ∩B[z, ρ] 6= ∅ for any
z ∈ X and ρ > 0. Then given any B(x, r), we may take z = x and ρ = r/2.
Then ∅ 6= A ∩B[x, ρ] ⊂ A ∩B(x, r).

Observe that the closed set (and hence a complete metric space) B is the union of a

countable family of closed sets: B = ∪n(B∩Ek(1/n)). By Baire, at least one of them has

nonempty interior, say, Int (B∩Ek(1/n)) 6= ∅. Since Int (B∩Ek(1/n)) ⊂ B∩ IntEk(1/n),

it follows that B[x, r] ∩ Un 6= ∅ and hence the claim is proved.

Let D := ∩nUn. By Baire, D is dense in X. We claim that every x ∈ D is a point of
continuity of f .

Reason: Fix p ∈ D. Let ε > 0 be given. Choose N � 0 such that 1/N < ε. Since p ∈ D,
p ∈ UN and hence there exists k ∈ N such that p ∈ Int (Ek(1/N). By continuity of fk at
p, there exists an open neighbourhood V of p contained in IntEk(1/N) such that

|fk(x)− fk(p)| < ε, for all x ∈ V. (1)

For x ∈ V , since V ⊂ Ek(1/N), by the definition of Ek(ε)’s, we have

|fm(x)− fk(x)| ≤ 1/N, for all m ≥ k. (2)

Letting m→∞ in the above equation, we obtain

|f(x)− fk(x)| ≤ 1/N, for all x ∈ V. (3)

We are now ready for the kill. We claim that |f(x)− f(p)| < 3ε for x ∈ V .

|f(x)− f(p)| ≤ |f(x)− fk(x)|+ |fk(x)− fk(p)|+ |fk(p)− f(p)|
≤ 1/N + ε+ 1/N

< 3ε.

This shows that f is continuous at every point of D.

Theorem 9 (Baire category theorem for locally compact spaces). Let X be a locally compact
hausdorff space. Let (Un) be a sequence of open dense sets in X. Then ∩nUn is dense in X.
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Proof. Let G be a nonempty open set in X. We need to prove that there exists x ∈ G such
that x ∈ Un for all n. The strategy is to mimic the proof in the case of metric spaces replacing
open balls by the existence of open sets V such that V is compact and x ∈ V ⊂ V ⊂ U for any
given open set U and x ∈ U and then invoking Cantor intersection theorem for a decreasing
sequence of compact sets.

Since G is a nonempty open set and U1 is dense, there exists x1 ∈ G∩U1. Since G∩U1 is
open, x ∈ G ∩ U1 and X is locally compact hausdorff space, there exists an open set V1 such
that x ∈ V1, V 1 is compact and V 1 ⊂ G ∩ U1. Assume, by way of induction, that we have
chosen xi, Vi 3 xi, V i is compact and that xi ∈ Vi ⊂ V i ⊂ Vi−1 ∩ Ui, for 1 ≤ i ≤ n.

Now given a nonempty open set Vn, since Vn ∩ Un+1 is nonempty, there exists xn+1 ∈
Vn ∩ Un+1. Since X is locally compact and hausdorff, there exists an open set Vn+1 3 xn+1

such that V n+1 is compact and xn+1 ∈ Vn+1 ⊂ V n+1 ⊂ Vn ∩ Un+1. Let Kn := V n. Thus we
have a decreasing sequence (Kn) of nonempty compact subsets. Hence by Cantor intersection
theorem, there exists x ∈ ∩nKn. Since x ∈ Kn = V n ⊂ Un, it follows that x ∈ ∩Un. Also,
x ∈ K1 ⊂ U .
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