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The aim of this article is to bring out the decisive role played by the so-called Least
upper bound property of real numbers. Most of the students — even the best ones — do not
realize the importance of this axiom at the end of a year long course in real analysis. The
removal of the single piece, viz., the LUB axiom will cause the entire edifice of real analysis to
collapse. Most often the major results use other results which in turn depend either directly
or indirectly on the LUB property of the reals. This obscures the significance of the axiom.
In this article I shall try to show as directly as possible how LUB property enters the proof
of major results in real analysis. I have written the article keeping an average undergraduate
of Indian Universities in mind. It is my hope that teachers would give copies of this article
to good students and ask them to present it as seminars. The experts may find the details a
bit too excessive.

Let us recall what the LUB property of reals is. It is formulated as follows:

Let A be a nonempty subset of reals. Assume that A is bounded above — in the sense
that there is an M ∈ R such that a ≤ M for all a ∈ A. Then there exists an α ∈ R with the
property that i) a ≤ α for all a ∈ A and ii) if β is any upper bound for A then α ≤ β.

This number α is unique and called the least upper bound for A. We shall denote it by
α = supA. The following easy exercise gives us the most useful characterization of supA.

Ex. 1. Let A be a nonempty subset of reals bounded above. A real number α is supA iff
the following hold: i) α is an upper bound for A. ii) If ε > 0 is given then there is an a ∈ A
such that α− ε < a.

To keep things in perspective let us recall that Q is an ordered field which does not
enjoy the LUB property. (See the following exercise.) We shall repeatedly use this fact to
construct examples to show how our results fail if we consider Q in place of R. To understand
the remarks completely that follow the theorems the beginner may need the guidance of a
teacher. I also would like to point out that the examples are external rather than intrinsic.
This is for two reasons: i) The average beginner may not be able to appreciate the excessively
pedantic intrinsic examples. ii) The students may thus appreciate the fact that how the lack
of “holes” in R helps one prove better results.

Ex. 2. Let A := {x ∈ Q : x ≥ 0 & x2 ≤ 2}. Then A is bounded above and it has no least
upper bound in Q. Hint: If α ∈ Q is supA, then by trichotomy one of the following holds:
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i) α2 = 2, ii) α2 < 2 or iii) α2 > 2. That the first case is impossible is a well-known fact. In
the other cases show that there exists N ∈ N such that (α + 1/N)2 < 2 or (α − 1/N)2 > 2.
Arrive at a suitable contradiction. See the proof of Theorem 6.

Theorem 3. [Nested Interval Theorem] Let Jn := [an, bn] be intervals in R such that
Jn+1 ⊆ Jn for all n ∈ N. Then ∩Jn 6= ∅.

Proof. Note that the hypothesis means that [an+1, bn+1] ⊂ [an, bn] for all n. In particular,
an ≤ an+1 and bn+1 ≤ bn for all n ∈ N. Let E be the set of left endpoints of Jn. Thus,
E := {a ∈ R : a = an for some n}. E is nonempty.

We claim that bk is an upper bound for E for each k ∈ N, i.e., an ≤ bk for all n and k.
If k ≤ n then [an, bn] ⊆ [ak, bk] and hence an ≤ bn ≤ bk. (Draw pictures!) If k > n then
an ≤ ak ≤ bk. Thus the claim is proved. By the LUB axiom there exists c ∈ R such that
c = supE. We claim that c ∈ Jn for all n. Since c is an upper bound for E we have an ≤ c
for all n. Since each bn is an upper bound for E and c is the least upper bound for E we see
that c ≤ bn. Thus we conclude that an ≤ c ≤ bn or c ∈ Jn for all n. Hence c ∈ ∩Jn.

Remark 4. This result is false in Q. Here any interval [a, b] for a, b ∈ Q is defined in the
obvious way: [a, b] := {x ∈ Q : a ≤ x ≤ b}. Consider an increasing (resp. decreasing)
sequence (an) (resp. (bn)) of rational numbers converging to

√
2. Then the sequence ([an, bn]

of intervals in Q (consisting of rational numbers) and whose lengths go to 0 have empty
intersection.

Remark 5. The usual form of Theorem 3 is as follows: Let (Jn := [an, bn]) be a sequence of
nested closed and bounded intervals in R. Assume that their lengths go to zero: lim(bn−an) =
0. Then ∩Jn consists of a single point.

This follows from our version. We have already shown the existence of a point in the
intersection. Suppose that there are two such, say, α, β ∈ ∩Jn. Then we have |α−β| ≤ bn−an
for all n. Hence |α− β| = 0 or α = β.

Theorem 6. Let α ∈ R be nonnegative and n ∈ N. The there exists a unique non-negative
x ∈ R such that xn = α.

Proof. The crucial part of the theorem is the existence of such an x. Uniqueness holds even
in any ordered field. If α = 0, the result is obvious, so we assume that α > 0 in the following.

Look at Fig. We define

S := {t ∈ R : t ≥ 0 and tn ≤ α}.

Since 0 ∈ S, we see that S is not empty. It is bounded above. For, by Archimedean property
of R, we can find N ∈ N such that N > α. We claim that α is an upper bound for S. If this
is false, then there exists t ∈ S such that t > N . But, then we have

tn > Nn ≥ N > α,

a contradiction, since for any t ∈ S, we have tn ≤ α. Hence w conclude that N is an upper
bound for S. Thus, S is a nonempty subset of R which is bounded above. By the LUB
property of R, there exists x ∈ R such that x is the LUB of S. We claim that xn = α.
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Exactly one of the following is true: (i) xn < α, (ii) xn > α and (iii) xn = α. We shall
show that the first two possibilities do not arise. The idea is as follows. Look at Figure again.
If Case (i) holds, that is, if xn < α, then it is geometrically clear that for y very near to x and
greater than x, we must have yn < α. In particular, we can find a positive integer k ∈ N such
that (x+ 1/k)n < α. It follows that x+ 1/k ∈ S. This is a contradiction, since x is supposed
to be an upper bound for S. In the second case, when xn > α, by similar considerations, we
can find k ∈ N such that (x− 1/k)n > α. Since x− 1/k < x and x is the least upper bound
for S, there exists t ∈ S such that t > x− 1/k. We then see

tn > (x− 1/k)n > α.

This again leads to a contradiction, since t ∈ S.

So, to complete the proof rigorously, we need only prove the existence of a positive integer
k in each of the first two cases.

Case (i): Assume that xn < α. For any k ∈ N, we have

(x+ 1/k)n = xn +

n∑
j=1

(
n

j

)
xn−j(1/kj)

≤ xn +
n∑
j=1

(
n

j

)
xn−j(1/k)

= xn + C/k, where C :=
n∑
j=1

(
n

j

)
xn−j .

If we choose k such that xn+C/k < α, that is, for k > C/(α−xn), it follows that (x+1/k)n <
α.

Case (ii): Assume that xn > α. For any k ∈ N, we have (−1)j(1/kj) > −1/k for j ≥ 1.
We use this below.

(x− 1/k)n = xn +
n∑
j=1

(
n

j

)
(−1)jxn−j(1/kj)

≥ xn −
n∑
j=1

(
n

j

)
xn−j(1/k)

= xn − C/k, where C :=
n∑
j=1

(
n

j

)
xn−j .

If we choose k such that xn − C/k > α, that is, if we take k > C/(xn − α), it follows that
(x− 1/k)n > α.

We now show that if x and y are non-negative real numbers such that xn = yn = α, then
x = y. Look at the following algebraic identity:

(xn − yn) ≡ (x− y) · [xn−1 + xn−2y + · · ·+ xyn−2 + yn−1].

If x and y are nonnegative with xn = yn and if x 6= y, say, x > y then the left hand side is
zero while both the factors in brackets on the right are strictly positive, a contradiction.

This completes the proof of the theorem.
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Remark 7. The analogous result for the field of rational numbers is false. As is well-known,
there exists no rational number x such that x2 = 2. Adapting th above proof shows that the
non-empty subset S := {t ∈ Q : t ≥ 0 and t2 ≤ 2} bounded above has no least upper bound
in Q.

Theorem 8. Any increasing sequence of real numbers bounded above is convergent. That is,
if (xn) is a sequence in R such that xn ≤ xn+1 and there exists M ∈ R such that xn ≤M for
all n ∈ N, then limxn exists.

Proof. Let E := {x ∈ R : x = xn for some n ∈ N} be the image of the sequence. (For
example, if xn = (−1)n1 then E = {±1}. If xn = 1 for all n then E = {1}.) By assumption
E is nonempty and bounded above by M . By the LUB axiom there exists ` ∈ R which is
supE. We shall show that limxn = `.

Let ε > 0 be given. As ` − ε is not an upper bound for E there exists an N such that
`− ε < xN . As the sequence is increasing we have xN ≤ xn for all n ≥ N . We thus see that
`− ε < xn ≤ ` < `+ ε for all n ≥ N . That is, xn ∈ (`− ε, `+ ε) for n ≥ N or limxn = `.

Remark 9. This result is false in Q. For let a sequence (xn) be recursively defined as follows:
x1 = 1 and xn+1 = 1

2(xn + 2
xn

). Then (xn) is bounded below and eventually decreasing. If it

converges in Q then the limit is
√

2!

Theorem 10. Any Cauchy sequence in R converges.

Proof. Let (xn) be a Cauchy sequence in R. Let δ > 0 be arbitrary. There exists a positive
integer N = N(δ) such that for all m ≥ N and n ≥ N , we have |xn−xm| < δ/2. In particular
we have |xn − xN | < δ/2. Or, equivalently,

xn ∈ (xN − δ/2, xN + δ/2) for all n ≥ N.

From this we make the following observations:
(i) For all n ≥ N , we have xn > xN − δ/2.
(ii) If xn ≥ xN + δ/2, then n ∈ {1, 2, . . . , N − 1}. Thus the set of n such that xn ≥ xN + δ/2
is finite. We shall apply these two observations below for δ = 1 and δ = ε.

Let S := {x ∈ R : there exists infinitely many n such that xn ≥ x}. We claim that S is
nonempty, bounded above and that supS is the limit of the given sequence.

From (i), we see that xN − 1 ∈ S. Hence S is nonempty.

From (ii) it follows that xN +1 is an upper bound for S. That is, we claim that y ≤ xN +1
for all y ∈ S. If this were not true, then there exists a y ∈ S such that y > xN + 1 and such
that xn ≥ y for infinitely many n. This implies that xn > xN + 1 for infinitely many n. This
contradicts ii). Hence we conclude that xN + 1 is an upper bound for S.

By the LUB axiom, there exists ` ∈ R which is supS. We claim that limxn = `. let ε > 0
be given. As ` is an upper bound for S and xN − ε/2 ∈ S (by (i)) we infer that xN − ε/2 ≤ `.
Since ` is the least upper bound for S and xN + ε/2 is an upper bound for S (from (ii)) we
see that ` ≤ xN + ε/2. Thus we have xN − ε/2 ≤ ` ≤ xN + ε/2 or

|xN − `| ≤ ε/2.
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For n ≥ N we have

|xn − `| ≤ |xn − xN |+ |xN − `|
< ε/2 + ε/2 = ε.

We have thus shown that limn→∞ xn = `.

Remark 11. This result is also patently false in Q. See the last remark.

Definition A positive decimal form is a series of the form

a0 +
a1
10

+
a2
102

+ · · ·+ an
10n

+ · · ·

denoted by a0.a1a2 · · · an · · · , where a0 ∈ Z+ and an ∈ {0, 1, . . . , 9} for each n ∈ N.

Theorem 12. Every positive decimal form converges to a positive real number. (We then
say the decimal form represents the real number).

Proof. Consider the positive decimal form a0.a1a2 · · · an · · · . Now

s1 = a0 +
a1
10
≤ a0 +

9

10

s2 = a0 +
a1
10

+
a2
102
≤ a0 +

9

10
+

9

102

...
...

By induction we have

sn ≤ a0 +
9

10
(1 +

1

10
+ · · ·+ 1

10n−1
)

≤ a0 +
9

10

(
1

1− 1
10

)
= a0 + 1.

Then {sn} is an increasing sequence of positive reals and is bounded above by a0 + 1. Hence
{sn} is convergent to a real number a ∈ R. (We then say a0.a1a2 . . . an . . . represents a.)

The fact that we need the LUB property of the reals to show that the set of real numbers
is uncountable is hardly appreciated by many students.

Theorem 13. The set [0, 1] is uncountable.

Proof. If [0, 1] is countable, since [0, 1] is infinite, there exists a bijection f : N→ [0, 1]. Let
zn := f(n). We define two sequences (xn) and (yn) whose elements are defined recursively.
Let x1 be the zr where r is the first integer such that 0 < zr < 1. Let y1 be zs where s is the
first integer such that x1 < zs < 1. Assume that we have chosen (xi)

n
i=1 and (yi)

n
i=1 with the

property

0 = x0 < x1 < x2 < · · · < xn < yn < yn−1 < · · · < y2 < y1 < y0 = 1.

We choose xn+1 to be the zr where r is the first integer such that xn < zr < yn. Let yn+1

be zs where s is the first integer such that xn+1 < zs < yn. Clearly the set {xn} ⊂ [0, 1] is
nonempty and bounded above. Let x := sup{xn}. Then it is easily seen that x ∈ [0, 1] and
that x 6= zn for n ∈ N.
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Theorem 14. [Intermediate Value Theorem] Let f : [a, b] ⊂ R → R be continuous.
Assume that f(a) < 0 < f(b). Then there exists c ∈ (a, b) such that f(c) = 0.

Proof. Draw some pictures. We wish to locate the “first” c from a such that f(c) = 0.
Towards this end, we define E := {x ∈ [a, b] : f(y) ≤ 0 for y ∈ [a, x]}.

Using the continuity of f at a for ε = −f(a)/2, we can find a δ > 0 such that f(x) ∈
(3f(a)/2, f(a)/2) for all x ∈ [a, a+ δ). This shows that a+ δ/2 ∈ E. Since E is bounded by
b there is c ∈ R such that c = supE. Clearly we have a + δ/2 ≤ c ≤ b and hence c ∈ (a, b].
We claim that c ∈ E and that f(c) = 0.

Since c− 1/n is not an upper bound for E there is an xn ∈ E such that c− 1/n < xn ≤ c.
By sandwich lemma, limxn = c. By continuity of f at c we have f(xn)→ f(c). As f(xn) ≤ 0
for all n we conclude that f(c) ≤ 0. This implies that c < b and hence c ∈ (a, b). If f(c) 6= 0
then f(c) < 0. Arguing as in the first part of the proof and using the fact that a < c < b,
we can find a sufficiently small η > 0 such that (c − η, c + η) ⊂ (a, b) and such that for
x ∈ (c − η, c + η) we have f(x) ∈ (3f(c)/2, f(c)/2). As limxn = c, there is an N such that
xN ∈ (c − η, c + η). But then we see that f(x) < 0 for x ∈ [a, xN ] ∪ (c − η, c + η/2]. Hence
c+ η/2 ∈ E. This contradicts the fact that c = supE. Hence we conclude that f(c) = 0.

Remark 15. This result is not true in Q. Consider the function f : {x ∈ Q : 0 ≤ x ≤ 2} → Q
given by f(x) = x2 − 2. Then f(0) = −2 < 0 < 2 = f(2). But however there is no rational
number in the interval at which f assumes the value 0.

Theorem 16. Let f : [a, b] ⊂ R→ R be continuous. Then

1. f is bounded.

2. Let M := sup{f(x) : x ∈ [a, b]} and m := inf{f(x) : x ∈ [a, b]}. Then there exist points
c and d in [a, b] such that f(c) = M and f(d) = m.

Proof. Let E := {x ∈ [a, b] : f is bounded on [a, x]}. The conclusion of the theorem is that
b ∈ E.

Since f is continuous at a, given ε = 1, there exists a δ0 > 0 such that f(x) ∈ (f(a) −
1, f(a) + 1) for all x ∈ [a, a + δ0). Thus we see that |f(x)| ≤ |f(a)| + 1 for x ∈ [a, a + δ0/2].
Hence a + δ0/2 ∈ E. Obviously E is bounded by b. Let c = supE. Since a + δ0/2 ∈ E we
have a ≤ c. Since b is an upper bound for E, c ≤ b. Thus a ≤ c ≤ b. We intend to show that
c ∈ E and c = b. This will complete the proof.

For any n ∈ N, c− 1/n is not an upper bound for E. Therefore there is an xn ∈ E such
that c − 1/n < xn ≤ c. Since f is continuous at c, for ε = 1 there is a δ > 0 such that
f(x) ∈ (f(c)− 1, f(c) + 1) for all x ∈ (c− δ, c+ δ)∩ [a, b]. By Sandwich lemma, xn → c. But
there exists an N ∈ N such that xN ∈ (c − δ, c + δ). Since xN ∈ E there is an M such that
|f(x)| ≤ M for x ∈ [a, xN ]. Also f is bounded by |f(c)| + 1 on (c − δ, c + δ) ∩ [a, b]. From
these two facts we conclude that

|f(x)| ≤ max{M, |f(c)|+ 1}, for all x ∈ [a, c+ 1/2N ] ∩ [a, b].

This shows that c ∈ E. Note that the above argument shows also that c+ 1/2N ∈ E if c 6= b.
This contradicts the fact that c = supE. Hence c = b. This proves 1).
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To prove 2), we argue by contradiction. If there exists no x ∈ [a, b] such that f(x) = M
then M − f(x) is continuous at each x ∈ [a, b] and M − f(x) > 0 for all x ∈ [a, b]. If we let
g(x) := 1/(M−f(x) for x ∈ [a, b], then g is continuous on [a, b]. By 1), there exists A > 0 such
that g(x) ≤ A for all x ∈ [a, b]. But then we have, for all x ∈ [a, b], g(x) := 1

M−f(x) ≤ A or

M − f(x) ≥ 1
A . Thus we conclude that f(x) ≤M − (1/A) for x ∈ [a, b]. This contradicts our

hypothesis that M = sup{f(x) : x ∈ [a, b]}. We therefore conclude that there exists c ∈ [a, b]
such that f(c) = M . Arguing similarly we can find a d ∈ [a, b] such that f(d) = m.

Remark 17. Consider the function g = 1/f where f is as in Remark 5. Then g is continuous
but not bounded on the closed and bounded interval {x ∈ Q : 0 ≤ x ≤ 2}.

Theorem 18. [Heine-Borel Theorem] If a closed and bounded interval in R is covered by
a family of open intervals, then it is covered by finitely many open intervals from the given
family.

More precisely, let [a, b] be a closed and bounded interval in R. Let {Jα : α ∈ I} be a
family of open intervals indexed by an indexing set I. Assume that [a, b] ⊆ ∪α∈IJα. Then
there exist finitely many α1, . . . , αn ∈ I such that [a, b] ⊆ ∪ni=1Jαi.

Proof. Let E := {x ∈ [a, b] | [a, x] is covered by finitely many Jα}. As a ∈ [a, b] ⊂ ∪α∈IJα,
there exists α ∈ I such that a ∈ Jα. Since a ∈ Jα and Jα is open there exists ε > 0 such that
(a− ε, a+ ε) ⊂ Jα. Hence [a, a+ ε/2] is covered by the single element Jα. Thus, a+ ε/2 ∈ E
and hence E 6= ∅.

E is a nonempty subset of R bounded by b. Hence there a real number β which is the
supremum of E.

We claim that β ∈ E and that β = b. The claim proves the result. Suppose the claim is
false.

Now β ∈ [a, b]: For any n ∈ N, β − 1/n is not an upper bound for E. Hence there
exists xn ∈ E such that β − 1/n < xn. Since b is an upper bound for E we see that
β − 1/n < xn ≤ β ≤ b. By Sandwich lemma, limxn = β ≤ b. Also, since a+ ε/2 ∈ E, β ≥ a.
Thus a ≤ β ≤ b.

There exists α0 ∈ I such that β ∈ Jα0 . Hence we can find an ε > 0 such that (β−ε, β+ε) ⊆
V , as Jα0 is open. Assume that β 6= b. Then we may assume that ε is so small that
(β − ε, β + ε) ⊆ [a, b]. Since β = supE, β − ε is not an upper bound of E. Thus, there exists
x ∈ E, such that β − ε < x ≤ β. Since x ∈ E, there exists finitely many Jαi , 1 ≤ i ≤ n such
that [a, x] ⊆ ∪ni=1Jαi . But then [a, β+ε/2] ⊆ ∪ni=1Jαi ∪Jα0 . Hence β+ ε

2 ∈ E, a contradiction
since β = supE. Hence β = b.

Note also that the above argument proves that β ∈ E.

Remark 19. Take sequences (rn) and (sn) rationals such that (rn) increases and (sn) de-
creases to

√
2. Let In := (−1, rn) and Jm := (sn, 3). Then the closed and bounded interval

K in Q defined by K := {x ∈ Q : 1 ≤ x ≤ 2} is contained in the union (∪nIn) ∪ (∪mJm).
However we can not find finitely many I’s and J ’s whose union is K.

Theorem 20. [Bolzano Weierstrass Theorem] Let A be an infinite bounded subset of R.
Then there is a cluster point of A in R.
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Proof. This proof imitates that of Theorem 10.

Let E := {x ∈ R : x ≤ a for infinitely many a ∈ A}. Let M ∈ R be such that −M ≤ a ≤
M for all a ∈ A. It is obvious that −M ∈ E. We can easily show that E is bounded by M .
Hence there exists ` ∈ R such that ` = supE. We claim that ` is a cluster point of E. That
is, we need to show that for any given ε > 0 there exists a point a ∈ (`− ε, `+ ε) ∩ A other
than ` itself.

Since `−ε is not an upper bound for E there is an x ∈ E such that `−ε < x. Since x ∈ E
there exist infinitely many elements a ∈ A such that x ≤ a. Hence there exist infinitely many
elements a ∈ A such that ` − ε < a. Also except for finitely many a ∈ A we have a < ` + ε.
For, otherwise, for infinitely many elements a ∈ A we have a ≥ ` + ε. But then ` + ε ∈ E.
This contradicts the fact that ` = supE. Thus there exist infinitely many a ∈ A such that
` − ε < a < ` + ε. (Prove this. See Remark 22 below.) In particular there is at least one
a ∈ A ∩ (`− ε, `+ ε) which is different from `.

Remark 21. The image of the sequence in Remark 9 is an infinite unbounded set which has
no cluster point in Q.

Remark 22. Let B := {a ∈ A : ` − ε < a}. Then B is an infinite subset of A. Let F be
the finite set of elements a ∈ A such that a ≥ ` + ε. Let C := {a ∈ A : a < ` + ε}. Then
C = A \ F . Hence B ∩ C is an infinite subset of A:

B ∩ C = B ∩ (A ∩ F c) = B ∩A ∩ F c = B ∩ F c = B \ F.

Thus every a ∈ B satisfies ` − ε < a < ` + ε. Hence the set of all such a ∈ A such that
`− ε < a < `+ ε is an infinite set.

Remark 23. The usual undergraduate version Any bounded sequence of reals has a convergent
subsequence follows from this version: If the image of the sequence is finite then there exists
an x ∈ R such that x = xn for infinitely many n ∈ N. These n’s give rise to a subsequence
which converges to x. If the image of the sequence is infinite then it is a bounded infinite
subset of R. Let x be a cluster point of this set. Let xnk

∈ (x−1/k, x+1/k) be an element of
the sequence chosen inductively so that xnk+1

/∈ {xn1 , . . . , xnk
}. The subsequence (xnk

) then
converges to x.

Remark 24. The proof of the fact that any continuous function on a closed and bounded
interval is uniformly continuous uses either Heine-Borel theorem or the Bolzano-Weierstrass
theorem.

Remark 25. In the theory of differentiation the single most basic result is Rolle’s theorem:
Let f : [a, b] → R be continuous and differentiable on (a, b). Assume that f(a) = f(b). Then
there exists a point c ∈ (a, b) such that f ′(c) = 0. All major results such as the mean value
theorem, characterization of monotone differentiable functions in terms of the derivatives and
the constancy of a differentiable function on an interval iff the derivative vanishes and Taylor’s
theorem follow from Rolle’s theorem. A proof of Rolle’s theorem uses Theorem 16.

Remark 26. In the theory of Riemann integration, even to make the definition of Riemann
integrability we need the LUB property of R.

Theorem 27. [a, b] is connected.
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Proof. Assume otherwise. We then can write [a, b] = U ∪ V where U and V are nonempty
proper open subsets of [a, b] with U ∩ V = ∅. Without loss of generality assume that a ∈ U .
We intend to show that U = [a, b] so that V = ∅.

Consider E := {x ∈ [a, b] : [a, x] ⊂ U}. Since a ∈ U and U is open there exists an ε > 0
such that [a, ε) ⊂ U . Hence [a, ε/2] ⊂ U or a+ ε/2 ∈ E so that E 6= ∅. E is clearly bounded
above by b. Thus by the LUB axiom there exists a real number c ∈ R which is supE. Note
that a ≤ c ≤ b.

We claim that c ∈ E. For each n ∈ N , c − 1/n is not an upper bound for E. We can
therefore find xn ∈ E such that c− 1/n < xn ≤ c. Clearly limxn = c. Since xn ∈ E, xn ∈ U .
Since U is closed in [a, b] (with respect to the subspace topology) and c ∈ [a, b], we see that
c = limxn ∈ U . Now [a, c) = ∪[a, c − 1/n] ⊆ ∪[a, xn]. As each of [a, xn] ⊂ U we see that
[a, c) ⊂ U . This along with the fact that c ∈ U allows us to conclude that [a, c] ⊂ U and
hence c ∈ E.

We now show that c = b. This will complete the proof. Since c ∈ U and U is open
there exists an (relatively) open subset containing c lying in U . If c < b, then there exists
an N ∈ N such that (c − 1/N, c + 1/N) ⊂ U . This means that the set [a, c + 1/2N ] ⊂
[a, c]∪ (c−1/N, c+ 1/N) ⊂ U . Thus c+ 1/2N ∈ E. This contradicts the fact that c = supE.
Therefore our assumption that c < b is wrong. Thus c = b.

Remark 28. Let J be as in Remark 19. Then J = U ∪ V where U := ∪In and V := ∪Jm is
a disconnection of J .

I thank my student Abhijit Champanerkar for his critical reading of this article.

Some Odds and Ends

In this section, we prove some more important results in R which use LUB but which are true
for rational number field also

Theorem 29 (Archimidean Property).
(i) The set of natural numbers is not bounded above in R.
(ii) Given two real numbers x, y with x > 0, there exists a positive integer n such that

nx > y.

Proof. If N is bounded above, then let α ∈ R be the least upper bound for N. That is, we
have

n ≤ α for all n ∈ N
n+ 1 ≤ α for all n ∈ N

n ≤ α− 1 for all n ∈ N.

We therefore conclude that α− 1 is an upper bound for N. This contradicts our assumption
that α is the least upper bound for N. This completes the proof of (i).

(ii) is an immediate consequence of (i). If no such n exists, then n ≤ y/x for all n. In
other words, N is bounded above by y/x, contradicting (i).
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Remark 30. In fact, (i) and (ii) are equivalent. One can give a direct proof (ii) adapting
that of (i). We leave this as an exercise to the student.

Theorem 31 (Density of Q in R). Given x, y ∈ R with x < y, there exists a rational number
r such that x < r < y.

Proof. Assuming the existence of such an r, we write it as r = m/n with n > 0. So, we have
x < m/n < y, that is, nx < y < ny. Thus we are claiming that the interval [nx, ny] contains
an integer. It is geometrically obvious that a sufficient condition for an interval J = [a, b] to
have an integer in it is that its length b − a should be greater than 1. This gives us an idea
how to look for an n. We start with the proof.

Since y − x > 0, by Archimedian property, there exists n ∈ N such that n(y − x) > 1.
We consider the set S := {k ∈ Z : k ≤ nx}. This is a nonempty subset of R. For, if S = ∅,
then it follows that k > nx for all k ∈ Z. From this, we get −k < −nx for all k ∈ Z. In
particular, −nx is an upper bound for N. This contradiction shows that S is nonempty. S is
bounded above by nx. Let α ∈ R be the least upper bound for S. Since α − 1 < α and α is
the LUB of S, there exists k ∈ S such that k > α − 1. Hence α < k + 1. Look at Figure???
Let m := k + 1. We claim that m > nx. For, otherwise, m ≤ nx and hence m = k + 1 ∈ S.
Since α is an upper bound for S, we see that k + 1 < α. It contradicts our choice of k. This
proves m > nx. We also claim that m < ny. If false, then m ≥ ny. Thus the interval [nx, ny]
of length greater than 1 is contained in [k, k + 1]. See Figure. To prove this analytically, we
proceed as follows:

1 = (k + 1)− k = m− k ≥ ny − nx = n(y − x) > 1.

Thus we conclude that nx < m < ny. Dividing the inequalities by n,we get the required
result.

Corollary 32. Let the assumptions be as in the last theorem. Then there exists an irrational
number z such that x < z < y.

Proof. Use the last result to the pair
√
x,
√
y to find a rational number r such that

√
2x <

r <
√

2y. Dividing the inequality by
√

2 yields x < r/
√

2 < y. Since r/
√

2 is irrational the
corollary follows.

Proposition 33 (Greatest Integer Function). Let x ∈ R. Then there exists a unique m ∈ Z
such that m ≤ x < m+ 1.

Proof. Let S := {k ∈ Z : k ≤ x}. As seen above, S 6= ∅. It is bounded above by x. Let α ∈ R
be its least upper bound. Then there exists k ∈ S such that k > α − 1. Since k ∈ S, k ≤ x.
We claim that k + 1 > x. For, if false, then k + 1 ≤ x. Therefore, k + 1 ∈ S. Since α is an
upper bound for S, we must have k + 1 < α or k < α − 1. This contradicts our choice of k.
Hence we have x < k + 1. The proposition follows if we take m = k.

10


