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This article is a collection of results with possibly cute proofs. As I gathered them, I wrote
them up lest that I forget such arguments!

Theorem 1 (AM-GM Inequality). Let x1, x2, . . . , xn be nonnegative real numbers. Their
arithmetic mean A := (x1 + · · · + xn)/n is greater than or equal to their geometric mean
(x1 · · ·xn)1/n.

Equality holds iff all xi are equal.

Proof. We prove the result by induction. The result is true for n = 2. For,

(x1 + x2)
2 − 4x1x2 = (x1 − x2)2 ≥ 0.

It follows that x1+x2
2 ≥ (x1x2)

1/2. Observe that equality holds iff (x1 − x2)2 = 0, that is, iff
x1 = x2.

Assume that the result is true for any set n− 1 nonnegative elements. Let x1, . . . , xn be
nonnegative. Let a := x1 + · · · + xn−1 and b := x1 · · ·xn−1. Then by induction hypothesis,
a/(n− 1) ≥ b1/(n−1). We need to show that (a+ xn) ≥ nnbxn.

Consider f(x) := (a + x)n − nnbx. Clearly, f is infinitely differentiable. We apply the
derivative tests for extrema of this function. We find

f ′(x) = n(a+ x)n−1 − nnb,

so that

f ′(x) = 0 ⇐⇒ (a+ x)n−1 = nn−1b ⇐⇒ a+ x = nb1/(n−1) ⇐⇒ x = b1/(n−1) − a.

Let c := b1/(n−1) − a. Then f ′′(c) = n(n− 1)(nb1/(n−1))n−2 > 0. Thus, c is a minimum for f .
What is f(c)? We have

f(c) = (nb1/(n−1))n − nnb(nb1/(n−1) − a)

= nn(bn/(n−1) − nbn/(n−1) + ab)

= bnn[b1/(n−1)(1− n) + a]

≥ 0,

since by induction hypothesis a ≥ (n− 1)b1/(n−1). Also, f(c) = 0 iff b1/(n−1)(1− n) + a = 0.
The latter happens iff x1 = · · · = xn−1 = x, say, by induction hypothesis. But then c =
nx− (n− 1)x = x. Thus we have xn = x.
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Lemma 2. Let S := {n + m
√

2 : n,m ∈ Z}. Let a, b ∈ R be such that a < b. Then there
exists an s ∈ S such that a < s < b. In other words, S is dense in R.

Proof. If x, y ∈ S and k ∈ Z, then x ± y, kx ∈ S. Let n(m) := [m
√

2], the greatest integer
less than or equal to m

√
2. Then, 0 ≤ m

√
2− n(m) < 1.

It is easy to see that if n+m
√

2 = n′ +m′
√

2, then n = n′ and m = m′.
Let sm := m

√
2− n(m). Then 0 ≤ sm < 1 and sm ∈ S. Also, if m 6= m′, then sm 6= sm′ .

Hence we conclude that {sm : m ∈ Z} is an infinite subset of S ∩ [0, 1).
Given ε > 0, we partition [0, 1) into k equal parts so that each subinterval has length less

than ε. At least one of these subintervals must contain two distinct elements, say, sm, sm′

of S ∩ [0, 1). Without loss of generality let us assume that sm < sm′ . Then we have 0 <
sm′ − sm < ε. Since sm′ − sm ∈ S, we have shown that given ε > 0, there exists an element
s ∈ S with 0 < s < ε.

Now, let ε > 0 such that b−a > ε be given. Then there exists n ∈ Z such that a < nε < b.
For, choose n to be the least integer k such that kε > a. Then (n− 1)ε ≤ a < nε. We claim
that nε < b. For, otherwise,

b− a ≤ nε− (n− 1)ε = ε,

a contradiction.
We take ε := (b− a)/2. Then there exists s ∈ S such that 0 < s < ε. Hence there exists

an integer n such that a < ns < b. Since ns ∈ S, the theorem is proved.

Lemma 3. Let K be any bounded subset of Rn. Then K is totally bounded.

Proof. This statement is an avatar of Archimidean property of R. Make sense out of this in
the case of n = 1. The following proof owes its genesis to this idea.

In the general case, it is enough to show that any ball of the form B(0, R) is totally
bounded. For, recall the following facts:

(a) A subset A of a metric space is bounded iff A ⊂ B(x, r) for some x ∈ X and r > 0.
(b) A subset of a totally bounded subset is totally bounded.
Given ε > 0, we choose N >

√
n/ε. We claim that B(0, R) is covered by the finite family

{B(p, ε) : p = (p1/N, . . . , pn/N), pi ∈ Z,−RN ≤ pi ≤ RN}.

Draw pictures to convince yourself of this fact. If x = (x1, . . . ,n ) ∈ B(0, R), then for each j
there is a rational number of the form pj/N whose distance from xj is less than 1/N < ε/

√
n.

Then
d(x, (p1/N, . . . , pn/N)) = [

∑
j

(xj − pj/N)2]1/2 < ε.

This completes the proof.
Alternatively, you may prove that a cube of the form [−R,R] × · · · × [−R,R] ⊂ Rn is

totally bounded, by subdividing each of the sides [−R,R] into N equal parts so that each
subinterval [(j − 1)N, j/N ] is of length less than δ

Theorem 4. Every nonempty open set U ⊂ R is the union of disjoint open intervals, at most
countable in number.
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Proof. We define a relation a ∼ b if [a, b] or [b, a] is a subset of U . It is easily seen to be an
equivalence relation. Therefore U is the disjoint union of the equivalence classes. We claim
that any equivalence class C is an interval. For, if x, y ∈ C, then [x, y] ⊂ C. C is also open.
If x ∈ C, then x ∈ U and hence there exists an ε > 0 such that (x− ε, x+ ε) ⊂ U . But then
(x− ε, x+ ε) ∈ C(x) = C. Hence U is the disjoint union of open intervals. These are at most
countable. We associate a rational number rC ∈ C to each equivalence class C. This map
is a one-one map from the set of equivalence classes into Q and hence the set of equivalence
classes is countable.

Lemma 5. Let f : [0,∞)→ [0,∞) be given by f(x) = x1/n. Then f is continuous.

Proof. Fix x > 0. Let a = x1/n and b = y1/n. Then

bn − an = (b− a)(bn−1 + · · ·+ an−1.

Thus, we have
|bn − an| ≥ |b− a|ncn−1 if c := min{a, b}.

If we keep y near x so that y > x/2, we have

|y − x| ≥
∣∣∣y1/n − x1/n∣∣∣n(x/2)(n−1)/n.

Therefore, ∣∣∣y1/n − x1/n∣∣∣ ≤ 1

n
(
2

x
)
n−1
n |y − x| , y > x/2.

The continuity of f follows from this.

Theorem 6. Let f : R→ T := {z ∈ C : |z| = 1} be a continuous homomorphism. Then f is
differentiable and hence f(x) = eiλx for some λ ∈ R.

Proof. Since f(0) = 1, there exists a > 0 such that b :=
∫ a
0 f(t) dt 6= 0. Now, f(x + t) =

f(x)f(t) for x, t ∈ R. We integrate this with respect to t on [0, a] and get∫ a

0
f(x+ t) dt =

∫ a

0
f(x)f(t) dt = f(x)

∫ a

0
f(t) dt = bf(x). (1)

Using a change of variable, we have∫ a

0
f(x+ t) dt =

∫ x+a

x
f(u) du =

∫ x+a

0
f(u) du−

∫ x

0
f(u) du

is a differentiable function of x. Since b 6= 0, it follows from (1) that f is differentiable. Now,

lim
h→0

f(a+ h)− f(a)

h
= f(a) lim

h→0

f(h)− f(0)

h
= f(a)f ′(0),

for all a ∈ R. That is, f ′(x) = f ′(0)f(x). Hence f(x) = ef
′(0)x. Take λ = f ′(0)/i.
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