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1 Basic Definitions and Examples

Topics: Definitions of modules, submodules, direct sums of modules and sub-
modules, quotient modules.

Annihilator of submodules and ideals, torsion elements and torsion modules,
finitely generated modules and cyclic modules.

Simple and indecomposable modules.
Two most important examples: Abelian groups as Z-modules and a vector

space V over F as an F[X]-module via a linear map T : V → V .

Let R be a ring with identity 1. All rings will be assumed to have the multiplicative
identity 1. A left R-module generalizes the concept of a vector space over a field.

Definition 1. A left R-module M is an abelian group M together with a map f : R×M →M
given by (r, x) 7→ r · x satisfying the following conditions:

(i) 1 · x = x for all x ∈M
(ii) r · (x+ y) = r · x+ r · y for r ∈ R and x, y ∈M .
(iii) (r + s) · x = r · x+ s · x for r, s ∈ R and x ∈M .
(iv) r · (s · x) = (r · s) · x for r, s ∈ R and x ∈M .

By an R-module, we shall always mean a left R-module and we always write rx for r · x.

The first four exercises introduce the most important examples of modules. Whenever
new concepts are introduced, the reader should investigate/explore them in these examples.

Ex. 2. Any vector space V over a field F is an R-module where R = F.

Ex. 3. The ring R can be considered as a left R-module over itself in a natural way.

Ex. 4. Let M be an additive abelian group. Show that there is only one way of making M
a Z-module.

Ex. 5. Let V be a vector space over a field F. Let T : V → V be a linear transformation.
Let F[X] be the ring of polynomials over F. Show that V can be made into an F[X]-module
by the action

(p, v) 7→ p(T )(v),
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where p(T ) =
∑n

k=0 ckT
k if p(X) :=

∑n
k=0 ckX

k.

We shall call V as F[X]-module via T .

This example is one of the most important examples of this course.

Ex. 6. How will you define a right R-module?

Ex. 7. Any left ideal of R is an R-module in a canonical way.

Ex. 8. Let S be a nonempty set and R a ring with identity. Let F be the set of all maps
f : S → R such that f(s) = 0 for all but finitely many s ∈ S. Define a natural R-module
structure on F .

Ex. 9. Let R and A be rings with identity. Let f : A → R be a ring homomorphism which
preserves the identity. Let M be an R-module. Show that M can be regarded as an A-module
in a canonical way.

Ex. 10. If M is a finite abelian group then it is a Z-module in a natural way. Can this
structure be extended so that M becomes a Q-module?

Ex. 11. Let A be an abelian group. Let R := EndA be the set of all endomorphisms (i.e.
group homomorphisms of A to itself). Show that R can be made into a ring with identity in
a natural way and that A is an R-module in a canonical way.

Ex. 12. Assume that rx = 0 for some r ∈ R and nonzero x in an R-module M . Prove that
r does not have a left inverse in R.

Ex. 13. Let M and N be two left R-modules. Define an R-module structure (in a natural
way) on M ×N . Generalize this to finite products.

A particular case is Rn of the R-module R.

Ex. 14. How will you define a submodule of an R-module M?

Definition 15. Let M be an R-module. A subset N ⊆M is called a submodule of M if N is
a subgroup of the abelian group M with the property that rx ∈ N for all r ∈ R and x ∈ N .

Ex. 16. Let G be an abelian group considered as a Z-module. What are the submodules?

Ex. 17. Let the notation be as in Ex. 5. Characterize the F[X]-submodules of V .

Ex. 18. Let T : Fn → Fn be the shift operator:

T (x1, x2, . . . , xn) := (x2, x3, . . . , xn, 0).

Let ei denote the standard i-th basic vector.
(a) Find T k(ei).
(b) If m < n, find (amX

m + am−1X
m−1 + · · ·+ a0)(en).

(c) If m ≥ n, find (amX
m + am−1X

m−1 + · · ·+ a0)(en).

Ex. 19. Keep the notation of Ex. 18. Let Wk := {x ∈ Fn : xj = 0 for j > k}. Show that
these are the only F[X]-submodules of V .
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Ex. 20. Let F = R and V = R2. Find the F[X]-submodules of V via T where
(a) T is the rotation clockwise about the origin by π/2.
(b) T is the projection onto the x-axis.
(c) T is the rotation by π.

Ex. 21. Consider a two dimensional vector space V over a field F. Let v1, v2 be a basis of
V . Let

T : av1 + bv2 7→ bv1 + av2.

Consider V as F[X]-module via T . What are the submodules of V ? (The characteristic of F
may matter in your investigations.)

Ex. 22. Let R be a commutative ring with identity. Let M be an R-module. For r ∈ R, let

rM := {rx : x ∈M} and Mr := {x ∈M : rx = 0}.

Show that rM and Mr are R-submodules.

Let R = Z and M = Z/nZ with n = rs where r and s are relatively prime. Relate rM
and Ms.

Ex. 23. Let M := Rn. Let Ij be left ideal for 1 ≤ j ≤ n. Prove that the following are
submodules of M :

(a) {(x1, x2, . . . , xn) | xj ∈ Ij}.
(b) {(x1, x2, . . . , xn) | xi ∈ R and x1 + x2 + · · ·+ xn = 0}.

Ex. 24. Let I be a left ideal of R and let M be an R-module. Define

IM := {
∑
finite

rixi | ri ∈ I, xi ∈M}

to be the collection of all finite sums of elements of the form rx where r ∈ I and x ∈ M .
Prove that IM is a submodule of M .

Ex. 25. Let N1 ⊂ N2 ⊂ N3 · · · be an ascending chain of submodules of M . Show that ∪Nk

is a submodule of M .

Ex. 26. Show that the intersection of any nonempty collection of submodules is again a
submodule.

Ex. 27. Let S be a subset of an R-modules M . What do you mean by the term “the smallest
submodule containing S”? This submodule is called the submodule generated by S.

What do you mean by a finitely generated module?

Ex. 28. If Ni, 1 ≤ i ≤ k is a collection of submodules of an R-module M , then the smallest
submodule N containing each of the Ni’s is given by N = N1 + · · ·+Nk.

Ex. 29. How do you define A+B if A and B are subsets of a module?

Ex. 30. Let Lj , j = 1, 2 be submodules of M . Then the submodule generated by S = L1∪L2

is L1 + L2.

Ex. 31. Let M be generated by xj , 1 ≤ j ≤ n. Show that M = {r1x1 + · · ·+ rnxn : rj ∈ R}.
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Definition 32. An R-module M is said to be an (internal) direct sum of submodules Nj ,
1 ≤ j ≤ k if every x ∈ M can be written uniquely as x = x1 + · · · + xk where xj ∈ Mj for
1 ≤ j ≤ k.

In such a case, we write M = M1 ⊕M2 ⊕ · · · ⊕Mk.

Ex. 33. An R-module M = M1 ⊕ · · · ⊕Mk iff
(i) M = M1 + · · ·+Mk and
(ii) Mi ∩ (M1 + · · ·+Mi−1 +Mi+1 · · ·+Mk) = (0) for 1 ≤ i ≤ n.

Ex. 34. Let M = L1 ⊕ L2 and M = M1 ⊕M2 be two internal direct sums. Assume that
L1 = M1. Prove or disprove that L2 = M2. Hint: You may look at M = R2!

Ex. 35 (Quotient Module). Let N be a submodule of an R-module M . Let M/N denote
the cosets {x + N : x ∈ M} of the subgroup N in the group M . Since M is abelian, there
is a natural abelian group structure on M/N . Define an R-module structure on M/N . The
resulting module is called the quotient module of M by N . It is, of course, denoted by M/N .

Definition 36. We say that an R module M isfinitely generated (in short FG) if there exists
a finite subset S of M such that the submodule generated by S is M .

A module M is said to be cyclic if it is generated by a single element.

Ex. 37. Keep the notation of Ex. 5. Is V finitely generated? (Ex. 56 elaborates on this!)

Ex. 38. Let V be a vector space over F. Consider V as an F[X]-module via the identity map
of V . When is it cyclic?

Ex. 39. Show that Q is not a finitely generated Z-module.

Ex. 40. An R-module M is cyclic iff M = Rx for some x ∈M .

Ex. 41. Keep the notation of Ex. 5.
(a) Let T = I, the identity. When is V cyclic F[X]-module via T?
(b) Let T be the shift operator (Ex. 18). Prove that V is cyclic.

Ex. 42. Which of the modules in Ex. 20 are cyclic?

Ex. 43. Let R be the ring of all functions f : R→ R. Consider M = R as an R-module over
itself. Then M is a cyclic R-module.

Let N be the submodule of all functions which vanish outside some finite interval. (The
interval may depend on the function.) Then N is not finitely generated.

Ex. 44. Let N be a submodule of an R-module M . Assume that both N and M/N are
finitely generated. Show that M is finitely generated.

Definition 45. An element x of an R-module M is called a torsion element if rx = 0 for
some nonzero r ∈ R. The set of all torsion elements is denoted by

Tor (M) := {x ∈M | rx = 0 for some nonzero r ∈ R}.

An R-module is called a torsion module if M = Tor (M), i.e., if for each x ∈ M , there
exists a nonzero r ∈ R such that rx = 0.

An element is said to be torsion-free if it is not a torsion element. A module M is torsion-
free if all its nonzero elements are torsion-free.
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Ex. 46. Let M be an abelian group considered as a Z-module. What are the torsion
elements?

Ex. 47. Prove that if R is an integral domain, then Tor (M) is a submodule of M . It is
called the torsion submodule of M .

Show that the quotient module M/Tor (M) is torsion-free.

Ex. 48. Give an example of a ring R and an R-module such that Tor (M) is not a submodule
of M . Hint: Consider the torsion elements in the R-module R.

Ex. 49. Show that if R has zero divisors then every nonzero R-module has torsion elements.

Ex. 50. Prove that any finite abelian group is a torsion Z-module. Give an example of an
infinite abelian group which is a torsion Z-module.

Ex. 51. Let M be an R-module and N a submodule. Let AnnRN := {r ∈ R : ry =
0 for all y ∈ N}. Show that AnnRN is an ideal in R. The ideal AnnRN is called the
annihilator of N in R.

Ex. 52. Let M be an R-module. Let AnnRM denote the annihilator of M in R. Show that
there exists a natural R/AnnRM -module structure on M . What is the annihilator of M in
R/AnnRM?

Ex. 53. Let I be a right ideal of R. Let M be an R-module. The annihilator of I in M
is defined to be {x ∈ M | ax = 0 for all a ∈ I}. Prove that the annihilator of I in M is a
submodule.

Ex. 54. Let M be the Z-module Z/24Z× Z/15Z× Z/50Z.
(a) Find the annihilator of M in Z.
(b) Let I = 2Z. Describe the annihilator of I in M as a product of cyclic groups.

Ex. 55. Let R be an integral domain. Prove that AnnRM 6= (0) for any finitely generated
R-module M .

Give an example of a torsion R-module whose annihilator is the zero ideal.

Ex. 56. Consider a vector space V over F as an F[X]-module via T ∈ End F(V ). Show that V
is FG and torsion F[X]-module with Ann F[X]V = (p[X]) where p is the minimal polynomial
of T . (Recall that the minimal polynomial of T is by definition the monic polynomial p of
least degree such that p(T ) = 0.)

Ex. 57. Let I be an ideal in R. Let N denote the set of all elements x of M such that
Ikx = 0 for some k ∈ N which may depend on x. Show that N is a submodule of M . Hint:
Ex. 25.

Ex. 58. Let R be a commutative ring and M be a cyclic R-module. The order ideal of M is
defined to be AnnR(x) for any generator of M . Show that this is well-defined.

Ex. 59. Let R := M(n,F) be the ring of n × n-matrices with entries in the field F. Then
M := Fn is a cyclic R-module. In fact, M = Re1 = Re2. Find AnnR(ej).

Contrast this with Ex. 58

5



Ex. 60. Prove that Q/Z is a torsion group which has only one subgroup of order n for each
n and that this subgroup is cyclic.

Ex. 61. An R-module is said to be simple or irreducible if the only submodules are 0 and
M .

Show that an R-module is simple iff M is generated by every nonzero element of M .

Ex. 62. Determine all simple Z-modules.

Ex. 63. Let R be a ring with identity. Show that R is a simple R-module iff R is a division
ring.

Ex. 64. An R-module M is said be indecomposable if it cannot be written as the direct sum
of nonzero submodules.

Show that M := Z/(pn), where p is a prime and n ≥ 1, is indecomposable.

Ex. 65. Let V = R2 and T :=

(
1 1
0 1

)
. Consider V as an R[X]-module. Show that V is not

simple but indecomposable.

Ex. 66. Is Q an indecomposable Z-module?

2 Module Maps

Topics: R-module homomorphisms or simply R-maps, Isomorphism theorems
and Chinese Remainder Theorem.

Ex. 67. Let M and N be two left R-modules. How will you define a homomorphism
f : M → N?

Definition 68. Let M and N be two modules over the same ring R. We say that a map
f : M → N is an (R-module) homomorphism (or simply an R-map) if f is a group homomor-
phism with the additional property that f(rx) = rf(x) for r ∈ R and x ∈M .

Ex. 69. Let f : M → N be an R-map. Define the kernel and the image of f . Show that
they are submodules of . . ..

Ex. 70. What are the Z-module homomorphisms?

Ex. 71. Let V and W be vector spaces over F. When is a map f : V → W a module
homomorphism?

Ex. 72. Keep the notation of Ex. 5. When is a map A : V → V an R-map?

Ex. 73. Let Vi be considered as F[X]-modules via the linear maps Ti. Show that V1 ' V2 iff
T1 = ϕ−1 ◦ T2ϕ for some vector space isomorphism ϕ : V1 → V2.

Ex. 74. Let R be a commutative ring with 1. Prove that a map f : R×R→ R is an R-map
iff there exist a, b ∈ R such that f(x, y) = ax+ by for all (x, y) ∈ R×R.
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Ex. 75. Give an example of a map from one R-module into another which is a group
homomorphism but not an R-map.

Ex. 76. Let M = R considered as an R-module. Show that R-modules homomorphisms of
M need not be ring homomorphisms and ring homomorphisms need not be module homo-
morphisms. Hint: Consider ϕ : p(X) 7→ p(X2) for one of the parts.

Ex. 77. Let R be the ring {a+ b
√

2 : a, b ∈ Z}. We may think of R as an R-module or as a
Z-module.

(i) Show that the map f : a+ b
√

2 7→ a+ b is a Z-map.
(ii) The map f in (i) is not an R-map.
(iii) f is not a ring homomorphism.

Theorem 78 (Isomorphism Theorems).
(1) (First Isomorphism Theorem). Let M,N be R-modules and let f : M → N be an

R-map. Then ker f is a submodule of M and we have M/ ker f ' f(M).
(2) (Second Isomorphism Theorem). Let A and B be submodules of M . Then

(A+B)/B ' A/(A ∩B).
(3) (Third Isomorphism Theorem). Let M be an R-module and let A and B be sub-

modules of M with A ⊂ B. Then (M/A)/(B/A) 'M/B.
(4) (Fourth Isomorphism Theorem). Let N be a submodule of the R-module M . Then

there is a bijection between the submodules of M which contain N and the submodules of
M/N . The correspondence is given by A↔ A/N .

Furthermore, this correspondence is a lattice isomorphism between the lattice of submod-
ules of M/N and the lattice of submodules of M that contain N .

Proof. The proofs are similar to those of the corresponding results for groups. Begin the
proofs by invoking the corresponding results for groups and then prove that the resulting
group homomorphisms are, in fact, R-module homomorphisms. Details are left to you.

Ex. 79. Let A be any Z-module. Let a ∈ A and n ∈ N. Prove that the map ϕa : Z/nZ→ A
given by ϕ([k]) = ka is a well-defined Z-map iff na = 0.

Prove that Hom Z(Z/nZ, A) ' An where An = {a ∈ A | na = 0}. Conclude that An is the
annihilator in A of the ideal nZ.

Ex. 80. Exhibit all Z-maps from Z/30Z to Z/12Z.

Ex. 81. Prove that Hom Z(Z/mZ,Z/nZ) ' Z/(m,n)Z.

Ex. 82. Let f : M → N be an R-module homomorphism. Show that f(Tor (M)) ⊂ Tor (N).

Ex. 83. Let R be commutative. Show that HomR(R,M) 'M as R-modules.

Ex. 84. Let R be a commutative ring with identity. Let Mn denote the R-module of all
polynomials over R of degree at most n. Show that Mn−1 'Mn/R. Hint: Derivation map.

Ex. 85. Prove that Hom Z(Q,Q) ' Q as rings.

Ex. 86. With the notation of Ex. 34, show that L2 'M2.
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Ex. 87. Let M be an R-module and x ∈ M be such that if rx = 0 then r = 0. Show that
Rx ' R as R-modules.

Ex. 88. Let A and B be submodules of an R-module M . Construct a short exact sequence

0→ A ∩B → A×B → A+B → 0.

Ex. 89. Assume that R is commutative. Show that an R-module is simple iff M is isomorphic
as an R-modules to R/I where I is a maximal ideal of R.

Ex. 90. Let M and N be R-modules. If M is simple, then any nonzero R-module map
f : M → N is one-one.

What will be analogous result if N is simple?

What can you say about the ring EndRM if M is simple?

Ex. 91 (Schur’s Lemma). Let M and N be simple R-modules. Then an R-homomorphism
from M to N is either the zero map or an isomorphism. As a consequence, deduce that
EndR(M), the set of all R-maps from M to itself, is a division ring if M is simple.

Ex. 92. An R-module is cyclic iff M ' R/I for some left ideal I in R.

Ex. 93. Let M = Rx be a cyclic R-module. Show that M ' R/AnnR{x}.

Use this to prove the following: If R is a PID and x ∈ R is such that AnnRx = pkR
for some prime p ∈ R, then the only submodules of M are of the form M ′ = prR for some
0 ≤ r ≤ k.

Ex. 94. If M is generated by n elements, then any quotient of M can be generated by at
most n elements. Hence conclude that the quotient of a cyclic module is cyclic.

Ex. 95. Let R be a commutative ring with 1 and let M = Rx be a cyclic R-module. Prove
that R is isomorphic to the quotient module R/AnnRM . Hence conclude that two cyclic
modules are isomorphic iff they have the same annihilator.

Ex. 96. Let N be a FG submodule of an R-module M . Assume that the quotient M/N is
also FG as an R-module. Prove that M is FG R-module.

Ex. 97 (Chinese Remainder Theorem). If I is any ideal of R, recall the definition of the
submodule IM (Ex. 24).

(a) Let Aj , 1 ≤ j ≤ k, be ideals in R. Prove that the map ϕ : M → (M/A1M) × · · · ×
(M/AkM) defined by

ϕ(x) := (x+A1M, . . . , x+AkM)

is an R-map with kernel A1M ∩ · · · ∩AkM .
(b) Assume further that Aj are comaximal, i.e., Ai +Aj = R for all i 6= j. Prove that

M/(A1 · · ·Ak)M ' (M/A1M)× · · · × (M/AkM).

Hint: Recall the proof of CRT in the context of rings.

Ex. 98. Let R be a PID and M be a torsion R-module with AnnRM = (c). Assume that
c = ab in R with (a, b) = 1. Show that M = Ma ⊕Mb where Mr := {x ∈ M : rx = 0} for
r ∈ R.
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Ex. 99 (Primary Decomposition). Let R be a PID. Let M be an R-module annihilated by
a nonzero proper ideal (a). Let a = pα1

1 · · · p
αk
k be the unique factorization of a into distinct

prime powers in R. Let Mi be annihilator of (p
αj

j ) in M . Thus, Mi := {x ∈ M : p
αj

j x = 0}.
Prove that

M = M1 ⊕ · · · ⊕Mk.

Hint: Use the last exercise (Ex. 98).

Mi is called the pi-primary component of M .

Ex. 100. Understand the last exercise (Ex. 99) when M is finite abelian group.

3 Free Modules

Topics: Linear independence, basis; Free modules and free rank of a free
module over commutative rings.

Ex. 101. When do you say a finite subset of an R-module is linearly dependent?

Definition 102. A finite subset S = {xj : 1 ≤ j ≤ n} is said to be linearly dependent if there
exist elements ri ∈ R, not all zero, such that r1x1 + · · ·+ rnxn = 0. Otherwise S is said to be
linearly independent.

Ex. 103. x1, . . . , xn are linearly independent iff whenever
∑

i rixi = 0 then each of ri = 0.

Definition 104. An R-module F is said to be free on the subset S ⊂ F if for every element
x ∈ F there exist unique nonzero elements r1, r2, . . . , rn ∈ R and unique x1, . . . , xn ∈ S such
that x = r1x1 + · · ·+ rnxn for some n ∈ Z+.

In this case, we say that S is a basis or a set of free generators of F .

Theorem 105. For any set S there is a free R-module F (S) on the set S.

The module F (S) satisfies the following universal property: if M is an R-module and
ϕ : S →M is any (set theoretic) map, there exists a unique R-map Φ: F (A)→M such that
Φ(x) = ϕ(x) for all x ∈ S.

Proof. Let F (S) = (0) if S = ∅. If S 6= ∅, let F (S) stand for the set of all functions f : S → R
such that f(s) = 0 except for finitely many s ∈ S. (Compare Ex. 8.) For s ∈ S, let fs ∈ F (S)
be defined by fs(s) = 1 and fs(t) = 0 for t ∈ S and t 6= s. Any f ∈ F (S) can be written
formally as r1s1 + · · ·+ rnsn where ri 6= 0 for each i.

Given ϕ as in the theorem, define Φ(
∑n

i=1 risi) =
∑

i riϕ(si).

Ex. 106. Let M be a free R-module with a basis {xi : 1 ≤ i ≤ n}. Then show that M ' Rn.

Ex. 107. Let M be a free module over a commutative ring R. Then all bases of M have the
same number of elements. Hint: Enough to show that if ϕ : Rm → Rn is an R-isomorphism,
then m = n. Let ψ := ϕ−1. Let {ei : 1 ≤ i ≤ m} (resp. {fj : 1 ≤ j ≤ n}) be a basis of Rm

(resp. Rn). Write ϕ(ei) =
∑n

j=1 ajifj and ψ(fj) =
∑m

i=1 bkjek. Observe that AB = In and
BA = Im using an obvious notation.
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Ex. 108. Solve the last exercise using the following observation. Let I be a maximal ideal
of R. Then V := M/IM is a vector space over the field R/I.

Definition 109. In view of Ex. 107 or Ex. 108, we define the (free) rank of a free module
over a commutative ring to be the number of elements in a basis.

Ex. 110. Let R be a commutative ring with identity. Let e ∈ R be such that e2 = e and
e 6= 0, 1. Show that Re cannot be a free R-module.

Ex. 111. A set of generators of a free R-module need not contain a basis. Hint: Consider
the abelian group Z with the generating set {2, 3}.

Ex. 112. Show that every principal left ideal in an integral domain with 1 is free as a left
R-module.

Ex. 113. Prove that Q is not a free Z-module. Can you generalize this? Hint: Field of
fractions.

Ex. 114. Show that every ideal of Z is free as a Z-module.

Ex. 115. Prove that every principal left ideal in an integral domain R with 1 is a free
R-module.

Ex. 116. Let f ∈ EndR(M). Show that if f is one-one, then f is not a left zero divisor in
the ring EndR(M).

Prove the converse if M is free. Hint: If {xi} is a basis of M and {yi} arbitrary nonzero
elements of ker f , consider g(xi) = yi.

Ex. 117. Let p ∈ N be a prime. Let

Qp := {x ∈ Q : (∃k ∈ Z) and (∃n ∈ N) such that x = k/pn}.

Show that Qp/Z is not free as Z-module. Hint: Last exercise Ex. 116

Ex. 118. What is the analogue of Ex. 116 in the case of an onto map f?

Ex. 119. Let R be a commutative ring with 1. Let I be an ideal of R. Prove that every
linearly independent subset of the R-module I has at most one element. Hint: xy − yx = 0!

Deduce that if I is finitely generated, but not principal, then I has no basis.

Ex. 120. Let R be a commutative ring with 1 with the property that every ideal of R is free
as an R-module. Show that R is PID. Hint: Ex. 119.

Ex. 121. Let R be a PID and let M be a FG free R-module with a basis containing n
elements. Assume that N is a submodule of M . Then show that N is free and that there
exists a basis whose number of elements is at most n. Hint: Induction on n. Assume M = Rn

and consider π : N → R given by π(x1, . . . , xn) = x1. Then π(N) = Ra = (a). Show that
M = (a)⊕ kerπ. Observe that kerπ ⊂ Rn−1 ⊂ Rn.

Ex. 122. Let R be a PID. Assume that M is FG torsion free R-module. Show that M is
free.
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Ex. 123. Let M be FG module over a PID R. Show that M can be expressed as M =
F ⊕ Tor (M) where F is a free R-module. Hint: Consider N = M/Tor (M). Then N is
torsion free.

Ex. 124 (Splitting Property of Free Submodules). Let M be an R-module. Let F be a FG
free R-module. Let f : M → F be a surjective R-map. Then M has a submodule G ' F such
that M = G⊕ ker(f).

Ex. 125. Let F be a field of p elements. Let V be an n-dimensional vector space over F.
Prove the following:

(a) V has pn elements.
(b) V has pn − 1 linearly independent singleton sets.
(c) The number of linearly independent subsets of V consisting of m elements, (1 ≤ m ≤ n),

is
1

m!

m−1∏
k=0

(pn − pk).

Hint: Induction.

Determine the number of bases of V .

Ex. 126. Show that every FG (finitely generated) R-module is the homomorphic image of a
free R-module.

Ex. 127. Give an example to show that a submodule of a free module need not be free.
Hint: Consider R := Z× Z as a module over itself.

Ex. 128. Let M := ⊕n∈NR be the direct sum of countably infinite number of a ring R with
1. We may regard M as the set of functions f : N → R with the property that f(k) = 0
except for finitely many k.

(a) Show that if we define fi(k) =

{
1 if i = k

0 otherwise
, then {fi : i ∈ N} is a basis of M considered

as an R-module.
(b) Consider S := End (M), the ring of group homomorphisms. If we consider S as a module
over itself, then {id} is a basis for this module. Consider ϕ,ψ ∈ S defined by

ϕ(fi) =

{
fn if i = 2n;

0 if i = 2n+ 1,

and

ψ(fi) =

{
0 if i = 2n;

fn if i = 2n+ 1.

Show that {ϕ,ψ} is also a basis of S as an S-module.

4 Structure Theorem over a Euclidean Domain

Topics: The Structure theorem in the matrix form in an algorithmic fashion.
Smith Normal Form. Concrete examples.
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The following set of exercises outline a proof of a major step (Ex. 139 (e) or Proposi-
tion 153, page 15) towards the structure theorem for FG modules over a Euclidean ring. Till
further notice, let us assume that R is Euclidean and let M be an R-module.

Definition 129. Let A and B be two matrices over R of the same size. We say that B is
equivalent to A over R if there exist invertible matrices X and Y (over R)of appropriate sizes
so that B = XAY .

Ex. 130. When are two 1× 1 matrices equivalent?

Give two matrices over Z which are not equivalent over Z but are equivalent over Q.

Ex. 131. Let R be a PID and let A be an n × n matrix over R. Show that R is invertible
iff A is equivalent to the n× n identity matrix.

Ex. 132. Let R be a Euclidean domain. Show that the set of all n× n elementary matrices
over R generate the group of all n× n invertible matrices over R.

What is the corresponding result when R is a PID?

Ex. 133. Prove that M is finitely generated iff there is a surjective R-map ϕ : Rn → M .
(This is true for any ring.)

Definition 134. Let ϕ : Rn → M be a surjective R-map. By Ex. 146, kerϕ is FG. If
x1, . . . , xn is a basis of Rn and if y1, . . . , ym generate kerϕ, then we can write

yi = ai1x1 + · · ·+ ainxn, for 1 ≤ i ≤ n,

where the coefficients aij ∈ R. The matrix A = (aij) is called the relations matrix corre-
sponding to the choices of {xi} and {yj}.

Ex. 135. This is essentially an observation.

Keep the notation of the definition. The homomorphism and hence the module structure
of M is completely determined by the choice of generators for Rn and the relations matrix A.

The next few exercises tell us how the relations matrix changes if we effect “elementary
operations” either on the basis {xi} of Rn or on the set of generators of kerϕ.

Ex. 136. Show that interchanging xi and xj in the basis of Rn interchanges the i-th and
j-th columns of the relations matrix A.

Ex. 137. Show that, for any a ∈ R, replacing the element xj by xj−axi, (i 6= j) in the basis
of Rn gives another basis of Rn.

Show also that the new relations matrix is the same as the original one except that the
new i-th column is the old one plus a-times the old j-th column.

Ex. 138. Show that interchanging the basic elements yi and yj interchanges the correspond-
ing rows of the relations matrix.

Show that, for any a ∈ R and i 6= j, replacing the element yj by yj − ayi gives another
set of generators for kerϕ. How are the relations matrices ‘related?’

12



Ex. 139. By the last few exercises, we may perform elementary row and column operations
on a given matrix by choosing different generators for Rn and kerϕ. If all relation matrices
are zero, then kerϕ = (0) and M ' Rn. Otherwise, let a1 be the (nonzero) g.c.d. of all the
entries of a fixed relations matrix.

(a) Prove that by elementary row and column operations we may assume that a1 occurs in
(1,1)-th place and that a1 divides all the entries aij , 1 ≤ i ≤ m and 1 ≤ j ≤ n.

(b) Prove that there is a relations matrix of the form
a1 0 . . . 0
0 a22 . . . 0
...

...
. . .

...
0 am2 . . . amn


where a1 divides all the entries.

(c) Let a2 be the g.c.d. of all the entries except a1 in the relations matrix in (b). Prove
that there is a relations matrix of the form

a1 0 0 . . . 0
0 a2 0 . . . 0
0 0 a33 . . . 0
...

...
...

. . .
...

0 0 am3 . . . amn


where a1 divides a2 and a2 divides all other entries of the matrix.

(d) Prove that there is a relations matrix of the form

(
D 0
0 0

)
where D is a diagonal matrix

with nonzero entries a1, a2, . . . , ak, k ≤ n, satisfying a1 | a2 | · · · | ak.
(e) Conclude that

M ' Rn−k ⊕R/(a1)⊕ · · · ⊕R/(ak).

(f) If n is not the minimal number of generators required for M some of the initial ai will
be units so that the corresponding direct summands will be zero modules. If we remove these
irrelevant factors we have produced the invariant factors (ai), 1 ≤ i ≤ k, of the module M .

Ex. 140. Observe that the steps in the last exercise have proved the following. If A is an
m × n matrix over a Euclidean domain R , by elementary row and column operations, we
may bring it to a diagonal matrix of the form (a1, a2, . . . , ar, 0, . . . , 0) where a1 | a2 | · · · | ar
in R.

This is known as the Smith normal form of A. Its uniqueness will be seen by different
means in a later section.

Ex. 141. Obtain the Smith normal form of the following matrices over Z.

(i)

 0 2 −1
−3 8 3

2 −4 −1

 Ans: (1,1,10).

(ii)

5 9 5
2 4 2
1 1 −3

 Ans. (1,2,4).

13



Ex. 142. Find the invariant factors and the Smith normal form of the matrix−x− 3 2 0
1 −x 1
1 −3 −x− 2


over Q[X]. Ans. 1,1 (1 + x)2(x+ 3).

5 Structure Theorem over a PID

Topics: Structure theorem in invariant factor and elementary divisor forms.
Uniqueness.

Definition 143. An R-module is said to satisfy the ascending chain condition on submodules
(or said to be Noetherian) if given any ascending chain M1 ⊆M2 ⊆ · · · of submodules of M ,
then there exists N ∈ N such that Mn = MN for all n ≥ N .

A ring R is said to be left Noetherian if it is Noetherian when considered as a left module
over itself.

Ex. 144. Show that any PID is Noetherian.

Ex. 145. Let R be a ring and M be an R-module. Then the following are equivalent:
(a) M is Noetherian.
(b) Every nonempty collection of submodules of M contains a maximal element under

inclusion.
(c) Every submodule of M is finitely generated.

Ex. 146. Prove that if R is a Noetherian ring, then Rn is a Noetherian R-module. Hint: If
M is a submodule of Rn, then the set of first coordinates of M is a submodule of R and hence
is f.g. Let m1, . . . ,mk be elements of M whose first coordinates generate the submodule of
R. Show that any element of M can be written as an R-linear combination of mj ’s and an
element of M whose first coordinate is zero. Prove that M ∩ Rn−1 is a submodule of Rn−1,
the set of elements of Rn whose first coordinate is zero. Use induction on n.

For the rest of this section, we shall assume that R is a PID unless specified otherwise.

Definition 147. Let M be an R-module over an integral domain. The rank of M is the
maximum number of R-linear independent elements of M .

Ex. 148. Let M be a FG free R-module and let N be a submodule of M . For any f ∈
HomR(M,R), the image f(N) is an ideal in R so that f(N) = (af ). Let Σ := {(af ) | f ∈
HomR(M,R)}. Show that this nonempty collection of ideals in R has a maximal element,
say (aϕ) and that aϕ 6= 0. Hint: Choose a basis x1, . . . , xn of M . Let πi ∈ HomR(M,R) be
the natural projections. Observe that there exists i such that πi(N) 6= 0.

We denote aϕ by a1 in the sequel. Let y ∈ N be such that ϕ(y) = a1. We keep the
notation of this till Proposition 153.

Ex. 149. Keep the notation of Ex. 148. Show that a1 divides f(y) for any f ∈ HomR(M,R).
Hint: Let (d) = (a1, y). Then d = ra1+sf(y). Consider ψ := rϕ+sf . Observe that ψ(y) = d.
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Ex. 150. Apply the last exercise to πi to conclude that a1 divides πi(y) for all i so that
πi(y) = a1bi for some bi ∈ R. Define

y1 :=
∑
i

bixi.

Show that ϕ(y1) = 1.

Ex. 151. With the notation of the last exercise, prove the following:
(a) M = Ry1 ⊕ kerϕ,
(b) N = Ra1y1 ⊕ (N ∩ kerϕ).

Conclude that y1 can be taken as one element of a basis of M and that a1y1 can be taken
as one element in a basis of N .

Ex. 152. With the notation of Ex. 148, show that N is a free submodule of rank m with
m ≤ n. Hint: Proof by induction on the rank m of N .

Compare this with the hint in Ex. 121.

Proposition 153. Let R be a PID. Let M be a free FG R-module and let N be a submodule
of M . Then there exists a basis y1, y2, . . . , yn of M and nonzero elements ai ∈ R such that

(i) a1y1, . . . , amym is a basis of N and
(ii) a1 | a2 | · · · | am.

Proof. Prove it by induction on n, the rank of M . Apply the last exercise (Ex. 152) and
Ex. 151 to kerϕ to conclude that kerϕ is free of rank n− 1.

Ex. 154. What does the last proposition say in the context of vector spaces?

Theorem 155 (Structure Theorem - Invariant Factor Form). Let R be a PID and let M be
a FG R-module. Then M is isomorphic to the direct sum of finitely many cyclic R-modules.
More precisely, we have

M ' Rr ⊕R/(a1)⊕R/(a2)⊕ · · · ⊕R/(am)

for some integers r ≥ 0 and nonzero and nonunit elements ai ∈ R such that a1 | a2 | · · · | am.

Proof. Let x1, . . . , xn be a minimal set of generators of M . Let Rn be the free module with
a basis bj , 1 ≤ j ≤ n. Let π : Rn → M be the R-map defined by π(bi) = xi. We have
Rn/ kerπ 'M . Apply Ex. 152 and Prop. 153 to the pair Rn and kerπ.

Remark 156. The elements aj , 1 ≤ j ≤ m, which are unique up to units are called the
invariant factors of M . (We are yet to show that these invariant factors are ‘unique’ !)

Theorem 157 (Structure Theorem - Elementary Divisor Form). Let R be a PID and let M
be a FG R-module. Then M is the direct sum of a finite number of cyclic modules whose
annihilators are either (0) or generated by powers of prime elements of R. That is,

M ' Rr ⊕R/(pα1
1 )⊕ · · · ⊕R/(pαk

k )

where r ≥ 0 and αj > 0 are integers and pj’s are (not necessarily distinct) primes in R.
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Proof. If a = upα1
1 · · · pkαk is the prime factorization of a ∈ R, it follows from Chinese

Remainder Theorem that
R/(a) ' R/(pα1

1 )⊕ · · ·R/(pαk
k ),

as (rings as well as) R-modules. Use this in conjunction with the Structure Theorem.

Ex. 158. Let R be a PID. Let M be an R-module. Then M is free iff it is torsion free.

Ex. 159. With the notation of the Structure Theorem (Thm. 155), show that

Tor (M) ' R/(a1)⊕R/(a2)⊕ · · · ⊕R/(am).

What is AnnR(M)?

Ex. 160. Let R be a PID and let p be a prime in R. Let F be the field F := R/(p). Then
(a) If M ' Rr, then M/pM ' F r.
(b) Let M = R/(a) where a is a nonzero element. Then

M/pM '

{
F if p divides a in R

0 if p does not divide a in R.

(c) Let M = R/(a1)⊕ · · · ⊕R/(ak) where each ai is divisible by p. Then M/pM ' F k.

Lemma 161. Let Mj be two R-modules such that AnnR(Mj) = (pαj , j = 1, 2. Assume that
M1 'M2. Then they have the same elementary divisors.

Proof. Induction on the power of p in AnnR(M1). If the elementary divisors of M1 are given
by

p, . . . , p︸ ︷︷ ︸
m times

, pα1 , . . . , pαk ,

where αj ≥ 2, then look at the elementary divisors of pM1.

Theorem 162 (Structure Theorem - Uniqueness). Let R be a PID.
(a) Two FG R-modules M1 and M2 are isomorphic iff they have the same free rank and

the same list of invariant factors.
(b) Two FG R-modules M1 and M2 are isomorphic iff they have the same free rank and

the same list of elementary divisors.

Proof. Let rj be the free rank of Mj . Observe that

Rr1 'M1/Tor (M1) 'M2/Tor (M)2 ' Rr2 .

Use (a) of Ex. 160 to deduce that r1 = r2.

So, we may assume that the modules are torsion modules. To show that they have the
same elementary divisors, it suffices to show that for any fixed prime p, the elementary
divisors which are powers of p are the same for both M1 and M2. This is reduced to the case
of Lemma 161.

To show that they have the same invariant factors, using the divisibility properties of
these factors, the elementary divisors are obtained by taking the prime power factors of these
invariant factors.

16



Ex. 163. Let M be a FG module over a PID R. The elementary divisors of M are prime
powers of the invariant factors of M

Ex. 164. Let R = Z[X]. Show that the ideal I = (2, X) cannot be written as a direct sum
of cyclic Z[X]-modules.

Ex. 165. Let R be a PID. Let M = Rx be a cyclic R-module of prime power exponent, say
pn. Show that the only submodules of M are

{0} = Mn ⊂Mn−1 ⊂ · · · ⊂M1 ⊂M0 = M,

where Mk := pkM .

Ex. 166. Let M be a torsion module over a PID. Show that M is simple iff M is cyclic with
prime exponent.

Ex. 167. Let M be a torsion module over a PID. Show that M is indecomposable iff M is
cyclic with prime power exponent.

6 Applications

Topics: (i) Structure theorem for FG abelian groups; (ii) Rational canonical
forms and (iii) Jordan canonical forms.

6.1 Finitely Generated Abelian Groups

The following result is immediate form the Structure Theorem when we take R = Z.

Theorem 168 (Structure Theorem for FG Abelian Groups). If G is a finitely generated
abelian group, then

G ' Zr ⊕ Z
(q1)
⊕ · · · ⊕ Z

(qk)
, q1 | · · · | qk.

Furthermore this decomposition is unique.

Ex. 169. Find the number of abelian groups of order pn (p, a prime).

Ex. 170. Find the number of abelian groups of order n = pα1
1 · · · p

αk
k .

Ex. 171. Find all abelian groups of order 60.

Ex. 172. For what values of n ∈ N, is it true that the only abelian groups of order n are
cyclic?

Ex. 173. Let G be a finite abelian group which is not cyclic. Show that G contains a
subgroup isomorphic to Z/(p)⊕ Z/(p) for some prime p.
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Ex. 174. Show that the abelian group generated by
(i) x1 andx2 with the relations 2x− 1 = 0 and 3x2 = 0is isomorphic to Z/(6).
(ii) x1 andx2 with the relation x1 + x2 = 0 is isomorphic to Z.
(iii) x1, x2 and x3 with the relations

5x1 + 9x2 + 5x3 = 0

2x1 + 4x2 + 2x3 = 0

x1 + x2 − x3 = 0

is isomorphic to Z/(2)× Z/(4).
Hint: What is the relations matrix in each case? Bring it to the Smith normal form.

6.2 Rational Canonical Form

We keep the notation of Ex. 5. By Ex. 56, we know that V is a FG torsion F[X]-module. If
we apply the Structure Theorem in invariant factor form (Theorem155) to this module, we
get the so-called rational canonical form of T .

Definition 175. The unique monic polynomial which generates the ideal Ann F[X](V ) is
called the minimal polynomial of T . We shall denote it by mT (X).

Ex. 176. Show that deg(mT (X)) ≤ n2 where n := dimV . (In fact, the degree of the minimal
polynomial of T is at most dimV .)

Ex. 177. We have

V ' F[X]

(a1(X))
⊕ · · · ⊕ F[X]

(am(X))
(1)

as F[X]-modules where aj(X) are monic polynomials of degree at least one and are such that
a1(X) | · · · | am(X). These polynomials aj(X) are the invariant factors of V and are unique.
Hint: Straight forward application of Theorem 155.

Ex. 178. The minimal polynomial mT (X) is the largest invariant factor of V and all invariant
factors divide mT (X). Hint: This follows from 3) of Theorem 155.

To arrive at the canonical form of T , we need to choose a basis for each of the summands
on the right side of Eq. 1. We look at the simplest case.

Proposition 179. Let V ' F[X]/(a(X)). Then there exists a basis of V with respect to
which the matrix of T is given by

0 0 . . . . . . . . . −b0
1 0 . . . . . . . . . −b1
0 1 . . . . . . . . . −b2
0 0

. . .
...

...
...

. . .
...

0 0 . . . . . . 1 −bk−1


, (2)

where a(X) = Xk + bk−1X
k−1 + · · ·+ b1X + b0.
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Proof. We use the natural basis of F[X]/(a(X)). T ’s action on V is same as X’s action on the

right side. Now X maps the basic element X
j

to X
j+1

for 0 ≤ j ≤ k−2 and X
k−1

is mapped

to X
k

which is −b0 − b1X − · · · − bk−1X
k−1

. The result follows from this observation.

Definition 180. The matrix in Eq. 2 is called the companion matrix of the monic polynomial
a and will be denoted by Ca.

Theorem 181 (Rational Canonical Form). Let V be a finite dimensional vector space over
a field F and let T : V → V be a linear map. Then there exists a basis of V with respect to
which the matrix T looks like 

Ca1
Ca2

. . .

Cam

 (3)

where a1 | · · · | am are monic polynomials.

Furthermore, this matrix is “unique”. In other words, if there exists a basis of V with
respect to which the matrix of T is a block diagonal matrix whose diagonal blocks are the
companion matrices of monic polynomials bj of degree at least one with the divisibility property
b1 | · · · | bk, then m = k and bi = ai for 1 ≤ i ≤ m.

Definition 182. The matrix in Eq. 3 is called the rational canonical form of T .

Definition 183. Two linear transformations S, T : V → V are said to be similar if there
exists a linear isomorphism ϕ : V → V such that ϕ−1 ◦ S ◦ ϕ = T .

Ex. 184. Let S, T : V → V be linear transformations. Then the following are equivalent:
(i) S and T are similar.
(ii) The F[X]-module V via S is isomorphic to the F[X]-module V via T .
(iii) S and T have the same rational canonical form.

Ex. 185. Let A and B be two n × n-matrices over the field F. Assume that F is a subfield
of a filed K.

(i) The rational canonical form of A is the same whether computed over F or over K. The
minimal and characteristic polynomials and invariant factors of A are the same whether A is
considered as a matrix over F or over K.

(ii) The matrices A and B are similar over K iff they are similar over F.

Ex. 186. The characteristic polynomial of Ca of a monic polynomial a(X) ∈ F[X] is a(X).

What can you say of a matrix which is in “rational canonical form”?

Ex. 187. Let A be an n× n matrix over F.
(i) The characteristic polynomial of A is the product of invariant factors of A.

(ii) The minimal polynomial of A divides the characteristic polynomial of A.

(iii) The characteristic polynomial of A divides some power of the minimal polynomial of
A. In particular, these polynomials have the same roots not counting the multiplicities. Hint:
Last exercise (Ex. 186).
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Ex. 188. Find the rational canonical forms of the following matrices over Q:

(i)

−3 2 0
1 0 1
1 −3 1

. Hint: Some work is already done in Ex. 142! Ans.

0 0 −3
1 0 −7
0 1 −5

.

(ii) A =

2 −2 14
0 3 −7
0 0 2

, B =

0 −4 85
1 4 −30
0 0 3

, C =

2 2 1
0 2 −1
0 0 3

. Are they similar?

Hint: A shorter way would be to compute the characteristic polynomials and the possible
minimal polynomials. Verify directly which of them are minimal polynomials of the matrices
under question.

Ex. 189. Prove that two non-scalar 2× 2 matrices over a field F are similar iff they have the
same characteristic polynomial.

Ex. 190. Prove that two 3× 3 matrices are similar iff they have the same characteristic and
same minimal polynomials.

Ex. 191. Find two 4 × 4 matrices over C which have the same characteristic and minimal
polynomials but are not similar.

Ex. 192. Describe the 2×2 matrices over C whose similarity classes contain only one element.
Generalize your answer.

6.3 Jordan Canonical Form

We keep the notation of Ex. 5. By Ex. 56, we know that V is a FG torsion F[X]-module. If we
apply the Structure Theorem in elementary divisor form (Theorem 157) to this module, we
get the so-called Jordan canonical form of T with an additional assumption that F contains
all the roots of the characteristic polynomial of T .

Hypothesis: To make our life easy, we shall assume that F is algebraically closed. Note,
however, that the results will remain true if we assume that the characteristic polynomial of
T factors into linear factors in F[X].

Ex. 193. The elementary divisors of V are powers (X − λ)k of linear polynomials. Hint:
Ex. 163.

Ex. 194. V is the direct sum of finitely many cyclic F[X]-modules of the form F[X]
(X−λ)k

.

Ex. 195. Let V be a cyclic F[X]-module isomorphic to F[X]/(X − λ)k. Then we can choose
a basis for V so that T has a matrix of the form

λ 1

λ
. . .
. . . 1

λ 1
λ

 (4)

where the blank entries are zero. Hint: See how X acts on the basis (?)

(X − λ)k−1, (X − λ)k−2, . . . , (X − λ), 1.
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Definition 196. A matrix of the form in Eq. 4 is known as a Jordan block of size k with
eigen value λ.

Theorem 197 (Jordan Canonical Form).
Let V be a finite dimensional vector space over a field F. Let T : V → V be a linear map.
Assume that F contains all the eigenvalues of T .

(i) There exists a basis of V with respect to which the matrix of T is a block diagonal matrix
whose diagonal blocks are the Jordan blocks for the elementary divisors of T .

(ii) The above form is unique up to permutations of the Jordan blocks.

Ex. 198. If a matrix A is similar to a diagonal matrix D, then D is th Jordan canonical
form of A. Consequently, two diagonal matrices are similar iff they have the same diagonal
entries up to permutation.

Ex. 199. Let A be a matrix over F. Assume that F contains all the eigenvalues of A. Then
A is similar to a diagonal matrix iff the minimal polynomial mA(X) of A has no repeated
roots.

Ex. 200. Prove that for 3 × 3 complex matrices the knowledge of the characteristic and
minimal polynomials determine the JCF.

Using this, write down all possible JCF’s for 3× 3 matrices over C.

Ex. 201. Use Ex. 200 to find the JCF of

 0 1 0
−1 2 0
−1 0 2

.
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