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1 Basic Notions of Modules

1. Definition of a left R-module.

2. Examples

(a) A vector space over a field.

(b) R or more generally a left ideal of R as an R-module.

(c) Rn as an R-module.

(d) Any abelian group as a Z-module.

(e) Let T : V → V be a linear map of a vector space over F . Then V as an F [x]
module via T : f(x)v := f(T )(v).

(f) Let G be an abelian group. Let R = EndG. Then G is an R-module.

(g) Let V be a vector space over R. Let R := EndV . Then V is an R-module.

The last two examples are bi-modules(meaning?). We may consider ngf := (ng)f
which is the same as n(gf) Similar remarks apply to αvf where α ∈ F and f ∈
EndV .

3. Submodules: Definition.

4. Examples of Submodules

(a) Submodules of Z-modules

(b) Submodules of V as an F [x] module via T .

(c) Submodule 〈S〉 generated by a subset S ⊂M .

(d) Finitely generated (FG) and cyclic submodules

5. R-maps (or R-homomorphisms) between R-modules.

6. Image and kernel of an R-map.

7. Quotient module.

8. First fundamental theorem for an R-map.
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9. Annihilator of an R-module Ann (M).

10. Let M be cyclic. Then M ' R/Ann (M).

11. Let M be finitely generated.

(a) When do we say {x1, . . . , xr} freely generate M?

(b) What do we mean by M is a (FG) free module? Equivalent formulations.

12. Direct sums of modules.

2 Structure Theorems for Finitely Generated Modules over a
Euclidean Domain

1. Smith Normal Form over a Euclidean domain.

2. Theorem: Let R be a Euclidean domain and M be a free module of rank m. Let N ≤M
be a submodule. Then there exist elements x1, . . . , xm of M , a natural number r and
positive integers d1, . . . , dr such that

(i) M is freely generated by {x1, . . . , xm};
(ii) d1x1, d2x2, . . . , drxr freely generate N ;
(iii) dj divided dj+1 for 1 ≤ j < r.

Outline of Proof.
Assume that N is finitely generated. If n is the rank of M , we assume that M = Rn

with the natural basis. Let x1, . . . , xm be generators of N . Each of these is an element
of Rn and hence can be written as a row vector and hence we obtain an m× n matrix,
say A, with entries in R.

Let

(
D 0
0 0

)
be the Smith nomal form of A. Let D be the diagonal matrix with entries

d1, . . . , dr with di|di+1. Let N ′ be the submodule generated by the row vectors of the
normal form. We claim that N = N ′.

To establish the claim, we need only show that the (admissible) elementary row and
column operations on A produce the same submodule.

It is easy to see that any (admissible elementary) row operation results in a change of
the generating set for N .

It is again easy to see that any (admissible elementary) column operation results in a
change of the standard basis of Rn to another basis of Rn.

We now show that N is FG. The proof is by induction on n, the case n = 0 being
obviously true.

Consider

J := {r ∈ R : ∃ r2, . . . , rn ∈ R such that (r1, r2, . . . , rn) ∈ N}.

Then J is a (necessarily principal) ideal, say J = (a).
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Since a ∈ J , there exist b2, . . . , bn ∈ R such that (a, b2, . . . , bn) ∈ N . Let

N1 := {(r1, . . . , rn) ∈ N : r1 = 0}.

Then N1 is a submodule. We claim that N1 and (a, b2, . . . , bn) generate N . For, if
(r1, r2, . . . , rn) ∈ N , then r1 = ra, as r1 ∈ J = (a). We have

(r1, r2, . . . , rn)− s(a, b2, . . . , bn) ∈ N1.

Since N1 is a submodule of Rn−1, by induction, it is FG. The result follows.

3. Theorem: Let R be a Euclidean domain and M be a finitely generated R-module. Then
there exist elements d1, . . . , dn of R and an integer r ∈ Z+ such that

(i) none of the di’s are units;
(ii) di divided di+1 for 1 ≤ i ≤ r − 1;
(iii) di = 0 for i > r;
(iv) M ' R/ 〈d1〉 ⊕ · · · ⊕R/ 〈dm〉.

If di is a unit, it will appear in the beginning due the divisibility condition. In such a
case, R/ 〈di〉 = 0 and so we can remove all the units from the sequence d1, . . . , dm.

Let M be FG, say, by x1, . . . , xn. Consider the map

f : Rn →M defined by f(r1, . . . , rn) := r1x1 + · · ·+ rnxn.

We have Im f = M and the kernel N is FG. Let e1, . . . , en denote the standard basis for
Rn. Then by the last item, there exist a basis {$e1, . . . , en} of Rn and elements di ∈ R,
1 ≤ i ≤ r such that (i) {d1e1, drer} generate N and (ii) di|di+1, for 1 ≤ i ≤ r − 1. We
claim that M ' (f(e1)) ⊕ · · · ⊕ (f(en)), a direct sum of the cyclic submodules (f(ei))
and we have Ann (f(ei)) = (di). In particular,

M ' R/(d1)⊕ · · · ⊕R/(dr).

4. Let R be a PID. Let M be an R-module with Ann (M) = (r) with r 6= 0. Assume that
r = pq with p and q coprime. Let Mp := {x ∈M : px = 0} and Mq := {x ∈M : qx = 0}.
Then M 'Mp ⊕Mq.

5. Theorem: Let R be a PID and M an R-module. Let Ann (M) = (r). Let r = pm1
1 · · · pmn

n

be the irreducible decomposition. Then

M = M1 ⊕ · · ·Mn where Mi := {x ∈M : pmi
i x = 0}.

6. Let M be a finitely generated torsion module over a Euclidean domain. Then M is
isomorphic to a direct sum of cyclic submodules whose annihilators are (pm) where p is
an irreducible element of R.

The generators pm are called the elementary divisors of M . These are the factors arise
when the invariant factors are factorized into irreducibles.
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7. Uniqueness of elementary divisors.

Assume that M is expressed in two different ways as a direct sum of cyclic submodules
whose annihilators are powers of irreducibles. Then the annihilators are unique up to
associates.

Enough to prove this when Ann (M) is a prime power. If N is a cyclic submodule whose
annihilator is (pn), (p, a prime), then N is contained in the p-primary component which
is uniquely determined.

Assume Ann (M) = (pn), p a prime. Let M = M1 ⊕ · · · ⊕Mk where Mi is a cyclic
module whose annihilator is (pni) where 1 ≤ ni ≤ n. Since (p) is a maximal ideal in R,
the quotient R/(p) is a field, say F . Consider the submodule pM . It is easy to see that
M/pM is a vector space over F in an obvious manner. The cosets of xi, a generator of
Mi from a basis of M/pM and hence its dimension over F is k.

Now, assume that ni > 1 for 1 ≤ i ≤ k1 and nr = 1 for k1 < r ≤ k. Then pM
is the direct sum of cyclic submodules generated by px1, . . . , pxk1 . Note that since
pxr = 0 for r > n1, they generate the zero modules and hence may be ignored. Hence
dim pM/p2M = k1 as an F -vector space.

In a similar fashion, we see that dim pjM/pj+1M is the number of elements n1, . . . , nk
which are greater than j.

The last observation we need is the following: if we are told how many of n1, . . . , nk are
greater than j for each j ≥ 0, we can recover ni’s.

For example, if the dimensions of pjM/pj+1M for 0 ≤ j ≤ 4 are respectively 8,4,3,1,0,
then there are eight ni’s and they are 1,1,1,1,2,4,4,5.
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3 Finitely Generated Abelian Groups

1. Let G be a finitely generated abelian group. Then

G ' Zd1 ⊕ · · · ⊕ Zdr ⊕ Z · · · ⊕ Z,

where di ∈ N for 1 ≤ i ≤ r and di|di+1 for 1 ≤ i ≤ r − 1.

2. Let G be a finitely generated abelian group. Assume that G admits two decompositions
as in the last item:

Zd1 ⊕ · · · ⊕ Zdr ⊕ Z · · · ⊕ Z ' G ' Zt1 ⊕ · · · ⊕ Zts ⊕ Z · · · ⊕ Z

Then r = s and the numbers of components isomorphic to Z in the both the decompo-
sitions are the same.

3. Let p be a prime. The number of non-isomorphic abelian groups of order pm is p(m),
the number of partitions of m.

4. Let n = pm1
1 · · · p

mk
k . Then the number of non-isomorphic abelian groups of order n is

p(m1) · · · p(mk).

5. Examples. Let us classify all abelian groups of order 60 (up to isomorphim). We have
60 = 22 × 3 × 5. For the prime 2, its exponent is 2 and p(2) = 2: 2 = 2, 1 + 1. The
exponents of the other primes are 1 and hence the number of non-isomorphic abelian
groups of order is p(2)× p(2)× p(1) = 2. We do similar exercises for abelian groups of
orders 38, 108, 144. We tabulate them below.
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Ord. Elem.Div. Prim.Decomp. Inv.Factor Dec. Inv. Factors

60 22, 3, 1 Z4 × Z3 × Z5 Z60 60
2, 2, 3, 1 Z2 × Z2 × Z3 × Z5 Z2 × Z30 30, 2.

36 22, 32 Z4 × Z9 Z36 36
22, 3, 3 Z4 × Z3 × Z3 Z3 × Z12 3, 12

2, 2, 32 Z2 × Z2 × Z9 Z2 × Z18 2, 18
2, 2, 3, 3 Z2 × Z2 × Z3 × Z3 Z6 × Z6 6, 6

108 22, 33 Z4 × Z27 Z108 108
22, 32, 3 Z4 × Z9 × Z3 Z3 × Z36 3, 36
22, 3, 3, 3 Z4 × Z3 × Z3 × Z3 Z3 × Z3 × Z12 3, 3, 12

2, 2, 33 Z2 × Z2 × Z27 Z2 × Z54 2, 54
2, 2, 32, 3 Z2 × Z2 × Z9 × Z3 Z6 × Z18 6, 18
2, 2, 3, 3, 3 Z2 × Z2 × Z3 × Z3 × Z3 Z3 × Z6 × Z6 3, 6, 6

144 24, 32 Z16 × Z9 Z144 144
24, 3, 3 Z16 × Z3 × Z3 Z3 × Z48 3, 48

23, 2, 32 Z8 × Z2 × Z9 Z2 × Z72 2, 72
23, 2, 3, 3 Z8 × Z2 × Z3 × Z3 Z6 × Z24 6, 24

22, 22, 32 Z4 × Z4 × Z9 Z4 × Z36 4, 36
22, 22, 3, 3 Z4 × Z4 × Z3 × Z3 × Z3 Z12 × Z12 12, 12

22, 2, 2, 32 Z4 × Z2 × Z2 × Z9 Z2 × Z2 × Z36 2, 2, 36
22, 2, 2, 3, 3 Z4 × Z2 × Z2 × Z3 × Z3 Z2 × Z6 × Z12 2, 6, 12

2, 2, 2, 2, 32 Z2 × Z2 × Z2 × Z2 × Z9 Z2 × Z2 × Z2 × Z18 2, 2, 2, 18
2, 2, 2, 2, 3, 3 Z2 × Z2 × Z2 × Z2 × Z3 × Z3 Z2 × Z2 × Z6 × Z6 2, 2, 6, 6

180 22, 32, 5 Z4 × Z9 × Z5 Z180 180
22, 3, 3, 5 Z4 × Z3 × Z3 × Z5 Z3 × Z180 3, 60

2, 2, 32, 5 Z2 × Z2 × Z9 × Z5 Z2 × Z90 2, 90
2, 2, 3, 3, 5 Z2 × Z2 × Z3 × Z3 × Z5 Z6 × Z30 6, 30

360 23, 32, 5 Z8 × Z9 × Z5 Z360 360
23, 3, 3, 5 Z8 × Z3 × Z3 × Z5 Z3 × Z120 3, 120

22, 2, 32, 5 Z4 × Z2 × Z9 × Z5 Z2 × Z180 2, 180
22, 2, 3, 3, 5 Z4 × Z2 × Z3 × Z3 × Z5 Z6 × Z60 6, 60

2, 2, 2, 32, 5 Z2 × Z2 × Z2 × Z9 × Z5 Z2 × Z2 × Z90 2, 2, 90
2, 2, 2, 3, 3, 5 Z2 × Z2 × Z2 × Z3 × Z3 × Z5 Z2 × Z6 × Z30 2, 6, 30

Exercise: Write down similar table for abelian groups of order 1008. Do you see how to
read the last column (invariant factors) from the second column (elementary divisors)
without writing the intermediate columns of groups?
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6. Exercises

Ex. 1. What is the smallest n ∈ N such that there are exactly 3 non-isomorphic abelian
groups of order n?

Ex. 2. Prove that any abelian group of order 45 has an element of order 15. Can you
make a similar statement for 9 in place of 15?

Ex. 3. Let G be an abelian group. Assume that G has exactly three elements of order
2. Identify G.

Ex. 4. Let G be a finite abelian group whose order is square free. Prove that G is
cyclic.

Ex. 5. Let G be a finite abelian group. Prove that G is cyclic iff for every prime divisor
p of |G|, there exist exactly p elements of order p.

Ex. 6. Let G be a finite subgroup of the multiplicative group F ∗ of a field F . Prove
that G is cyclic.

Ex. 7. Let G be an abelian group of order n. Prove that for any divisor d of n, there
exists a subgroup of order n.
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4 Normal Forms of Matrices

1. Let V be a cyclic F [x]-module via T , say, generated by v. Let dimV = n. Then the
elements v, Tv, . . . Tn1v form a basis of V . Let Tnv = −(a0v+ a1Tv+ · · ·+Tn−1v) and
f(x) = a0 +a1x+ · · ·+an−1x

n−1 +xn. The matrix A of T relative to this ordered basis
is the companion matrix C(f) of f :

C(f) :=



0 0 0 . . . 0 −a0
1 0 0 . . . 0 −a1
0 1 0 . . . 0 −a2
...

...
. . .

...
...

...
0 0 . . . 1 0 −an−2
0 0 0 . . . 1 −an−1


2. Let V be the F [x] module via T . Assume that Ann (V ) = (gm). We now select a more

suitable basis to simplify the matrix of T :

v Tv T 2v . . . Tm−1v
g(T )v g(T )Tv g(T )T 2v . . . g(T )Tm−1v
...

...
...

...
g(T )r−1v g(T )r−1 ◦ Tv g(T )r−1 ◦ T 2v . . . g(T )r−1 · Tm−1v.

Thus, if we let wij := g(T )j−1T i−1v, the ordered basis is

w11, w21, . . . , wm1, w12, w22, . . . , wm2, . . . , w1r, w2r, . . . , wmr.

The matrix of T relative to this basis is

C(m, g) :=


C(g)
A C(g)

A C(g)
. . .

. . .

A C(g)

 ,

where C(g) is the companion m × m matrix of g and A is an m × m matrix whose
(1m)-th entry is 1 and the rest are zero:

A =


0 0 . . . 0 1
0 0 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0


Let g(x) = c0 + c1x + · · · + cn−1x

n−1 + xn. Note that T maps each vector to the next
element in the row except the last element of the row. To see where the last elements
of the row go, observe that

T (Tn−1(v) = Tn(v) = g(T )(v)− (c0v + c1Tv + · · ·+ cn−1T
n−1v)

T (g(T )r−j)(Tn−1(v)) = (g(T )r−j(Tn(v))

= T (g(T )r−j)
(
c0v + c1Tv + · · ·+ cn−1T

n−1v
)

= −c0(g(T )r−j(v)− · · · − cn−1(g(T )r−j)(Tn−1v) + g(T )r−j+1(v).
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3. Rational Canonical Form: Invariant Factors Version
Let T : V → V be a linear map. We consider it as an F [x]-module via T . Let di(x),
1 ≤ i ≤ r be the invariant factors of the module. Then there exists an (ordered) basis
of V relative to which the matrix of T is a block diagonal matrix with entries C(di) and
zeros elsewhere.

4. Rational Canonical Form: Elementary Divisors Version
If the elementary divisors of the module are gm1

1 , . . . , gk(x)mk , then there is a basis of V
relative to which the matrix of T is a block diagonal matrix with C(m1, g1), . . . , C(mk, gk)
as the diagonal entries and zeros elsewhere.

5. A very special case of the last item is when the field F is algebraically closed. The
elementary divisors are irreducible polynomials and hence they are of the form (x−a)m.
The matrix C(m,x− a) is the Jordan block of size m×m:

J(m; a) :=



a 0 0 . . . 0
1 a 0 . . . 0
0 1 0 . . . 0
...

...
...

...
0 0 . . . a 0
0 0 . . . 1 a


Lemma 8. Let g(x) ∈ F [x]. Then the characteristic polynomial of C(g) is g.

Proof. by induction on the degree of g. Use Laplace expansion.

Theorem 9 (Cayley-Hamilton).

Proposition 10. Let g(x) = (x− a)m. Then C(g) is similar to J(m, a).

Proof. If we define Tv := C(g)v where v ∈ Fm, then V is a cyclic F [x] module via T with a
basis {e1, T e1, . . . , Tm−1e1}.

Let B := {u1 := e1, u2 := (T − aI)u1, . . . , um := (T − aI)m−1e1}. Since T ie1 ∈
LS({u1, . . . , ui}), the set spans V and hence is a basis of V . What is the matrix of T
relative to this basis? If j ≤ m, Check the suf-

fixes.

Tuj = T (T − aI)j−1e1

= (T − aI)j−1Te1

= (T − aI)j−1(aI + (T − aI))e1

= a(T − aI)j−1e1 + (T − aI)je1.

In particular, if j < m, we have Tuj = auj + uj+1 and Tum = aum. Thus the matrix of T
relative to this basis is the Jordan block J(m, a). Since C(g) and J(m, a) represent the same
linear map T , the matrices are similar.
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