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1. We say that a function f: J C R — R is strictly increasing if for all x,y € J with x < y,
we have f(z) < f(y).

One defines strictly decreasing in a similar way. A monotone function is either strictly
increasing or strictly decreasing.

We shall formulate and prove the results for strictly increasing functions. Analogous
results for decreasing functions f can be arrived at in a similar way or by applying the
result for the increasing functions to —f.

2. Let J C R be an interval. Let f: J — R be continuous and 1-1. Let a,c,b € J be such
that a < ¢ < b. Then f(c) lies between f(a) and f(b), that is either f(a) < f(c) < f(b)
or f(a) > f(c) > f(b) holds.

Proof. Since f is one-one, we assume without loss of generality that f(a) < f(b). If the
result is false, either f(c) < f(a) or f(c) > f(b).

Let us look at the first case. Then the value y = f(a) lies between the values f(a)
and f(c) at the end points of [a,c]. Since f(c) < f(a) < f(b), y = f(a) also lies
between the values of f at the end points of [c,b]. Hence there exists z € (¢,b) such
that f(x) =y = f(a). Since x > a, this contradicts the fact that f is one-one.

In case, you did not like the way we used y, you may proceed as follows. Fix any y such
that f(c) <y < f(a). By intermediate value theorem applied to the pair (f, [a, c]), there
exists 1 € (a,c) such that f(x1) =y. Since f(a) < f(b), we also have f(c) <y < f(b).
Hence there exists z2 € (¢, b) such that f(z2) =y. Clearly z1 # x2.

The second case when f(c) > f(b) is similarly dealt with. O
3. Theorem. Let J C R be an interval. Let f: J — R be continuous and 1-1. Then f is
monotone.

Proof. Fix a,b € J, say with a < b. We assume without loss of generality that
f(a) < f(b). We need to show that for all z,y € J with z <y we have f(z) < f(y).

(i) If < a, then < a < b and hence f(z) < f(a) < f(b).
(i) If a < & < b, then f(a) < f(x) < f(b).
(iii) If b < z, then f(a) < f(b) < f(x).



In particular, f(z) < f(a) if z < a and f(z)> f(a)if z > a. (1)

If x < a<uy,then f(z) < f(a) < f(y) by (1).
If x <y <a,then f(z) < f(a) by (1) and f(z) < f(y) < f(a) by the last item.
If a <x <y, then f(a) < f(y) by (1) and f(a) < f(z) < f(y) by the last item.

Hence f is strictly increasing. O

. Proposition. Let J be an interval and f: J — R be monotone. Assume that f(J) =1
1s an interval. Then f is continuous.

Proof. We deal with the case when f is strictly increasing. Let a € J. Assume that a
is not an endpoint of J. We prove the continuity of f at a using the - definition.

Since a is not an endpoint of J, there exists x1,x2 € J such that 1 < a < z9 and hence
f(z1) < f(a) < f(z2). It follows that there exists n > 0 such that (f(a)—n, f(a)+n) C
(f(z1), f(z2)) C 1.

Let € > 0 be given. We may assume € < 7. Let s1,s2 € J be such that f(s1) = f(a) —¢
and f(s2) = f(a) +e. Let 6 := min{a — s1,s20 —a}. If z € (a —d,a+9) C (s1,52),
then, f(a) —e = f(s1) < f(z) < f(s2) = f(a) + ¢, that is, if z € (a — J,a + J), then
f(z) € (fla) =&, f(a) +e).

If a is an endpoint of J, an obvious modification of the proof works. O

. Consider the n-th root function f: [0,00) — [0,00) given by f(x) := 2!/". We can use
the last item to conclude that f is continuous, a fact seen by us earlier.

. Let J C R be an interval and f: J — R be increasing. Assume that ¢ € J is not an
endpoint of J. Then

(i) limg—e_ f=Llub. {f(x): 2z € J;z < c}.

(i) limg—e, f =glb. {f(z): 2 € J;z > c}.

. Let the hypothesis be as in the last item Then the following are equivalent:
(i) f is continuous at c.

(i) img—e_ f = f(c) = limyc, f.
(iii) Lub. {f(z) :z € J;x < c} = f(c) =glb. {f(x) :x € J;z > c}.

What is the formulation if ¢ is an endpoint of J?

. Let J C R be an interval and f: J — R be increasing. Assume that ¢ € J is not an
endpoint of J. The jump at c is defined as

Jf(e) == lim f—xlggf =glb. {f(z):z € J;x>c}—lub. {f(z):xz € Jyx <c}.

T—rCq

How is the jump j(c) defined if ¢ is an endpoint?

. Let J C R be an interval and f: J — R be increasing. Then f is continuous at ¢ € J
iff jr(c) = 0. O



10.

11.

Theorem. Let J C R be an interval and f: J — R be increasing. Then the set D of
points of J at which f is discontinuous is countable.

Proof. Assume that f is increasing. Then ¢ € J belongs to D iff the interval J. :=
(f(c2), f(cq)) is nonempty. For c1,co € D, the intervals J. and J., are disjoint.
(Why?) Thus the collection {J. : ¢ € D} is a pairwise disjoint family of open intervals.
Such a collection is countable. For, choose r. € J.N Q. Then the map ¢ — r. from D
to Q is one-one. O

Let f: R — R be an additive homomorphism. If f is monotone, then f(z) = f(1)z for
all z € R.



