Monotone Functions

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

1. We say that a function $f: J \subset \mathbb{R} \to \mathbb{R}$ is strictly increasing if for all $x, y \in J$ with $x < y$, we have $f(x) < f(y)$.

One defines strictly decreasing in a similar way. A monotone function is either strictly increasing or strictly decreasing.

We shall formulate and prove the results for strictly increasing functions. Analogous results for decreasing functions f can be arrived at in a similar way or by applying the result for the increasing functions to $-f$.

2. Let $J \subset \mathbb{R}$ be an interval. Let $f: J \to \mathbb{R}$ be continuous and 1-1. Let $a, c, b \in J$ be such that $a < c < b$. Then $f(c)$ lies between $f(a)$ and $f(b)$, that is either $f(a) < f(c) < f(b)$ or $f(a) > f(c) > f(b)$ holds.

Proof. Since f is one-one, we assume without loss of generality that $f(a) < f(b)$. If the result is false, either $f(c) < f(a)$ or $f(c) > f(b)$.

Let us look at the first case. Then the value $y = f(a)$ lies between the values $f(a)$ and $f(c)$ at the end points of [a, c]. Since $f(c) < f(a) < f(b), y = f(a)$ also lies between the values of f at the end points of [c, b]. Hence there exists $x \in (c, b)$ such that $f(x) = y = f(a)$. Since $x > a$, this contradicts the fact that f is one-one.

In case, you did not like the way we used y , you may proceed as follows. Fix any y such that $f(c) < y < f(a)$. By intermediate value theorem applied to the pair $(f, [a, c])$, there exists $x_1 \in (a, c)$ such that $f(x_1) = y$. Since $f(a) < f(b)$, we also have $f(c) < y < f(b)$. Hence there exists $x_2 \in (c, b)$ such that $f(x_2) = y$. Clearly $x_1 \neq x_2$.

 \Box

The second case when $f(c) > f(b)$ is similarly dealt with.

3. Theorem. Let $J \subset \mathbb{R}$ be an interval. Let $f: J \to \mathbb{R}$ be continuous and 1-1. Then f is monotone.

Proof. Fix $a, b \in J$, say with $a < b$. We assume without loss of generality that $f(a) < f(b)$. We need to show that for all $x, y \in J$ with $x < y$ we have $f(x) < f(y)$.

- (i) If $x < a$, then $x < a < b$ and hence $f(x) < f(a) < f(b)$.
- (ii) If $a < x < b$, then $f(a) < f(x) < f(b)$.
- (iii) If $b < x$, then $f(a) < f(b) < f(x)$.

In particular, $f(x) < f(a)$ if $x < a$ and $f(x) > f(a)$ if $x > a$. (1)

 \Box

 \Box

If $x < a < y$, then $f(x) < f(a) < f(y)$ by (1). If $x < y < a$, then $f(x) < f(a)$ by (1) and $f(x) < f(y) < f(a)$ by the last item. If $a < x < y$, then $f(a) < f(y)$ by (1) and $f(a) < f(x) < f(y)$ by the last item. Hence f is strictly increasing.

4. Proposition. Let J be an interval and $f: J \to \mathbb{R}$ be monotone. Assume that $f(J) = I$ is an interval. Then f is continuous.

Proof. We deal with the case when f is strictly increasing. Let $a \in J$. Assume that a is not an endpoint of J. We prove the continuity of f at a using the ε - δ definition.

Since a is not an endpoint of J, there exists $x_1, x_2 \in J$ such that $x_1 < a < x_2$ and hence $f(x_1) < f(a) < f(x_2)$. It follows that there exists $\eta > 0$ such that $(f(a) - \eta, f(a) + \eta) \subset$ $(f(x_1), f(x_2)) \subset I.$

Let $\varepsilon > 0$ be given. We may assume $\varepsilon < \eta$. Let $s_1, s_2 \in J$ be such that $f(s_1) = f(a) - \varepsilon$ and $f(s_2) = f(a) + \varepsilon$. Let $\delta := \min\{a - s_1, s_2 - a\}$. If $x \in (a - \delta, a + \delta) \subset (s_1, s_2)$, then, $f(a) - \varepsilon = f(s_1) \leq f(x) < f(s_2) = f(a) + \varepsilon$, that is, if $x \in (a - \delta, a + \delta)$, then $f(x) \in (f(a) - \varepsilon, f(a) + \varepsilon).$

If a is an endpoint of J , an obvious modification of the proof works.

- 5. Consider the *n*-th root function $f: [0, \infty) \to [0, \infty)$ given by $f(x) := x^{1/n}$. We can use the last item to conclude that f is continuous, a fact seen by us earlier.
- 6. Let $J \subset \mathbb{R}$ be an interval and $f: J \to \mathbb{R}$ be increasing. Assume that $c \in J$ is not an endpoint of J. Then
	- (i) $\lim_{x\to c_-} f = l.u.b. \{f(x) : x \in J; x < c\}.$ (ii) $\lim_{x\to c_+} f = \text{g.l.b.} \{f(x) : x \in J; x > c\}.$
- 7. Let the hypothesis be as in the last item Then the following are equivalent: (i) f is continuous at c . (ii) $\lim_{x\to c_-} f = f(c) = \lim_{x\to c_+} f$.
	- (iii) l.u.b. $\{f(x) : x \in J; x < c\} = f(c) = g.l.b. \{f(x) : x \in J; x > c\}.$

What is the formulation if c is an endpoint of J ?

8. Let $J \subset \mathbb{R}$ be an interval and $f: J \to \mathbb{R}$ be increasing. Assume that $c \in J$ is not an endpoint of J . The jump at c is defined as

$$
j_f(c) := \lim_{x \to c_+} f - \lim_{x \to c_-} f \equiv \text{g.l.b. } \{f(x) : x \in J; x > c\} - \text{l.u.b. } \{f(x) : x \in J; x < c\}.
$$

How is the jump $j_f(c)$ defined if c is an endpoint?

9. Let $J \subset \mathbb{R}$ be an interval and $f: J \to \mathbb{R}$ be increasing. Then f is continuous at $c \in J$ iff $j_f(c) = 0$. \Box 10. **Theorem.** Let $J \subset \mathbb{R}$ be an interval and $f: J \to \mathbb{R}$ be increasing. Then the set D of points of J at which f is discontinuous is countable.

Proof. Assume that f is increasing. Then $c \in J$ belongs to D iff the interval $J_c :=$ $(f(c_-), f(c_+))$ is nonempty. For $c_1, c_2 \in D$, the intervals J_{c_1} and J_{c_2} are disjoint. (Why?) Thus the collection $\{J_c : c \in D\}$ is a pairwise disjoint family of open intervals. Such a collection is countable. For, choose $r_c \in J_c \cap \mathbb{Q}$. Then the map $c \mapsto r_c$ from D to Q is one-one. \Box

11. Let $f: \mathbb{R} \to \mathbb{R}$ be an additive homomorphism. If f is monotone, then $f(x) = f(1)x$ for all $x \in \mathbb{R}$.