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We start with some preliminaries on linear maps from R
n to R.

Let T : V → W be a linear map from a finite dimensional real vector space V to another
W . Then T is determined if we know Tvi, 1 ≤ i ≤ n, where {vi : 1 ≤ i ≤ n} is a basis of V .
For, if v ∈ V , we can write v =

∑

i aivi for some scalars ai ∈ R so that using linearity of T ,
we deduce

Tv = T (

n
∑

i=1

aivi) =
∑

i

T (aivi) =
∑

i

aiTvi.

The right hand side of this equation involves Tvi and the coefficients ai of v as a linear
combination of vi’s.

We now take V = R and W = R. Let A : R → R be linear. Then as a basis of R, we take
v1 = 1. Any real number x ∈ R can be written as x = x · 1. We therefore have,

Tx = T (x · 1) = xT (1) = αx, for all x ∈ R, where α = T (1). (1)

Thus any linear map T : R → R is of the form T (x) = αx where α := T (1). Conversely, if we
define T : R → R by setting Tx := αx for some real scalar α, then it is easy to verify that T
is a linear map.

We extend this result for linear maps A : Rn → R. As a basis of Rn, we choose the so-
called standard basis {ei : 1 ≤ i ≤ n} where ei = (0, . . . , 0, 1, 0, . . . , 0) with 1 at the i-th place.
Then any x = (x1, . . . , xn) ∈ R

n is expressed as x =
∑n

i=1 xiei. We apply A to both sides of
this equation to get

Ax =

n
∑

i=1

xiAei =

n
∑

i=1

αixi, where αi = Aei, 1 ≤ i ≤ n. (2)

Thus, if A : Rn → R is any linear map, there exists a vector (α1, . . . , αn) ∈ R
n such that

Ax = α · x where αi = Aei for all i. Conversely, if α ∈ R
n is given and if we set Ax = α · x,

then A : Rn → R is linear with Aei = αi. Here and in the sequel, v · w and 〈v,w〉 stand for
the dot product of vectors in R

n.

The most important observation in (1) and (2) is that in the expression for T or A, the
scalars α or αi are completely determined as T (1) or as Tei.
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Given two vector spaces V and W , a map of the form x 7→ Ax+ w0 where A : V →W is
linear and w0 ∈W is a fixed vector, is called an affine function.

The basic idea of differential calculus is this: Given a function f : U ⊂ R
n → R and a

point a ∈ U , we wish to find a linear map A : Rn → R such that f(x) is “approximately
equal to” f(a) + A(x − a) for points x sufficiently near to a, that is, f(a + h) ≈ f(a) + Ah
for all h near to 0 ∈ R

n. (≈ is read as approximately equal to.) In other words, if we think
of h as an increment to the independent variable, then the increment f(a+ h) − f(a) in the
dependent variable is approximately near to Ah. If we can find such an A, we shall say that
f is differentiable at a and the derivative at a is A.

What do we mean by Ah is near to f(a+h)− f(a) for h near zero? An obvious and naive
answer would be f(a+h)− f(a) approaches zero (in R) as h approaches 0 in R

n. This is not
the correct formulation. For, if we assume that f is continuous at a, we can take A to be the
zero map Ah = 0 for all h ∈ R

n. With this choice we have

f(a+ h)− f(a)−Ah = f(a+ h)− f(a) → 0, as h→ 0,

by continuity of f at a. What is wrong with this? For example, if we take f : R → R given
by f(x) = |x|, then we all know that f is continuous at x = 0 but not differentiable at x = 0.
This is clearly not acceptable to us.

A correct definition runs as follows. The ‘error term’ f(a+h)−f(a)−Ah should approach
0 much ‘faster’ than h as h→ 0. How do we make sense out of this?

Let us look at examples. If we take f(x) = x and g(x) = x2, it is intuitively clear to us
that g(x) → 0 much faster than f(x) as x→ 0. More generally, if 0 < α < β, then g(x) := xβ

approaches zero much faster than f(x) := xα as x → 0. How do we make this rigorous?

Observe that limx→0
g(x)
f(x) = 0.

With this observation, we go back to f : U ⊂ R
n → R. We say that f is differentiable at

a if we can find a linear map A : Rn → R such that [f(a+ h)− f(a)−Ah]/h goes to zero as
h → 0. This does not make sense, as the denominator h is a vector. An obvious way out is
to require that

f(a+ h)− f(a)−Ah

‖h‖ → 0 as h→ 0.

Before the precise definition, a small point. Since we want to find an approximation of f near
a, we want the domain U of f to contain a neighbourhood of a, that is, we want an r > 0 so
that the open ball B(a, r) ⊂ U . If we want to talk of differentiability at each point a ∈ U , it
is natural to demand that U be open in R

n. In the following, we shall assume that U is open.

We are now ready for the precise definition.

Definition 1. Let U ⊂ R
n be open and a ∈ U . A function f : U → R is said to be

differentiable at a if there exists a linear map A : Rn → R such that

|f(a+ h)− f(a)−Ah|
‖h‖ → 0, as h→ 0. (3)

We can cast this in ε-δ notation.
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The function f is differentiable at a iff there exists a linear map A : Rn → R such that for
any given ε > 0, there exists a δ > 0 with the following property:

|f(a+ h)− f(a)−Ah| < ε ‖h‖ for all h with ‖h‖ < δ. (4)

Two remarks are in order. The first is that even though the domain U of f may be a
proper subset of Rn, the domain of A is R

n, (as it should be, since the domain of a linear
map should be vector spaces!)

The second point is that the linear map appearing in the definition is unique. (This is
a place where we need U to be open.) Let us explain the second point in detail. Our claim
is this: If B : Rn → R is a linear map satisfying (3) with A replaced by B (possibly with
different δ for a given ε), then B = A, that is, Ah = Bh for all h ∈ R

n. Using the fact that
both A and B satisfy (3), we shall prove that Ah = Bh for all h with ‖h‖ = 1.

Given ε > 0 there exist δ1 and δ2 such that the following hold:

|f(a+ h)− f(a)−Ah| <
ε

2
‖h‖ for ‖h‖ < δ1,

|f(a+ h)− f(a)−Bh| <
ε

2
‖h‖ for ‖h‖ < δ2.

Let δ = min{δ1, δ2}. Let v ∈ R
n be given with ‖v‖ = 1. Choose any t ∈ R such that |t| < δ.

Set h := tv. We have

‖Ah−Bh‖ = |t| ‖Av −Bv‖ = ‖(f(a+ h)− f(a)−Ah)− (f(a+ h)− f(a)−Bh)‖
≤ ‖f(a+ h)− f(a)−Ah‖+ ‖f(a+ h)− f(a)−Bh‖
< ε ‖h‖
= ε |t| .

It follows that ‖Av −Bv‖ < ε for ‖v‖ = 1 for any ε > 0. Hence we conclude that Av = Bv
whenever ‖v‖ = 1. If w ∈ R

n is any nonzero vector, if we set v := w/ ‖w‖, then ‖v‖ = 1 so
that

Av = Bv =⇒ A(
w

‖w‖) = B(
w

‖w‖) =⇒ 1

‖w‖Aw =
1

‖w‖Bw =⇒ Aw = Bw.

This completes the proof of our claim. The unique A is called the total derivative of f at a
and is denoted by Df(a).

We now face the following question. If f : (a, b) ⊂ R → R is differentiable at c ∈ (a, b)
in the usual calculus sense, is it differentiable according to our new definition and if so, is
there any relation between f ′(c) of calculus and Df(c)? The answers to these questions is
contained in the following

Theorem 2. Let f : (a, b) → R be given and c ∈ (a, b). Then f is differentiable at c in the

usual calculus sense iff f is differentiable according to Def. 1 and we have

Df(c)h = f ′(c)h, that is, f ′(c) = Df(c)(1). (5)
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Proof. Do you understand (5)? The left hand side is the value of the linear map Df(c) at
h = 1 and the equation says that the real number f ′(c) is Df(c)(1).

Let us assume that f is differentiable at c in the usual sense. We shall show that if we
define Df(c)(h) := f ′(c)h, then we have

|f(c+ h)− f(c)−Df(c)(h)|
‖h‖ → 0 as h→ 0.

Since f ′(c) exists, given ε > 0 there exists δ > 0 such that

∣

∣

∣

∣

f(c+ h)− f(c)

h
− f ′(c)

∣

∣

∣

∣

< ε for 0 < |h| < δ.

This is same as saying that
∣

∣

∣

∣

f(c+ h)− f(c)− f ′(c)h

h

∣

∣

∣

∣

< ε for 0 < |h| < δ,

or,
∣

∣f(c+ h)− f(c)− f ′(c)h
∣

∣ < ε |h| for |h| < δ.

This shows that f is differentiable at c according to Def. 1 with derivative given byDf(c)(h) =
f ′(c)h.

The converse is proved in an analogous way. We set α := Df(c)(1) and show that

f(c+ h)− f(c)

h
→ α as h→ 0.

This will prove that f is differentiable at c and the derivative as α. Note that Df(c)(h) = αh.
Since f is differentiable at c according to Def. 1, given ε > 0 there exists δ > 0 such that

|f(c+ h)− f(c)−Df(c)(h)| < ε |h| for |h| < δ.

Recalling that Df(c)(h) = αh and dividing by |h|, we get

∣

∣

∣

∣

f(c+ h)− f(c)

h
− α

∣

∣

∣

∣

< ε for 0 < |h| < δ.

This proves that limh→0
f(c+h)−f(c)

h
exists and the limit is α.

Remark 3. Note that (5) brings out the intimate relation between f ′(c) and Df(c).

Definition 4. Let f : U ⊂ R
n → R be differentiable at a ∈ U with Df(a) = A. From

(2), we know that there exists a unique vector α ∈ R
n such that Ah = α · h ≡ ∑n

i=1 αihi
if h = (h1, . . . , hn). This unique vector α is called the gradient of f at a. It is denoted by
grad f(a) or ∇f(a). In view of (2), we have

grad f(a) = (Df(a)(e1), . . . ,Df(a)(en)). (6)

Later we shall identify Df(a)(ej). (See (7) and (8).)

Let us now look at some examples.
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Example 5. Let f : U ⊂ R
n → R be a constant. Let a ∈ U be arbitrary. If we look at

f(a+ h)− f(a) = 0, an obvious choice for Df(a) is the zero linear map. We see that

|f(a+ h)− f(a)− 0h|
‖h‖ =

0

‖h‖ = 0.

Hence f is differentiable at a with Df(a) = 0, the zero linear map.

Example 6. Let f be the restriction to an open U ⊂ R
n of a linear amp A : Rn → R. It

should be intuitively clear that Df(a) exists and equals A for any a ∈ U . Let us verify this.

|f(a+ h)− f(a)−Ah| = |Aa+Ah−Aa−Ah| = |0| .

Example 7. Let f : R → R be given by f(x) = x2. Note that from Theorem 2, we know that
f is differentiable according to our new definition and that Df(a)(h) = 2ah. Let us verify
this from first principles.

|f(a+ h)− f(a)| = (a+ h)2 − a2

= a2 + 2ah+ h2 − a2

= 2ah + h2.

The term on the right hand side which is ‘linear’ in h is 2ah. It suggests that we may take as
Df(a) the linear map h 7→ 2ah. We do so and find that

|f(+h)− f(a)− 2ah|
|h| =

∣

∣h2
∣

∣

|h| → 0 as h→ 0.

Example 8. Consider f : Rn → R given by f(x) = x ·x ≡ ∑n
i=1 x

2
i . Again, we shall compute

the derivative from the first principles.

f(a+ h)− f(a) = (a+ h) · (a+ h)

= a · a+ 2a · h+ h · h− a · a
= 2a · h+ h · h.

The term ‘linear’ in h on the right hand side of the above equation is 2a · h. This suggests
that we may take Df(a)(h) := 2a · h. Using this, we see that

|f(a+ h)− f(a)−Df(a)(h)|
‖h‖ =

|h · h|
‖h‖ =

‖h‖2
‖h‖ ,

which goes to 0 as h→ 0. Note that grad f(a) = 2a.

Example 9. Let f, g : R2 → R be given by f(x, y) := x+ y and g(x, y) := xy. We show that
f and g are differentiable.

We have f(a+h, b+k)−f(a, b) = h+k. So, if we define A(h, k) := h+k, then A : R2 → R

is linear and f(a+ h, b+ k)− f(a, b)−A(h, k) = 0.

As for g, we find that g(a+ h, b+ k)− g(a, b) = ak+ bh+ hk. This suggests as a possible
candidate for the derivative B, we can try B(h, k) := ak+ bh. We find that the ‘error’ is then
hk. We need to show that

|g(a+ h, b+ k)− f(a, b)−B(h, k)|√
h2 + k2

=
hk√
h2 + k2

→ 0 as (h, k) → 0.
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This follows easily if we observe that |h| ≤
√
h2 + k2 and |k| ≤

√
h2 + k2.

In particular, we find that grad f(a, b) = (1, 1) and grad g(a, b) = (b, a).

Example 10. One last example in the same vein. Let A be an n×n-symmetric matrix with
real entries. Define f(x) := Ax · x. Here Ax denotes the column vector got from the matrix
multiplication of A and the column vector x. Let us show that f is differentiable at each
a ∈ R

n and compute its derivative.

f(a+ h)− f(a) = A(a+ h) · (a+ h)−Aa · a
= (Aa+Ah) · (a+ h)− a · a
= Aa · a+ 2Aa · h−Aa · h.

An obvious choice for Df(a) is by setting Df(a)h := 2Aa · h, for h ∈ R
n. Let us check

whether this choice works.

|f(a+ h)− f(a)−Df(a)(h)|
‖h‖ =

|2Aa · h|
‖h‖ ≤ ‖Ah‖ ‖h‖

‖h‖ = ‖Ah‖ ,

which goes to zero as h → 0 by continuity of A at h = 0. Incidentally, we have grad f(a) =
2Aa.

Ex. 11. Let M(2,R) denote the set of all 2× 2 matrices with real entires. We may identify
M(2,R) with R

4 as a vector space with the norm ‖A‖ := ‖(a11, a12, a21, a22)‖. Consider
f : M(2,R) → R be given by f(X) = det(X). Show that f is differentiable at I and that
Df(I)(H) = Tr(H).

Ex. 12. Keep the notation of the last exercise. Show that the map f : M(2,R) → M(2,R)
given by X 7→ X2 is differentiable at A and Df(A)(H) = AH +HA.

Let us now go back to the general theory.

The single most important trick in several variable differential
calculus is the reduction of the problems to one-variable case.

We explain this principle by exhibiting its employment in various results in differential
calculus.

Let U ⊂ R
n be open and a ∈ U . Then there exists an r > 0 such that B(a, r) ⊂ U . Let

v ∈ R
n be any vector. If we take, ε := r/ ‖v‖, (ε = ∞ if v = 0). Then a+ tv ∈ B(a, r) ⊂ U

for all t with |t| < ε. We can thus define a one-variable function g : (−ε, ε) → R by setting
g(t) := f(a+ tv). (Note that g depends on v also.) Observe that g(0) = f(a). We claim that
g is differentiable at a and that g′(0) = Df(a)(v). We prove it thus. First of all, observe that
g is a constant if v = 0 and in this case, the claim is obvious. So we assume that v 6= 0. We

need to prove that given ε > 0, there exists δ > 0 such that
∣

∣

∣

g(h)−g(0)
h

−Df(a)(v)
∣

∣

∣
< ε for all

h with 0 < |h| < δ. For this ε > 0, by differentiability of f at a, we can find a δ > 0 such
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that |f(a+hv)−f(a)−Df(a)(hv)|
‖hv‖ < ε/ ‖v‖, provided 0 < ‖hv‖ < δ.

∣

∣

∣

∣

g(h) − g(0)

h
−Df(a)(v)

∣

∣

∣

∣

=

∣

∣

∣

∣

f(a+ hv)− f(a)− hDf(a)(v)

h

∣

∣

∣

∣

=

∣

∣

∣

∣

f(a+ hv)− f(a)−Df(a)(hv)

h

∣

∣

∣

∣

(using linearity of Df(a))

= ‖v‖ f(a+ hv) − f(a)−Df(a)(hv)

‖hv‖
< ε,

by differentiability of f at a. This proves the claim.

Before summarizing what we have done, we need a definition.

Definition 13. Let f : U ⊂ R
n → R be any function. Fix a vector v ∈ R

n. We say that f

has directional derivative at a in the direction of v if the limit limt→0
f(a+tv)−f(a)

t
exists. Note

that since U is open, as observed earlier, a + tv ∈ U for all t in a sufficiently small interval
around 0. The limit, if exists, is denoted by Dvf(a).

What we have proved just before this definition is the following theorem.

Theorem 14. Let f : U ⊂ R
n → R be differentiable at a ∈ U . Then Dvf(a) exists for all

v ∈ R
n and we have

Dvf(a) = Df(a)(v). (7)

Remark 15. There exist functions f : U → R such that Dvf(a) exist for all v ∈ R
n but f is

not differentiable.

Let us now specialize the vector v, in the definition of the directional derivatives, by taking
v = ei. In this case,

f(a+ tei) = f(a1, . . . , ai−1, ai + t, ai+1, . . . , an),

so that

lim
t→0

f(a+ tei)− f(a)

t
= lim

t→0

f(a1, . . . , ai−1, ai + t, ai+1, . . . , an)− f(a1, . . . , an)

t
.

The limit, namely, the direction derivativeDeif(a), if exists, is called the i-th partial derivative

of f at a and is usually denoted ∂f
∂xi

(a) or at times by Dif(a).

We now go back to the question raised earlier. Can we find a concrete expression for
the vector grad f(a)? Recall from (2), if T : Rn → R is linear, then Tv = (Te1, . . . , T en) ·
(v1, . . . , vn). Hence, we have

Df(a)(h) = (Df(a)(e1), . . . ,Df(a)en) · (h1, . . . , hn)
= (De1f(a), . . . ,Denf(a)) · (h1, . . . , hn)

= (
∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)) · (h1, . . . , hn).
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Thus we have proved

grad f(a) = (
∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)). (8)

Let us understand what we have achieved. Computing ∂f
∂xi

(a) is a one variable job: it is g′(0)
where g(t) := f(a+ tei). Thus, if we somehow know that f is differentiable, say, by means of
some theoretical considerations, then we can compute Df(a) simply by finding the directional
derivatives Dvf(a) or the partial derivatives ∂f

∂xi
(a) for 1 ≤ i ≤ n. See Example 16 below.

Example 16. Let A be an n× n-real matrix. Let R : Rn \ {0} → R be defined by setting

R(x) :=
〈Ax, x〉
〈x, x〉 , x 6= 0.

Then it follows that both numerator and the denominator are differentiable functions and
hence their quotient is differentiable on R

n \ {0}. The derivative can be computed using the
algebra of differentiable functions. However, we shall show how to compute the derivative
in a simpler way. Since it is already known that f is differentiable, it is enough to compute
Df(x)(v) for x 6= 0 for an arbitrary vector v ∈ R

n. By (7) we know Df(x)(v) is the directional
derivative Dvf(x). If we set g(t) := R(x+ tv), then Dvf(x) = g′(0). Computing this is easy,

since g(t) = ϕ(t)
ψ(t) where

ϕ(t) := 〈A(x+ tv), x+ tv〉 = 〈Ax, x〉+ t 〈Ax, v〉 + t 〈Av, x〉+ t2 〈Av, v〉

and
ψ(t) := 〈x, x〉+ 2t 〈x, v〉 + t2 〈v, v〉 .

Hence from the quotient rule of one variable calculus,

g′(0) =
ϕ′(0)ψ(0) − ϕ(0)ψ′(0)

ψ(0)2

=
〈Ax, v〉+ 〈Av, x〉

〈x, x〉 − 2
〈Ax, x〉 〈x, v〉

(〈x, x〉)2 .

We hope that the simplicity impresses about the utility of our principle!

Ex. 17. In Example 8, the function is f(x) := x21 + · · · + x2n. From our work over there we
know grad f(a) = 2a. Assuming the algebra of differentiable functions, f is differentiable.
Compute the partial derivatives and hence grad f(a). Compare your work with Example 8

Carry out a similar investigation with f(x) :=
∑

i,j aijxixj of Example 10.

Let us look at another instance of the principle of reduction to the one-variable case. Let
f : U ⊂ R

n → R be differentiable at all point of U . Assume that p ∈ U is a point of local
maximum, that is, f(x) ≤ f(p) for all x ∈ B(p, r) for some r > 0. We claim that Df(p) = 0.
In view of (7) and (8), it suffices to show that ∂f

∂xi
(p) = 0 for 1 ≤ i ≤ n. Consider the

one-variable function g(t) := f(p + tei) defined on (−ε, ε) for sufficiently small ε > 0. Since
g(0) = f(p) and p + tei ∈ B(p, r), we see that t = 0 is a maximum of g on (−ε, ε). From
one-variable result, it follows that g′(0) = 0. What is g′(0)? As done earlier,

lim
t→0

g(t)− g(0)

t
= lim

t→0

f(p+ tei)− f(p)

t
= Deif(p) =

∂f

∂xi
(p).
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Hence the claim is proved.

A third instance of the principle in action is seen in the proof of the mean value theorem
for differentiable functions f : U → R.

Theorem 18 (Mean Value Theorem). Let f : U ⊂ R
n → R be differentiable on U . Let

x, y ∈ U . Assume that the line segment [x, y] := {(1 − t)x + ty : 0 ≤ t ≤ 1} ⊂ U . Fix any

v ∈ R
n. Then there exists t0 ∈ [0, 1] such that if we set z := (1− t0)x+ t0y, then

f(y)− f(x) = Df(z)(y − x) ≡
n
∑

i=1

∂f

∂xi
(z)(yi − xi). (9)

Proof. Consider g(t) := f((1 − t)x + ty) on [0, 1]. Then g is continuous on [0, 1] and differ-
entiable on (0, 1). (To show that g is differentiable, adapt the computation of g′(t0) below.)
Hence by mean value theorem of one-variable calculus, there exists t0 ∈ (0, 1) such that
g(1) − g(0) = g′(t0)(1 − 0) = g′(t0). What is g′(t0)?

lim
h→0

g(t0 + h)− g(t0)

h
= lim

h→0

f((1− t0 − h)x+ (t0 + h)y)− f((1− t0)x+ t0y)

h

= lim
h→0

f([(1− t0)x+ t0y] + h(y − x))− f((1− t0)x+ t0y)

h
= Dy−xf(z) ≡ Df(z)(y − x).

(Note that the above computation proves that g is differentiable at t0 and computes the
derivative.)

As an immediate consequence, we have

Corollary 19. Assume that U is star-shaped at a ∈ U , that is, the line segment [a, x] ⊂ U
for all x ∈ U . Assume that f : U → R be differentiable on U and that Df(x) = 0 for x ∈ U .

Then f is a constant.

Proof. Let x ∈ U be arbitrary. By the mean value theorem, the exists z ∈ [a, x] such that

f(x)− f(a) = Df(z)(x− a) = 0.

Thus, f(x) = f(a) for all x ∈ U , that is f is a constant.

A fourth example of an application of the principle is lies in the derivation of Taylor’s
formula for functions f : U ⊂ R

n → R. Since our aim is to bring out the ideas clearly, we
shall restrict ourselves to C2-functions. If you wish, you may assume that n = 2. A function
f is said to be C2 if all partial derivatives of the form

∂α1+···+αnf

∂xα1

1 · · · ∂xαn

n

exist where αj ∈ Z+ and α1 + · · · + αn ≤ 2 and are continuous. When n = 2, adopting the

usual notation this means that all partial derivatives ∂f
∂x

, ∂f
∂y

, ∂2f
∂x2

, ∂2f
∂y2

, ∂2f
∂x∂y

and ∂2f
∂y∂x

exist
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and are continuous. (Note that ∂f
∂x

etc. are functions from U to R so we can speak of their
partial derivatives w.r.t. x or y.)

To make things simple, let us also assume that 0 ∈ U , U is star-shaped at 0 and that we
wish to find a ‘Taylor expansion’ of f at 0. Consider the one-variable function g(t) := f(tx).
We first observe that this is defined for t in (−ε, 1 + ε) for some sufficiently small ε > 0.
For, since U is open and 0 ∈ U , there exists a ε1 > 0 such that B(0, ε1) ⊂ U . Hence
0 + tx ∈ B(0, ε1) provided that ‖tx‖ = |t| ‖x‖ < ε1, that is, when |t| < ε1/ ‖x‖. A similar
consideration will show that x + tx = (1 + t)x ∈ B(x, ε2) ⊂ U if |t| < ε2/ ‖x‖. If we
choose ε := min{ε1/ ‖x‖ , ε2/ ‖x‖}, then tx ∈ U for t ∈ (−ε, 1 + ε). Let us show that g is
differentiable on this interval and compute its derivative.

g′(t) = lim
h→0

g(t+ h)− g(t)

h
= lim

h→0

f((t+ h)x)− f(tx)

h

= lim
h→0

f(tx+ hx)− f(tx)

h
= Dxf(tx) ≡ Df(tx)(x) by (7)

=
n
∑

i=1

∂f

∂xi
(tx)xi by (8).

In particular,

g′(0) =
n
∑

i=1

∂f

∂xi
(0)xi. (10)

Let gi(t) :=
∂f
∂xi

(tx). If we proceed as above, we find that

g′i(t) =

n
∑

j=1

∂gi
∂xj

(tx)xj =

n
∑

j=1

∂2f

∂xj∂xi
(tx)xj, (11)

so that we have

g′′(t) =

n
∑

i=1

g′i(t)

=

n
∑

i=1





n
∑

j=1

∂2f

∂xj∂xi
(tx)xj



xi

=

n
∑

i,j=1

∂2f

∂xj∂xi
(tx)xjxi. (12)

Note that the above computation show that g is twice continuously differentiable and so we
can apply Taylor’s theorem of one-variable calculus to g. We get

g(t) = g(0) + g′(0)t+ g′′(0)t2 +R,

where the remainder R is such that limt→0R/t
2 = 0. Taking t = 1 in the last displayed

equation, we deduce the Taylor’s formula for f .

f(x) = f(0) +

n
∑

i=1

∂f

∂xi
(0)xi +

n
∑

i,j=1

∂2f

∂xi∂xj
(0)xixj +R. (13)
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From (13), it is easy to deduce the sufficient condition (in terms of second order partial
derivatives) for the local maximum/minimum of f . If we assume, for instance x = 0 is a point
of local maximum, then t = 0 is a point of local maximum for g. Hence g′′(0) ≤ 0. Coming
back to f , this implies that

n
∑

i,j=1

∂2f

∂xi∂xj
(0)xixj ≤ 0

for all choices of x in a neighbourhood of 0. This is same as saying that the matrix

D2f(0) :=









∂2f

∂x2
1

(0) ∂2f
∂x1∂x2

(0) . . . ∂2f
∂x1∂xn

(0)

...
∂2f

∂xn∂x1
(0) ∂2f

∂xn∂x2
(0) . . . ∂2f

∂x2
n

(0)









is negative semi-definite. ( A symmetric matrix A of size n is negative semi-definite if Ax·x ≤ 0
for all x ∈ R

n. It is said to be negative definite if Ax · x < 0 for all x 6= 0. In the above, we

use the fact that for C2-functions, ∂2f
∂x∂y

= ∂2f
∂y∂x

and hence the matrix D2f(x) is symmetric.)

A sufficient condition for t = 0 to be a point of local maximum is that g′′(0) < 0. This
translates into the following sufficient condition for x = 0 to a local maximum for the function
f . The above matrix D2f(0) of second order partial derivatives at 0 must be negative-definite.
The cases of local minima are left to the reader. The last two paragraphs need a careful
analytical treatment which is not very difficult. Since our aim is to show the principle in
action, we shall be content with this.

Before we wind up, we shall state two versions of the chain rule in our set-up and give
applications. For one version, we need to introduce the concept of differentiability of a vector
valued function of a scalar variable.

If f : (a, b) → U ⊂ R
n is a function, we think of it as a parametrized curve in U . A

physical interpretation of f is that it is the path traversed by a particle from time a to time
b. We write f(t) = (f1(t), . . . , fn(t)). We say that f is differentiable at t0 ∈ (a, b) if each
of the one-variable function fj : (a, b) → R is differentiable at t0 for 1 ≤ i ≤ n and the
derivative of f is defined by the equation f ′(t) = (f ′1(t), . . . , f

′
n(t)). This derivative has a

physical interpretation too. If we think of f as the path traversed by a particle from time
t = a to time t = b, then f ′(t) is the (instantaneous) velocity (vector) of the particle at t.
This is justified in view of the observation that

f ′(t) = lim
h→0

f(t+ h)− f(t)

h
.

While this easy to prove, we do not give a proof.

Theorem 20 (Chain Rule). (a) Let f : (a, b) → U ⊂ R
n be differentiable at t ∈ (a, b) and

g : U → R be differentiable at f(t). Then g ◦ f is differentiable at t and we have

(g ◦ f)′(t) = Dg(f(t))(f ′(t)) =

n
∑

i=1

∂g

∂xi
(f(t))f ′i(t). (14)

(b) Let g : U → R be differentiable at p ∈ U . Let J ⊂ R be an open interval such that

q := g(p) ∈ J . Let ϕ : J → R be differentiable at q. Then ϕ ◦ g is differentiable at p and we

have

grad(ϕ ◦ g)(p) = ϕ′(q) gradϕ(p). (15)
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Proof. We do not prove this. The aim here is to make sure that you understand (14) and
(15).

In case (a), the function g ◦ f is a function from R to R and hence it is enough to know
its derivative in the usual calculus sense. (14) says that this derivative is the real number got
by letting the linear map Dg(f(t)) : Rn → R act on the vector f ′(t).

In case (b), the function ϕ ◦ g is from R
n to R. Its derivative is known if we know the

gradient. (15) says that this gradient is grad g(p) multiplied by the scalar ϕ′(q).

Let us give a typical application of (15).

Theorem 21. Let f : U ⊂ R
n → R be differentiable at a with f(x) 6= 0 for x ∈ B(a, r) for

some r > 0. Then g : B(a, r) → R given by g(x) = 1/f(x) is differentiable at a and we have

grad g(a) = − 1

f(a)2
grad f(a).

Proof. Let R
∗ stand for the set of nonzero real numbers. Let ϕ : R∗ → R be given by

ϕ(t) = 1/t. Then ϕ is differentiable on R
∗ and we observe that g = ϕ ◦ f . Hence g is

differentiable at a and we deduce from (15),

grad g(a) = ϕ′(f(a)) grad f(a) = − 1

f(a)2
grad f(a).

A typical application of (14) is the following.

Theorem 22. Let f : U ⊂ R
n → R be differentiable. Let c : (a, b) → R

n be differentiable.

Assume that for all t ∈ (a, b), f(c(t)) = α, a constant. Then grad f(c(t)) is perpendicular to

the tangent vector c′(t) = (c′1(t), . . . , c
′
n(t)) for all t.

Proof. Since f ◦ c is a constant, we see that (f ◦ c)′(t) = 0 for all t. By (14), we have

(f ◦ c)′(t) =
〈

grad f(c(t)), c′(t)
〉

.

The result follows.

Remark 23. Let us bring out the geometric significance of the last result. Let us assume
that n = 3. Then the set of points {x ∈ U : f(x) = α}, if non-empty, can be considered as a
‘surface’. Then the hypothesis on c says that the curve c lies entirely in S. Hence c′(t) can
also be thought of a vector tangent to the surface S. Thus, we see that grad f(a) is ‘normal’ to
the surface at a ∈ S. Take some linear and quadratic functions on R

3 and try to understand
this remark.
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Geometric Meaning of Derivatives and Partial Derivatives

To facilitate geometric imagination, we shall consider functions f : R2 → R. Look at the
graph of f , the set of points ((x, y), f(x, y)) ∈ R

3. This can be viewed as a surface in R
3. A

geometric view point of the derivative of f at a is obtained by looking at the surface explicitly
defined by f and the tangent plane to the surface at the point (a, b, f(a, b)). The tangent
plane under consideration is given as the graph of the affine function

A : (x, y) 7→ f(a, b) +Df(a, b)(x− a, y − b) ≡ f(a, b) + grad f(a, b) · (x− a, y − b).

Thus the difference f(x, y)−A(x, y) is a good approximation to the increment f(x, y)−f(a, b).
If we use (8), then, in terms of the coordinates, the equation to the tangent plane at (a, b) is

z = f(a, b) + (x− a)
∂f

∂x
(a, b) + (y − b)

∂f

∂y
(a, b). (16)

Now, let us give the geometric interpretation of partial derivatives.

Figure 1: Graph of f(x, y) = x2 + y2 and its Tangent plane at (1, 1, 2)

The partial derivative ∂f
∂x

(a, b) is the derivative at a of the one variable function x 7→
f(x, b). The intersection of the surface with the vertical plane determined by the equation
y = b is a curve determined by the equations

z = f(x, y) and y = b.

The partial derivative ∂f
∂x

(a, b) is the slope of the tangent line at a to this curve considered
as the graph of x 7→ f(x, b). Similar interpretation holds for the other partial derivative.
For this reason, it is natural to define a tangent plane to the surface at (a, b) as the plane
containing the tangent lines to the curves

z = f(x, y) & y = b and z = f(x, y) & x = a.

It is easily verified that the set of points satisfying the equation

z = f(a, b) + (x− a)
∂f

∂x
(a, b) + (y − b)

∂f

∂y
(a, b)
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is a plane containing the two tangent lines. (Observe that, by taking y = b or x = a we get
the tangent lines!) The figure illustrates these points.

-2

0

2

-2

0

2
-2

0

2

-2

0

2

-2

0

2

-2

0

2
-2

0

2

-2

0

2

-2

0

2

-2

0

2
-2

0

2

-2

0

2

-2

0

2

-2

0

2

-1

-0.5

0

0.5

1

-2

0

2

-2

0

2

4

-2

0

2

4

-1

-0.5

0

0.5

1

-2

0

2

4

-2

0

2

4

-2

0

2

4

-1

-0.5

0

0.5

1

-2

0

2

4

14


