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If J = [a,b] is an interval, we let ¢(J) := b — a, the length of the interval. We shall
repeatedly use the following two trivial observations.

Lemma 1. If z,y € [a,b], then |x —y| < b— a.

Proof. Without loss of generality assume that < y and hence |z — y| = y—x. Since x € [a, b],
we have a < x and hence —x < —a. Also, y € [a, b] and therefore y < b. It follows that

lt—y|l=y—2z<b—a.

O
Lemma 2. Let [a,b] C [c,d]. Then c <a <b<d. O
Theorem 3. [Nested Interval Theorem| Let J, := [ay,b,]| be intervals in R such that

Jni1 C Jp for alln € N. Then NJ, # 0.

If, furthermore, we assume that li_}m (Jp) — 0, then N, J, contains precisely one point.
n o

Proof. Note that the hypothesis means that [ant1,bn+1] C [an,by] for all n. In particular,
an < Gpt1 and by41 < by, for all n € N. Observe also that if s > r, then J; C J;:

Js - Js—l c.-.-C Jr+1 - Jr-
Hence, in view of Lemma 2, we have

ar < as < bs <b., in particular as < b,. (1)

Let E be the set of left endpoints of J,. Thus, E := {a € R : a = a,, for some n}. E is
nonempty.
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We claim that b is an upper bound for F for each k € N, i.e., a, < by for all n and k.
If & < n then [ay,b,] C [ag,bx] and hence a, < b, < bg. (Draw pictures!) If k > n then
an < ap < bg. (Use Eq. 1.) Thus the claim is proved. By the LUB axiom there exists ¢ € R
such that ¢ = sup F. We claim that ¢ € J,, for all n. Since c is an upper bound for £ we have
an < c for all n. Since each b, is an upper bound for E and c is the least upper bound for F
we see that ¢ < b,,. Thus we conclude that a, < c¢ <b, or ¢ € J, for all n. Hence ¢ € NJ,,.

Let us now assume further that ¢(.J,) — 0 as n — oo. By the first part we know that
NJ, # 0. Let z,y € N, J,. We claim that « = y. For, since z,y € J,, for all n, we have

|z —y| < LU(Jp) =0, as n — oo.
Thus we conclude that |z — y| = 0 and hence = = y. O

Theorem 4. The set R of real numbers is uncountable.

Proof. We shall show that the set [0, 1] is uncountable. The theorem follows from this.

Assume that [0, 1] is countable. That is, there exists a map f: N — [0, 1] which is onto.
Let x, := f(n) € [0,1]. To arrive at a contradiction, we shall employ the Nested interval
theorem. Let us subdivide the interval [0, 1] into three closed subintervals of equal length.
Then there exists at least one subinterval which does not contain f(1) = x;. (Draw a picture.
The worst possible case is when f(1) = z; happens to be either 1/3 or 2/3.)
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Select a subinterval which does not contain x; and call it J;. Let us subdivide J; into
three equal closed subintervals. Either zo = f(2) ¢ J; or it lies in at most two of the
subintervals of J;. In any case there exists a subinterval of J; which does not contain f(2).
Choose one such and call it J5. We proceed along this line to construct a subinterval .J,, of
Jn—1 which does not contain f(n). Thus we would have obtained a nested sequence (.J,,) of
closed and bounded intervals. By the nested interval theorem their intersection is nonempty:
Mpdn # 0. Let © € NJ,,. Then z € [0,1]. So there exists an k& € N such that x = f(k). Thus
f(k) =z € Ny Jy,. In particular, f(k) € Jx. This contradicts our choice of J,’s. Hence our
assumption that [0, 1] is countable is wrong. O

Theorem 5 (Bolzano-Weierstrass). Let (x,) be a bounded sequence of real numbers. Then
there exists a convergent subsequence (xy,) of (xy).



Proof. Recall that a real sequence is a function z: N — R and that we let x,, := x(n). Thus
the image of the sequence is the subset z(N) = {z,, : n € N} C R.

If the image x(N) is finite, then there exists a real number « such that x,, = « for infinitely
many n € N, say, for all £ € S C N, an infinite subset. Using the well-ordering principle, we
can exhibit the elements of S as an increasing sequence of natural numbers:

nyp<ng < - <mp < -

Then the subsequence (z, ) is the constant sequence a and hence is convergent.

So, we now assume that x(N) is infinite. Since (z,) is bounded, there exists a positive
real number M such that

M <z, <M, for all n € N.

We bisect the interval Jy := [—M, M] into two subintervals of equal length, [—M,0] and
[0, M]. Since z(N) C [-M, M] = [-M,0]U[0, M], at least one of the subintervals will contain
infinitely many elements of z(N), that is, infinitely many terms of the given sequences. Call
one such subinterval as J;. Now we again bisect J; into two subintervals of equal length. Since
x(N)N.Jp is infinite by our choice of Jy, one of the subintervals of J; must have infinite number
of elements from z(N)N.J;. Callit Jo. Thus, Jo C Jy, £(J2) = 271(Jy) = 2724(Jy) = 2722M.
Also, J5 has infinitely many terms from (zp,).

Proceeding inductively, we construct a nested sequence of intervals J,, with the following
properties:
(i) Jpy1 C Jp for all n € N.
(i) £(J,) = 27" M for all n € N.
(iii) For each n € N, the interval J,, contains infinitely many terms of the sequence (x,,).

Using the nested interval theorem, we get a real number a such that a € N,J,. Now
we inductively define a subsequence which will converge to «. Since J; contains infinitely
many terms of the sequence (x,), there exists ny € N such that x; € J;. Assume that for all
1 <1¢ < k, we have found x,,, such that z,, € J;. Now, Ji; contains infinitely many terms
of the given sequence and hence there exists ng such that ngiq > n; for 1 <7 < k with the
property that z,, , € Ji41. Thus we get a subsequence ().

We claim that z,, — o as k — oo. For since a, x,, € Jj, we have

|20, —af <O(J) =27 M =0, as k — oo

This completes the proof of the theorem. O

An immediate corollary is the following;:

Corollary 6. If (x,) is a Cauchy sequence of real numbers, then (x,) is convergent.

Proof. Recall the following facts.

(i) Any Cauchy sequence is bounded.

(ii) If (z5) is a Cauchy sequence and (zy, ) is a subsequence convergent to a real number
«, then (z,,) converges to .



The proof is an easy consequence of these two facts along with the last theorem. The
reader should complete the proof on his own.

Let (x,,) be a Cauchy sequence of real numbers. By the first fact, (x,) is bounded. By
Bolzano-Weierstrass theorem, there exists a convergent subsequence (zy, ). It follows from
the second fact that the given Cauchy sequence is convergent. O

Ex. 7. Let A be subset of R. We say that a real number x is an accumulation point (or a
cluster point) of A if for every € > 0, the intersection (z — e,z +¢) N A contains a point other
than z. (The intersection may or may not contain z!) Adapt the proof of Thm. 5 to prove
the following version of Bolzano-Weierstrass theorem: If A is a bounded infinite subset of R,
there is an accumulation point of A in R.

Theorem 8 (Intermediate Value Theorem). Let f: [a,b] — R be continuous. Assume that
f(a) and f(b) are of different signs, say, f(a) <0 and f(b) > 0. Then there exists ¢ € (a,b)
such that f(c) = 0.

Proof. Let Jy :=[a,b]. Let ¢; be the mid point of [a,b]. Now there are three possibilities for
f(c1). Tt is zero, negative or positive. If f(c1) = 0, then the proof is over. If not, we choose
one of the intervals [a, c;] or [c1,b] so that f assumes values with opposite signs at the end
points. To spell it out, if f(c1) < 0, then we take the subinterval [c1,b]. If f(c1) > 0, then
we take the subinterval [a,c;]. The chosen subinterval will be called J; and we write it as

[a1,b1].
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We now bisect the interval J; and choose one of the two subintervals as Jy := [ag, bo] so
that f takes values with opposite signs at the end points. We continue this process recursively.
We thus obtain a sequence (J,,) of intervals with the following properties:

(i) If Jp, = [an, by], then f(ay) < 0 and f(b,) > 0.
(ii) Jn+1 C JIn.
(iii) £(Jp) = 27"(Jp) = 27"(b — a).



By nested interval theorem there exists a unique ¢ € NJ,. Since ay, by, c € Jy,, we have
lc —an| < U(Jp) =27"(b—a) and |c—by| < (J,) =2""(b— a).
Hence it follows that lima,, = ¢ = lim b,,. Since ¢ € J and f is continuous on J, we have

lim f(an> = f(C) and lim f(bn> = f(C)
n— o0 n—o0

Since f(a,) < 0 for all n, it follows that lim,, f(a,) < 0, that is, f(c) < 0. In an analogous way,

f(e) =lim f(b,) > 0. We are forced to conclude that f(c) = 0. The proof is complete. O

Ex. 9. Deduce from Thm. 8 the standard version of the Intermediate value theorem: Let
f:]a,b] — R be continuous. Let « be a real number in between f(a) and f(b), that is,
fla) < a < f(b) or f(b) < a < f(a) whichever makes sense. Then there exists ¢ € (a,b)
such that f(c) = a. Hint: Assume f(a) < a < f(b). Consider g(z) = f(z) — « for = € [a, b].
Apply Thm. 8.

Theorem 10. Let f: [a,b] — R be continuous. Then f is bounded on [a,b]. That is, there
exist L, M € R such that
L < f(x) <M, forall x € [a,b.

Proof. We say that a function f: [a,b] — R is bounded above if there exists M € R such that
f(z) < M for all z € [a,b]. If f is not bounded above, then given any M € R, there exists an
x € [a,b] such that f(z) > M.

Let f: [a,b] — R be continuous. We prove that it is bounded above in [a,b]. By way of
contradiction, assume that it is not bounded above. We bisect Jy := [a,b] into subintervals
[a,c] and [c,b] of equal length as usual. Then f is not bounded above in at least one of the
subintervals. For, if not, then there exist M; and Mj such that f(z) < M; for all z € [a, ]
and f(x) < My for all = € [¢,b]. It follows that if M = max{M;, Ms}, then f(z) < M for
all x € [a, ], contrary to our assumption. Hence we conclude that f is unbounded in at least
one of the subintervals. Select one such subinterval and call it J;.

We again bisect J; and repeat the argument to conclude there exists a subinterval Js on
which f is not bounded. Proceeding inductively, we get a sequence of intervals J,, with the
following properties:

(i) Jpt1 C Jp, for all n.
(ii) £(Jp) =27"(Jp) =27 "(b — a).
(iii) f is unbounded on each J,.

By nested interval theorem, there exists an x € NJ,. Given n € N, by the observation
made at the beginning of the proof, there exists =, € J, such that f(x,) > n. Clearly,
as seen earlier, x,, — x. By continuity of f at z € [a,b], we have lim, f(z,) = f(z). In
particular, the sequence (f(x,)) is convergent. But this is impossible, since it is divergent to
+o00o. This contradiction proves that our assumption that f is not bounded above in [a, ] is
wrong. Hence f is bounded above in [a, b].

(Another way of arriving at a contradiction runs as follows: By continuity of f at z, for
e = 1, there exists a § > 0 such that for all y € (z — d,z + 0), we have |f(y) — f(x)] < 1. It



follows that for any y € (z — 0,z + d), we have |f(y)| < 1+ |f(x)|. Since z,, — z, for § as
above, we can find ng such that z,, € (z — J, 2 + J) for all n > ng. But for such n, we have

n < flzn) <1+|f(2)].

As a consequence, the set N of natural numbers is bounded above by max{ng,1 + |f(z)|}.
This contradicts the Archimedean property.)

In a similar way, one can prove that f is bounded below, that is, there exists L € R such
that f(z) > L for all x € R. Or, we apply the above result to the function g = —f to find a C
such that g(x) < C for all x € [a,b]. This implies that f(z) > —C for all x € [a,b]. That is,
f is bounded below in [a,b]. Thus we have shown that f is bounded above as well as below.
This completes the proof of the theorem. O

Ex. 11. Let f: [a,b] — R be a continuous functions. Show that m := inf{f(z) : = € [a.b]}
and M := sup{f(z) : € [a,b]} exist as real numbers and that there exist ¢,d € [a,b] such
that f(c) = m and f(d) = M. Hint: That M is finite follows from Thm. 10. If f(x) # M for
all = € [a, b], then consider ¢g(z) :=1/(M — f(z)). Apply Thm. 10

Ex. 12. Use Thm. 5 to prove Thm. 10 as well as solve Exer. 11. Hint: Apply Thm. 5 to a
sequence (zy) in [a, b] such that f(z,) > n.

Theorem 13 (Heine-Borel). Let I = [a,b] be a closed and bounded interval. Let {J, : o € A}
be a family of open intervals such that J C UyJy. Then there exists a finite subset F' C A such
that J C Ugerda, that is, J is contained in the union of a finite number of open intervals of
the given family.

Proof. We prove this by contradiction. Assume that J is not contained in the union of
any finite number of intervals from the given family. Bisect I as usual. Then one of the
subintervals is not contained in the union of any finite numbers of J,’s. (Why?) Call one
with this property as a rogue interval. Let I; be a rogue interval of I. If we bisect I; again,
one of the subintervals of I; must be a rogue. Select one and call it Io.

Continuing this process, we get a nested sequence (I,,) of subintervals of I such that each
of them is a rogue and ¢(I,) =2 ™(b— a) — 0 as n — co. By nested interval theorem, there
exists a unique x € NI,,. Now x € I C UJ, so that there exists A € A such that x € J,. Since
J) is an open interval, there exists ¢ > 0 such that (z—e,z+¢) C Jx. (Why? If Jy = (ax, b)),
take ¢ < min{x — ay, by — x}.)

Choose any N such that 27V (b —a) < e. We claim that Iy C (z —,7 +¢). Let y € Iy.
Since z,y € Iy, we have
|z —y| <(Iy)=2"N(b-a)<e.

Since y € Iy is arbitrary, it follows that Iy C (z —e,2 +¢). Since (x — e,z +¢€) C Jy, we
deduce that Iy C Jy. This is a contradiction to our choice of I,’s all of which are rogues!
This contradiction proves that our assumption that I is rogue is false and hence the theorem
is proved. O

Ex. 14. Deduce from Thm. 8 the standard version of the Intermediate value theorem: Let
f:]a,b] — R be continuous. Let o be a real number in between f(a) and f(b), that is,
fla) < a < f(b) or f(b) < a < f(a) whichever makes sense. Then there exists ¢ € (a,b)



such that f(c) = a. Hint: Assume f(a) < a < f(b). Consider g(x) = f(z) — a for = € [a, b].
Apply Thm. 8.

Ex. 15. Let A be subset of R. We say that a real number x is an accumulation point (or a
cluster point) of A if for every € > 0, the intersection (x — ¢,z +¢) N A contains a point other
than z. (The intersection may or may not contain z!) Adapt the proof of Thm. 5 to prove
the following version of Bolzano-Weierstrass theorem: If A is a bounded infinite subset of R,
there is an accumulation point of A in R.

Ex. 16. Let f: [a,b] — R be a continuous functions. Show that m := inf{f(z) : € [a.b]}
and M := sup{f(z) : € [a,b]} exist as real numbers and that there exist ¢,d € [a,b] such
that f(c¢) =m and f(d) = M. Hint: That M is finite follows from Thm. 8. If f(z) # M for
all x € [a, b], the consider g(x) := 1/(M — f(x)). Apply once again Thm. 8

Ex. 17. Use Thm. 5 to prove Thm. 8. Hint: Apply Thm. 5 to a sequence (z,) in [a, b] such
that f(z,) > n.

Theorem 18 (Density of Rational Numbers in R). Let © < y be real numbers. Then there
exists a rational number r € Q such that x <y <r.

Proof. This proof is due to Ms. Udita, an MTTS participant.

If = (respectively y) is a rational number, then, by Archimedean property, we can find a
natural number N such that y —z > 1/N. Then the rational number z + % (respectively

Yy — %) is as required. So we assume that neither of the given numbers is rational.

Since Z is unbounded in R, we can find integers m and n such that m < z < y < n.
Consider the midpoint (m + n)/2. It is different from = and y. We write

m-+n m—+n
U
2 ] [ 2

,n.

Iy = [m,n] = Ipy U lp2 = [m,

Now, if x and y lie in different intervals, it follows that = < mT‘”‘ < y. If they lie in the same
interval, say, [m, mT‘”‘], call it I;. Now we bisect Iy = I;; U I12 and ask whether x and y lie in
different subintervals or not. If they do, we achieved what we wanted. Otherwise, we repeat
the process. We claim that at some finite stage, we must have x and y lying in different
subintervals I,; and I,2. For, otherwise, the infinite process will give us a sequence (I,) of
nested intervals, with ¢(I,,) = 27"n — m and such that z,y € N, I,. Since the lengths of the
intervals converge to 0, there can be only one point in NI,. But this forces us to conclude
x =y, a contradiction. Hence at some n-th stage, x € I,; ad y € I,,o0. The common end point

of these subintervals is a rational number. O

Volterra’s Proof of Nonexistence of a Function

Consider the function defined on (0,1) by

1/q, if z =L with g.c.d(p,q) =1,
flz)= D
0 if z is irrational.

It is easy to show that f is continuous at each irrational point and discontinuous at all rational
points of (0,1). One may now want know whether there exists a function on (0, 1) which is



continuous at all rationals and discontinuous at all irrationals. The nonexistence of such a
function is usually proved using Baire Category theorem. Volterra proved this using a very
ingenious idea without using Baire’s theorem. His proof uses the nested interval theorem,
density of rationals and irrationals and the existence of a function which is discontinuous
only at rationals! We shall indicate his proof below.

Let us assume that there exists ¢g: (0,1) — R which is continuous at the rational points
and discontinuous at irrationals. Let f be the function defined above. Choose any irrational
point zg € (0,1). By continuity of f at zg, given € = 1/2, there exists a § > 0 such that

|f(z) — f(x0)| < 1/2, whenever |z — x| < 0.
Select points a; < by € (g — d,z9 + ¢). Then for all z,y € [a1,b;1], we have

[f (@) = F)l < [f(x) = F(wo)| + | f(z0) = f(y)] <1/2+1/2=1.

We now select a rational point yg in the open interval (a1, b1). We repeat the above argument
using now the continuity of g at yo to construct a closed interval [c1,d1] C (a1,b1) such that

l9(x) —g(y)| < 1, for all z,y € [c1,d1].

Note that we have

|f(x) — f(y)] <1and [g(x) —g(y)| <1 for all z,y € [c1,d1].

We repeat this argument replacing the open interval (0, 1) by the open interval (¢1,d;) to find
a closed interval [ca, d2] C (c1,dp) such that

|f(z) — f(y)] < 1/2 and [g(x) — g(y)| < 1/2 for all z,y € [c2,da].

By induction we construct a sequence of nested intervals [cg, di| C (cx—1,dk—1) for k € N with
the property that

1f(z) = f(y)] < 27" and |g(z) — g(y)| < 275! for all z,y € [cy, dy.

By the nested interval theorem, there exists a unique point a € [cg, di] for k € N. Note that by
the fact that [cxy1, dgt+1] C (ck,dk), the point a € (¢, dy) for all k. We now show that f and
g are continuous at a. Given € > 0, choose n such that 27" < e. Then, for = € [cp41, dnt1],
we have

[f(x) = fa)] < e and [g(z) —g(a)] <e. (2)

Since a € (¢pt1,dn+1), we can find § > 0 such that (a — d,a + 0) C (cnt1,dns1). It is clear
that if |z — a| < ¢, then (2) holds, that is, f and g are continuous at a. It follows then that
a must be rational as well as irrational, which is absurd! Thus we conclude no such f exists.

Remark 19. I learnt this proof from Dr. V. Sholapurkar, S.P. College, Pune.



