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A topological space X is said to be metrizable if there exists a metric on X such that the
given topology coincides with the topology defined by the metric.

Theorem 1. For a metrizable topological space X, the following properties are equivalent:
1. X is compact.
2. Every metric on X inducing the given topology is bounded.
3. Every continuous (real valued) function on X is bounded.

Proof. We now prove the theorem according to the pattern:

(1) =⇒ (2) =⇒ (3) =⇒ (1).

(1) =⇒ (2): If X is compact, so is X × X. Any metric d on X inducing the given
topology on X is a continuous function on X ×X, whence bounded.

(2) =⇒ (3): Let f be a continuous function on X. We then push points of X apart
at distances bounded from below by f using the following standard technique. Consider the
graph Z of f :

Z := {(x, f(x)) : x ∈ X} ⊆ X × R.

The map i : X ↪→ Z given by x 7→ (x, f(x)) is then a homeomorphism of X onto Z, its
inverse being given by the restriction of the first projection p : X ×R −→ X to Z. The space
X × R with the product topology is metrizable; e.g. one may take the metric δ defined as

δ((x, s), (y, t)) := d(x, y) + |t− s|.

Pulling this metric back to X using the map i therefore equips X with a metric d′ inducing
the topology given by d, which therefore by assumption is bounded, by a constant B > 0,
say. Now by construction

d′(x, y) = d(x, y) + |f(y)− f(x)| ,
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so d′ being bounded by B implies

|f(y)| ≤ |f(x)|+B,

for all x, y ∈ X. If we fix x ∈ X, the inequality above shows that f is bounded.

(3) =⇒ (1): We show that on any noncompact metrizable space X there exists a
continuous unbounded function. Let d be any metric on X inducing the given topology and
let X ′ be the completion of X with respect to d. We distinguish the cases X ′ being compact
and being not so.

Case (i): X ′ compact. Since X is assumed to be noncompact, X 6= X ′ whence X ′ \X is
not empty. Let x∞ be a point in X ′ \X. Since X is dense in X ′, the function f defined by
f(x) := 1/d(x, x∞) is then a continuous function on X which is not bounded.

Case (ii): X ′ noncompact. If f is a continuous unbounded function on X ′, its restriction
to X is a continuous unbounded function on X. So we may assume X itself is complete.
According to the standard characterization of compactness, X cannot be totally bounded
since it is assumed to be noncompact. So there is a real number ε > 0 such that X cannot
be covered by finitely many closed ε-balls. Let x1 be any point in X and put r1 := ε.
Then the closed ball B[x1, r1] does not cover X. So there is x2 in X \ B[x1, r1]. The latter
complement being open there is r2 with r1 ≥ r2 > 0 such that B[x2, r2] ⊆ X \B[x1, r1]. The
balls B[x1, r1] and B[x2, r2] together do not cover X, so there are x3 and r3 with B[x3, r3] ⊆
X \ B[x1, r1] ∪ B[x2, r2] and r1 ≥ r2 ≥ r3 > 0. Continuing this way we obtain sequences
x1, x2, . . . and r1 ≥ r2 ≥ · · · > 0. They have the property that the balls B[xk, rk] are
mutually disjoint. Now we define f : X → R as follows:

f(x) :=
∞∑
k=1

k · d(x,X \B(xk, rk))

d(x, xk) + d(x,X \B(xk, rk))
.

(Visualize f in the case of X = R and xk = k and rk = 2−k, say.) If the k-th term of the
sum that defines f(z) is nonzero, it means that z ∈ B[xk, rk] and hence all other terms of
the series that defines f(z) are zero, since the balls B[xk, rk] are mutually disjoint. Hence the
series is convergent and f(x) makes sense for any x ∈ X. We thus get a well-defined function
f on X. Since f(xk) = k, f is not bounded. It is easily seen to be continuous on X. For,
if x ∈ U := X \ ∪k∈NB[xk, rk], then f(x) = 0 and since U is open (why?), f is zero in an
open set containing x. If x ∈ B[xk, rk], then f is just the k-th term of the series, which is
continuous. This finishes the proof.

Remark 2. The case (ii) of (3) =⇒ (1) can also be seen as follows. If X is not totally
bounded, there is some ε > 0 such that no finite collection of balls of radius ε covers X. So
we can pick x1 in X, x2 ∈ X \ B(x1, ε), x3 ∈ X \ (B(x1, ε) ∪B(x2, ε)), and so on. Each
d(xi, xj) ≥ ε for i 6= j. Hence there are no nonconstant Cauchy sequences among the xi. So,
the set {xi} is closed in X and also discrete. If we now define f(xi) = i, then f is continuous
function on the discrete set. We can extend this by the Tietze theorem to f : X −→ R. The
function f is clearly an unbounded continuous function.
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