Characterization of Compact Metrizable Spaces via Metrics and Continuous Functions

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

A topological space X is said to be *metrizable* if there exists a metric on X such that the given topology coincides with the topology defined by the metric.

Theorem 1. For a metrizable topological space X , the following properties are equivalent:

- 1. X is compact.
- 2. Every metric on X inducing the given topology is bounded.
- 3. Every continuous (real valued) function on X is bounded.

Proof. We now prove the theorem according to the pattern:

$$
(1) \implies (2) \implies (3) \implies (1).
$$

(1) \implies (2): If X is compact, so is $X \times X$. Any metric d on X inducing the given topology on X is a continuous function on $X \times X$, whence bounded.

 $(2) \implies (3)$: Let f be a continuous function on X. We then push points of X apart at distances bounded from below by f using the following standard technique. Consider the *graph* Z of f :

$$
Z := \{(x, f(x)) : x \in X\} \subseteq X \times \mathbb{R}.
$$

The map $i: X \hookrightarrow Z$ given by $x \mapsto (x, f(x))$ is then a homeomorphism of X onto Z, its inverse being given by the restriction of the first projection $p: X \times \mathbb{R} \longrightarrow X$ to Z. The space $X \times \mathbb{R}$ with the product topology is metrizable; e.g. one may take the metric δ defined as

$$
\delta((x, s), (y, t)) := d(x, y) + |t - s|.
$$

Pulling this metric back to X using the map i therefore equips X with a metric d' inducing the topology given by d, which therefore by assumption is bounded, by a constant $B > 0$, say. Now by construction

$$
d'(x, y) = d(x, y) + |f(y) - f(x)|,
$$

so d' being bounded by B implies

$$
|f(y)| \le |f(x)| + B,
$$

for all $x, y \in X$. If we fix $x \in X$, the inequality above shows that f is bounded.

(3) \implies (1): We show that on any noncompact metrizable space X there exists a continuous unbounded function. Let d be any metric on X inducing the given topology and let X' be the completion of X with respect to d. We distinguish the cases X' being compact and being not so.

Case (i): X' compact. Since X is assumed to be noncompact, $X \neq X'$ whence $X' \setminus X$ is not empty. Let x_{∞} be a point in $X' \setminus X$. Since X is dense in X' , the function f defined by $f(x) := 1/d(x, x_{\infty})$ is then a continuous function on X which is not bounded.

Case (ii): X' noncompact. If f is a continuous unbounded function on X' , its restriction to X is a continuous unbounded function on X. So we may assume X itself is complete. According to the standard characterization of compactness, X cannot be totally bounded since it is assumed to be noncompact. So there is a real number $\varepsilon > 0$ such that X cannot be covered by finitely many closed ε -balls. Let x_1 be any point in X and put $r_1 := \varepsilon$. Then the closed ball $B[x_1, r_1]$ does not cover X. So there is x_2 in $X \setminus B[x_1, r_1]$. The latter complement being open there is r_2 with $r_1 \ge r_2 > 0$ such that $B[x_2, r_2] \subseteq X \setminus B[x_1, r_1]$. The balls $B[x_1, r_1]$ and $B[x_2, r_2]$ together do not cover X, so there are x_3 and r_3 with $B[x_3, r_3] \subseteq$ $X \setminus B[x_1, r_1] \cup B[x_2, r_2]$ and $r_1 \geq r_2 \geq r_3 > 0$. Continuing this way we obtain sequences x_1, x_2, \ldots and $r_1 \geq r_2 \geq \cdots > 0$. They have the property that the balls $B[x_k, r_k]$ are mutually disjoint. Now we define $f: X \to \mathbb{R}$ as follows:

$$
f(x) := \sum_{k=1}^{\infty} k \cdot \frac{d(x, X \setminus B(x_k, r_k))}{d(x, x_k) + d(x, X \setminus B(x_k, r_k))}.
$$

(Visualize f in the case of $X = \mathbb{R}$ and $x_k = k$ and $r_k = 2^{-k}$, say.) If the k-th term of the sum that defines $f(z)$ is nonzero, it means that $z \in B[x_k, r_k]$ and hence all other terms of the series that defines $f(z)$ are zero, since the balls $B[x_k, r_k]$ are mutually disjoint. Hence the series is convergent and $f(x)$ makes sense for any $x \in X$. We thus get a well-defined function f on X. Since $f(x_k) = k$, f is not bounded. It is easily seen to be continuous on X. For, if $x \in U := X \setminus \cup_{k \in \mathbb{N}} B[x_k, r_k]$, then $f(x) = 0$ and since U is open (why?), f is zero in an open set containing x. If $x \in B[x_k, r_k]$, then f is just the k-th term of the series, which is continuous. This finishes the proof. \Box

Remark 2. The case (ii) of (3) \implies (1) can also be seen as follows. If X is not totally bounded, there is some $\varepsilon > 0$ such that no finite collection of balls of radius ε covers X. So we can pick x_1 in $X, x_2 \in X \setminus B(x_1, \varepsilon), x_3 \in X \setminus (B(x_1, \varepsilon) \cup B(x_2, \varepsilon))$, and so on. Each $d(x_i, x_j) \geq \varepsilon$ for $i \neq j$. Hence there are no nonconstant Cauchy sequences among the x_i . So, the set $\{x_i\}$ is closed in X and also discrete. If we now define $f(x_i) = i$, then f is continuous function on the discrete set. We can extend this by the Tietze theorem to $f: X \longrightarrow \mathbb{R}$. The function f is clearly an unbounded continuous function.