Additive Homomorphisms of R and Nonmeasurable Sets

S. Kumaresan
School of Math. and Stat.
University of Hyderabad

Hyderabad 500046
kumaresa@gmail.com

This article arose out of two standard exercises in a Course in Real Analysis and a third
exercise bordering on algebra and set theory. We shall state them below, discuss them in
detail later and show how to deduce the existence of a non-measurable set using few more
standard exercises in an M.Sc. course.

Ex. 1. Let f: R — R be a continuous additive homomorphism, that is, f(z+y) = f(z)+f(y)

for all z,y € R. Then f(x) = f(1)z for all x € R. In particular, f is a linear map from R to
R.

Ex. 2. Let f: R — R be a measurable homomorphism. Then f(x) = f(1)x for all x € R.

Ex. 3. There exists additive homomorphisms f: R — R which are not linear over R. Such
homomorphisms are necessarily discontinuous.

The additive homomorphisms which are not linear over R are necessarily discontinuous,
by Ex. 1. In fact, they are not even measurable by Ex. 2. This prompts us to ask: Can one
use them to prove the existence of nonmeasurable sets? We answer this affirmatively at the
end of this article.

A typical solution of Ex. 1 runs as follows. Since f(z +vy) = f(z) + f(y) for all z,y € R,
we have f(2z) = f(x+x) = f(z)+ f(z) = 2f(z). It follows by induction that f(nz) = nf(x)
for all z € R and n € N. Since f is a group homomorphism, it follows that f(—z) = —f(x)
for all z € R and hence f(nz) = nf(z) for all x € R and n € Z. Since 1 =n - (1/n), we see
that

1 1
F) = Fn) = nf(1/n). so that £(1/n) = L (1)
Hence for any rational number r = m/n, we deduce that f(m/n) = f(mi) = mf(1/n) =
M f(1). We have so far shown that f(r) = rf(1) for any r € Q. Now, we consider the
continuous function g defined by g(x) = f(1)x. Then the two continuous functions f and g
agree on Q: f(r) = g(r) for r € Q. If x € R is given, by the density of rationals in R, we can

find a sequence (r,,) in Q such that limr, = z. Since f and g are continuous at x and since
f(rn) = g(ry) for all n, we see that

f(x) = limf(rn) = hmg(rn) = g(CC)
Since x € R was arbitrary, we have shown that f(z) = g(x) = zf(1) for all z € R.

There is an extension of this result which is not so well-known.



Lemma 4. Let f: R — R be an additive (not necessarily continuous) homomorphism. As-
sume that there exists a non-degenerate interval J and a constant M > 0 such that |f(x)| < M
is for all x € J. Then f is continuous and hence is of the form f(x) = xf(1) for x € R.

Proof. Let the end points of J be a < b. Then a —b < 0 < b — a. We observe that the set
J—J:={x—y:x,y € J} contains the open interval (a — b,b — a). Choose a § > 0 so that
(=0,0) C(a—bb—a)C J—J.

We show that f is continuous at 0. Let € > 0 be given. We claim that |f(¢)| < 2M for all
t € (—6,0). For, any such t is of the form ¢t = x — y with x,y € J and hence,

fOI=1f(@ —y)l = 1f(x) = fFWl < [f (@) +[f ()] < 2M.
Now choose N € N such that 2M /N < e. Then for ¢ with [t| < §/N, we have

6 = FO = £ = [F¥t/N)| = | Vo) = vl < B <o

Thus f is continuous at 0.

The continuity of f at other points follows easily now. Let £ € R and £ > 0 be given.
Since f is continuous at 0, for the given € > 0, there exists a § > 0 such that |f(t)| < e for ¢
with [t| < §. Let y € R be such that |y — x| < §. We then have

[f(y) = f(@)] =fly —2) <e, since |y —z| <.
Since f is now a continuous homomorphism from R to R, the result follows from Ex. 1. [

Corollary 5. . Let f: R — R be an additive homomorphism which is bounded on a set
E. Assume that E — E contains a neighbourhood of 0. Then f is continuous and hence

f(x)=zf(1) for all z € R.

Proof. If you go through the proof of Lemma 4, you will realize that we needed only the
following fact about J. The set J — J contains an open interval around 0. O

Ex. 6. Let f: R” — R™ be an additive homomorphism. Assume that f is continuous at 0.
Show that f is continuous on R™.

More generally, let G be a group and d be a metric on G which is translation invariant:
d(azx,ay) = d(x,y) for all a,z,y € G. Let G be given the metric topology. Let H be another
such entity. Let f: G — H be a group homomorphism which is continuous at the identity of
G. Show that f is continuous on G. (This result extends to all ‘topological groups’.)

Proposition 7. Let f: R — R be measurable and an additive homomorphism. Then f(x) =
xf(1) for each x € R.

Proof. We show that Corollary 5 can be applied to any f satisfying the hypothesis of the
Proposition.

Let B, :={z € R : |f(z)] < n} for n € N. Clearly, each E,, is measurable and we have
R = U, FE,. Hence at least one of the E,’s must have positive measure. For, otherwise, R is a



countable union of sets of measure zero and hence R itself is of measure zero, a contradiction.
Let N be such that F := Ey is of positive measure. It is well-known that £ — F has a
neighbourhood of 0. (See Lemma 9.) Since |f| is bounded by N on FE, the result follows. [

Remark 8. With the above notation, we observe that Ey = kE; := {kx : « € E,}. For, if
y € Ey, and if we set x = y/k, then |f(z)| = |f(y/k)| = |f(y)|k < 1 etc. Thus each E}, is
measurable and we have m(Ey) = km(E). Hence all of them will have positive measure! We
shall need the argument in the sequel.

Lemma 9. Let E C R be measurable. Assume that m(E) > 0. Then there exists § > 0 such
that
(=0, 0)) CE—E:={x—y:xz,y € E}.

Proof. One makes decisive use of the regularity of the Lebesgue measure: If E is any set of
positive finite measure, then we have

m(F) = sup m(K) = inf m(G).
( ) K compact, KCE ( ) G open, ECG ( )

We first prove the lemma assuming the given set E is a compact set, say K. Note that
m(K) < oo. By regularity, we can find an open set G O K such that m(G) < 2m(K). Since
K is compact, R\ G is closed and they are disjoint, it follows that ¢ := d(K,R\ G) > 0. We
plan to show that (—4,0) C K — K.

Let z € R be such that |z| < §. Then the set x+ K is measurable with m(z+ K) = m(K).
We make two observations: (i) x + K C G and (ii) z + K and K are not disjoint.

If (i) were false, then there exists y = x + k € = + K such that x ¢ G. But then,
d(k,y) = |x +k — k| = || < ¢ so that d(K,G) < 0, a contradiction. This shows that (i)
holds.

If (ii) were false, then x + K C G and K C G are disjoint measurable subsets so that
m(G) >m(KU (zx+ K))=m(z+ K)+m(K) =2m(K),

a contradiction. It follows that there exists z € (z + K) N K. If we write z = z + k1 = ko,
then z = ko — k1. That is, € K — K. Since x € (—4,0) is arbitrary, we conclude that
(=d,0) C K — K.

Returning to the general case, let E be measurable with m(E) > 0. Since F = Ugen(E N
(—k, k)), at least one of EN(—Fk, k) is of finite positive measure. Replacing E with EN(—k, k),
we may assume that 0 < m(FE) < co. Using the regularity of the Lebesgue measure, we can
find a compact K C E with m(K) > 0. By the first part, there exists 6 > 0 such that
(-0, ) CK—-KCFE-E. O

Lemma 10. There exists homomorphisms f: R — R which are not (R)-linear, that is which
are not of the form f(x) = ax for some a € R and for all x € R.

Proof. This is based on a simple but useful trick. (See also Ex. 11 below.) We consider
R as a vector space over the field Q. Then an application of Zorn’s lemma establishes the
existence of a basis {e; : i € I'} of the vector space R over Q. (This basis is called by analysts



a Hamel basis of R.) Note that the cardinality of the set I is same as that of R. Now,
any € R can be written uniquely as x = ), ; x;¢; where the real numbers z; # 0 only
for finitely many i. Let o: I — I be a nontrivial permutation (bijection). We then define
fo(x) == fo (D2 iei) = Y To(iei- This map is a Q-linear map from the Q-vector space R to
itself and in particular an additive homomorphism.

If 0 and 7 are permutations of I, then f, = f, iff o = 7. Hence the cardinality of the set
of all such f, is the same as that of the set of permutations of I. How many permutations of
I are there? The set of permutations of I have the same cardinality as that of I, which is
RE. But the set of functions of the form f(z) = ax have the cardinality |R|. Since |[R¥| > |R|,
the result follows. O

Ex. 11. Let G be a (possibly infinite) group with at least four elements, such that g> = e for
all g € GG. Show that GG has a nontrivial automorphism. Hint: Think of GG as a vector space
over the field Z,.

Now we are ready to prove the existence of a non-measurable set. Consider an additive
homomorphism f: R — R which is not linear. Consider Ej, := {x € R : |f(z)| < k}. The we
claim that each F}, is nonmeasurable! As observed in Remark 8, we have F), = kE7 and hence
E, is measurable iff Ej, is measurable for each k. If E; is measurable, then either m(E;) =0
or m(E7) > 0. If the first case holds true, then m(Ey) = km(E;) = 0 so that R = U E}, is of
measure zero, a contradiction. If, on the other hand, if m(FE;) > 0, then by Lemma 9, £ — E
contains a neighbourhood of zero. It follows from Cor. 5 that f is linear, a contradiction.
Thus we are forced to conclude that Ej is not measurable for any k.

Remark 12. Note that an additive homomorphism f: R — R which is not linear over R is
nonmeasurable, either because E; := f~!([—1,1]) is not measurable or because of Prop. 8.
However, note that the fact that f is non-measurable would not have helped us in concluding
that Ej is not measurable.



