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This article arose out of two standard exercises in a Course in Real Analysis and a third
exercise bordering on algebra and set theory. We shall state them below, discuss them in
detail later and show how to deduce the existence of a non-measurable set using few more
standard exercises in an M.Sc. course.

Ex. 1. Let f : R→ R be a continuous additive homomorphism, that is, f(x+y) = f(x)+f(y)
for all x, y ∈ R. Then f(x) = f(1)x for all x ∈ R. In particular, f is a linear map from R to
R.

Ex. 2. Let f : R→ R be a measurable homomorphism. Then f(x) = f(1)x for all x ∈ R.

Ex. 3. There exists additive homomorphisms f : R → R which are not linear over R. Such
homomorphisms are necessarily discontinuous.

The additive homomorphisms which are not linear over R are necessarily discontinuous,
by Ex. 1. In fact, they are not even measurable by Ex. 2. This prompts us to ask: Can one
use them to prove the existence of nonmeasurable sets? We answer this affirmatively at the
end of this article.

A typical solution of Ex. 1 runs as follows. Since f(x+ y) = f(x) + f(y) for all x, y ∈ R,
we have f(2x) = f(x+x) = f(x) +f(x) = 2f(x). It follows by induction that f(nx) = nf(x)
for all x ∈ R and n ∈ N. Since f is a group homomorphism, it follows that f(−x) = −f(x)
for all x ∈ R and hence f(nx) = nf(x) for all x ∈ R and n ∈ Z. Since 1 = n · (1/n), we see
that

f(1) = f(n
1

n
) = nf(1/n), so that f(1/n) =

1

n
f(1).

Hence for any rational number r = m/n, we deduce that f(m/n) = f(m 1
n) = mf(1/n) =

m
n f(1). We have so far shown that f(r) = rf(1) for any r ∈ Q. Now, we consider the
continuous function g defined by g(x) = f(1)x. Then the two continuous functions f and g
agree on Q: f(r) = g(r) for r ∈ Q. If x ∈ R is given, by the density of rationals in R, we can
find a sequence (rn) in Q such that lim rn = x. Since f and g are continuous at x and since
f(rn) = g(rn) for all n, we see that

f(x) = lim f(rn) = lim g(rn) = g(x).

Since x ∈ R was arbitrary, we have shown that f(x) = g(x) = xf(1) for all x ∈ R.

There is an extension of this result which is not so well-known.
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Lemma 4. Let f : R → R be an additive (not necessarily continuous) homomorphism. As-
sume that there exists a non-degenerate interval J and a constantM > 0 such that |f(x)| ≤M
is for all x ∈ J . Then f is continuous and hence is of the form f(x) = xf(1) for x ∈ R.

Proof. Let the end points of J be a < b. Then a − b < 0 < b − a. We observe that the set
J − J := {x− y : x, y ∈ J} contains the open interval (a− b, b− a). Choose a δ > 0 so that
(−δ, δ) ⊂ (a− b, b− a) ⊂ J − J .

We show that f is continuous at 0. Let ε > 0 be given. We claim that |f(t)| ≤ 2M for all
t ∈ (−δ, δ). For, any such t is of the form t = x− y with x, y ∈ J and hence,

|f(t)| = |f(x− y)| = |f(x)− f(y)| ≤ |f(x)|+ |f(y)| ≤ 2M.

Now choose N ∈ N such that 2M/N < ε. Then for t with |t| < δ/N , we have

|f(t)− f(0)| = |f(t)| = |f(Nt/N)| =
∣∣∣∣ 1

N
f(Nt)

∣∣∣∣ =
1

N
|f(Nt)| ≤ 2M

N
< ε. (1)

Thus f is continuous at 0.

The continuity of f at other points follows easily now. Let x ∈ R and ε > 0 be given.
Since f is continuous at 0, for the given ε > 0, there exists a δ > 0 such that |f(t)| < ε for t
with |t| < δ. Let y ∈ R be such that |y − x| < δ. We then have

|f(y)− f(x)| = |f(y − x)| < ε, since |y − x| < δ.

Since f is now a continuous homomorphism from R to R, the result follows from Ex. 1.

Corollary 5. . Let f : R → R be an additive homomorphism which is bounded on a set
E. Assume that E − E contains a neighbourhood of 0. Then f is continuous and hence
f(x) = xf(1) for all x ∈ R.

Proof. If you go through the proof of Lemma 4, you will realize that we needed only the
following fact about J . The set J − J contains an open interval around 0.

Ex. 6. Let f : Rn → Rm be an additive homomorphism. Assume that f is continuous at 0.
Show that f is continuous on Rn.

More generally, let G be a group and d be a metric on G which is translation invariant:
d(ax, ay) = d(x, y) for all a, x, y ∈ G. Let G be given the metric topology. Let H be another
such entity. Let f : G→ H be a group homomorphism which is continuous at the identity of
G. Show that f is continuous on G. (This result extends to all ‘topological groups’.)

Proposition 7. Let f : R→ R be measurable and an additive homomorphism. Then f(x) =
xf(1) for each x ∈ R.

Proof. We show that Corollary 5 can be applied to any f satisfying the hypothesis of the
Proposition.

Let En := {x ∈ R : |f(x)| ≤ n} for n ∈ N. Clearly, each En is measurable and we have
R = ∪nEn. Hence at least one of the En’s must have positive measure. For, otherwise, R is a
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countable union of sets of measure zero and hence R itself is of measure zero, a contradiction.
Let N be such that E := EN is of positive measure. It is well-known that E − E has a
neighbourhood of 0. (See Lemma 9.) Since |f | is bounded by N on E, the result follows.

Remark 8. With the above notation, we observe that Ek = kE1 := {kx : x ∈ E1}. For, if
y ∈ Ek, and if we set x = y/k, then |f(x)| = |f(y/k)| = |f(y)| k ≤ 1 etc. Thus each Ek is
measurable and we have m(Ek) = km(E1). Hence all of them will have positive measure! We
shall need the argument in the sequel.

Lemma 9. Let E ⊂ R be measurable. Assume that m(E) > 0. Then there exists δ > 0 such
that

(−δ, δ) ⊂ E − E := {x− y : x, y ∈ E}.

Proof. One makes decisive use of the regularity of the Lebesgue measure: If E is any set of
positive finite measure, then we have

m(E) = sup
K compact, K⊂E

m(K) = inf
G open, E⊂G

m(G).

We first prove the lemma assuming the given set E is a compact set, say K. Note that
m(K) <∞. By regularity, we can find an open set G ⊇ K such that m(G) < 2m(K). Since
K is compact, R \G is closed and they are disjoint, it follows that δ := d(K,R \G) > 0. We
plan to show that (−δ, δ) ⊂ K −K.

Let x ∈ R be such that |x| < δ. Then the set x+K is measurable with m(x+K) = m(K).
We make two observations: (i) x+K ⊂ G and (ii) x+K and K are not disjoint.

If (i) were false, then there exists y = x + k ∈ x + K such that x /∈ G. But then,
d(k, y) = |x+ k − k| = |x| < δ so that d(K,Gc) < δ, a contradiction. This shows that (i)
holds.

If (ii) were false, then x+K ⊂ G and K ⊂ G are disjoint measurable subsets so that

m(G) ≥ m(K ∪ (x+K)) = m(x+K) +m(K) = 2m(K),

a contradiction. It follows that there exists z ∈ (x + K) ∩K. If we write z = x + k1 = k2,
then x = k2 − k1. That is, x ∈ K − K. Since x ∈ (−δ, δ) is arbitrary, we conclude that
(−δ, δ) ⊂ K −K.

Returning to the general case, let E be measurable with m(E) > 0. Since E = ∪k∈N(E ∩
(−k, k)), at least one of E∩(−k, k) is of finite positive measure. Replacing E with E∩(−k, k),
we may assume that 0 < m(E) < ∞. Using the regularity of the Lebesgue measure, we can
find a compact K ⊂ E with m(K) > 0. By the first part, there exists δ > 0 such that
(−δ, δ) ⊂ K −K ⊂ E − E.

Lemma 10. There exists homomorphisms f : R→ R which are not (R)-linear, that is which
are not of the form f(x) = ax for some a ∈ R and for all x ∈ R.

Proof. This is based on a simple but useful trick. (See also Ex. 11 below.) We consider
R as a vector space over the field Q. Then an application of Zorn’s lemma establishes the
existence of a basis {ei : i ∈ I} of the vector space R over Q. (This basis is called by analysts
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a Hamel basis of R.) Note that the cardinality of the set I is same as that of R. Now,
any x ∈ R can be written uniquely as x =

∑
i∈I xiei where the real numbers xi 6= 0 only

for finitely many i. Let σ : I → I be a nontrivial permutation (bijection). We then define
fσ(x) := fσ(

∑
i xiei) =

∑
i xσ(i)ei. This map is a Q-linear map from the Q-vector space R to

itself and in particular an additive homomorphism.

If σ and τ are permutations of I, then fσ = fτ iff σ = τ . Hence the cardinality of the set
of all such fσ is the same as that of the set of permutations of I. How many permutations of
I are there? The set of permutations of I have the same cardinality as that of II , which is
RR. But the set of functions of the form f(x) = ax have the cardinality |R|. Since

∣∣RR∣∣ > |R|,
the result follows.

Ex. 11. Let G be a (possibly infinite) group with at least four elements, such that g2 = e for
all g ∈ G. Show that G has a nontrivial automorphism. Hint: Think of G as a vector space
over the field Z2.

Now we are ready to prove the existence of a non-measurable set. Consider an additive
homomorphism f : R→ R which is not linear. Consider Ek := {x ∈ R : |f(x)| ≤ k}. The we
claim that each Ek is nonmeasurable! As observed in Remark 8, we have Ek = kE1 and hence
E1 is measurable iff Ek is measurable for each k. If E1 is measurable, then either m(E1) = 0
or m(E1) > 0. If the first case holds true, then m(Ek) = km(E1) = 0 so that R = ∪kEk is of
measure zero, a contradiction. If, on the other hand, if m(E1) > 0, then by Lemma 9, E −E
contains a neighbourhood of zero. It follows from Cor. 5 that f is linear, a contradiction.
Thus we are forced to conclude that Ek is not measurable for any k.

Remark 12. Note that an additive homomorphism f : R → R which is not linear over R is
nonmeasurable, either because E1 := f−1([−1, 1]) is not measurable or because of Prop. 8.
However, note that the fact that f is non-measurable would not have helped us in concluding
that E1 is not measurable.
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