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Abstract

We give two examples of nonorientable manifolds. Most often no rigorous proof is given
to establish the nonorientability in text-books/lectures. Here are the details! Please go
through the items 1-3 and verify them as suggested. As I typed this in a hurry, there
could be typing/mathematical mistakes. So go through this with a keen eye for details..

Mobius band

There is a neat geometric realization of Mobius band. It is described as the surface of
revolution got by revolving the line segment (—1,1)es3 around the circle ¢ of radius 2 with
center at the origin in the zy-plane, but moving the line segment along the circle in such a
way that if we have moved a distance u-radians, the angle between the line segment at that
point and es is u/2 and the line segment at u lies in the plane perpendicular to the circle,
that is, perpendicular to ¢/(u). More explicitly, we have the following parameterization:

o(u,v) = 2(cos u,sinu, 0) + v(cos usin(u/2), sin usin(u/2), cos(u/2)).

An atlas is given as follows:

v1(u,v) = ((2+vsin(u/2)) cosu, (2 + vsin(u/2)) sinwu, v cos(u/2)),
for (u,v) € Vq :=(0,27) x (—1,1)
wa(u,v) = ((24 vsin(u/2))cosu, (2 + vsin(u/2)) sinu, v cos(u/2))

for (u,v) € Vo := (—n/2,7/2) x (—1,1).
The following are easily checked:

1. 1 =92 0n (0,7/2) x (—1,1).
2. Let Wy := (37/2,2m) x (—1,1) and Wy := (—7/2,0) x (=1,1). Then o1 (W7) = pa(W3).

The transition map ¢, L6 ¢ maps W, homeomorphically onto Wo: Verify
these
g02_1 op1(u,v) = (u—2m, —v), for (u,v) € Wi. claims!

3. Thus the jacobian of the transition map on the open set Z3 U Zy := (0,7/2) x (—1,1)U
(3w/2,2m) x (—1,1) takes the value 1 on Z; and —1 on Z,.



From these observations, it follows that the Mobius band is not orientable. The reasoning
is as follows. If there exists a nowhere vanishing 2-form w on the Mobius band, then we can
write w = f(u,v)duAdv on Uy with f 2 0. Since Uj is connected either f > 0 on Uy or f <0
on U;. Assume that f > 0 on U;. Similarly, if w = gduj A dus on Us, either g > 0 or g <0
on Us. But this is not possible as there exist points p,q € Uy N Uy at which the jacobian the
transition map takes opposite signs, say positive at p and negative at ¢q. So, if we express w
at these points in terms of, say, u, v, then

wp = f(p)duAdv=g(p)dus A duz = g(p)det(O(u1,v1)/0(u,v))du A dv
wg = flg)duNdv=g(q)dus A duz = g(q) det(0(u1,v1)/0(u,v))du A dv.

If g > 0 on Us, the above equations say that f(p) > 0 while f(q) < 0, a contradiction. If
g < 0 on Us, a similar argument applies.

One can also establish the non-orientability of the Mobius band M assuming the existence
of an oriented atlas. Let {(Vj, s, U;)} be an oriented atlas of M. Let UljE be the set of points
p = (u,v) € Uy with the following property:

There exists an i such that p € U; N Uy and the determinant of D(v,/;i_l o) is
positive (respectively negative) at p.

The following are easy to verify:

1. Ul.jE is an open set.

2. UiJr NU; =0. For, if p e UiJr N U, , then there exist 7, j such that p € Uy NU; NU;, we
have det(D(¢); " 0 1)(p)) > 0 and det(D(p; " 0 p1)(p)) < 0. As ;" o = (97 opp1)0
(goj_l op1)7 Y, it follows that det(v; ' o ;) (p) < 0. This contradicts the assumption that
they are charts from an oriented atlas.

3. U=UUU;. As det(D(¢); * 0 1)(p)) # 0, p has to lie in one of the sets.
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These observations lead us to conclude that either Uy = U1+ or Uy = Uy . Assume U; = Ul+ .
By a similar reasoning, we conclude that Us = U2Jr or Uy = U, . Assume for definiteness sake
Uy =Uj.

Choose g € U N Uy such that det(D(¢; " 0 ¢1))(q) < 0. We choose i, j be such that

det(D(v; " 0 ¢1))(q) > 0 and det(D(v; ' o p2))(g) < 0.

Observe that
U oy = (Wi o p1) o (07 o ) 0 (1) o p2) L.

This leads us to conclude that det(D(1; ! 01/;))(¢) < 0, a contradiction. O

(2
Recall that the Mobius band M can be obtained as a quotient space of a rectangular strip
with horizontal sides removed. The points on the vertical sides are identified in the opposite
direction, as indicated in the picture. Then M has two coordinate neighborhoods Uj, the
open rectangular strip (that is, without the vertical sides) and Us, the dotted portion on
the left side of Figure 1 on page 3, (identified with the dotted one on the right hand side as
1

indicated) along with the open set in M to the right of the line z = 5.



Figure 1: Mdobius band

In symbols, we have

Uy ={(z,y) : z # £1},
1 1
Uy {(w,y) 2<x71and 1<z < 2}

The coordinates are given by 1, identity on U; and @9 on Us by

o1
T,y if s <z <1,
wz(m,y)Z{(2 ) .f21< 1
2+z,—y) if-1<2<-—3.

Note that as (1,y) = (=1, —y) in M, we need to check that y9 is well defined. It is so and it
is smooth. Clearly we have on

UrnNUs; = {(z,y) : % <z <1}U{(zy):—-1<ax<-1/2}.

Note that Us is twisted and then joined to U;. (See Figure 1.) The Jacobian of the coordinate
changes has determinant +1 on the first set on the right side above and determinant —1 on
the second set. Now , as earlier, this implies that M is not orientable.

Even dimensional Projective spaces

Another example of nonorientable manifolds is the even-dimensional real projective spaces.
The underlying set is the set P*(R) of lines in R"*! passing through the origin. There is
another way of looking at P*(R). On R™*!\ {0} we introduce the equivalence relation ~
defined as follows:

r~y<= dxr=ywith \é R, A\#0.

An equivalence class [z] containing x € R™*! can be identified with the line through the origin
in R"*! joining any point in the equivalence class. This second way of looking at P"(R) is
what we are going to exploit to endow P"(R) with a manifold structure. In P*(R) we have
some very special sets U; for 1 <7 < n + 1 defined by

Ui := {[z] € P*(R) : z; # 0}.

Notice that the definition of U; is independent of the choice of the representative of [z]. For,
if y € [z], then y; = Az; for all 1 < j <n+ 1 and for some nonzero real number . On these
sets we define ; as follows:

bi(ly]) == <‘Tl ”.’l‘il’l’i+1"”7$n+1> cR"

)




for any x = (z1,...,2n41) in the equivalence class [y]. Again notice that the map ; is well
defined, that is, it is independent of the choice of = € [y].

It is now an easy exercise to check that the family {(U;, p;)} satisfies the assumptions of
the theorem. Thus P"(R) is a manifold of dimension n. If you know about quotient topology
you may be interested in verifying that the topology we gave to P"(R) is the quotient topology
induced from R™™!\ {0} with respect to ~.

Let 7: S™ — P"(R) be the quotient map. Let w be the n-form on S™ given by

.1
w = (—1)2_1fd.%'1 A Ndxi—1 Ndxipr - drpi,
i
on the set U; := {p € S™ : z;(p) # 0}. Let o: S™ — S™ be the diffeomorphism o(z) = —=z.
Then

1

o) = (-1 —

d(—z1) A+ Ad(=zi21) Ad(=2i41 - d(—2p11) = (—1)"w.

If a is a nowhere vanishing n-form on P*(R), then 7*(«) = fw fo r some nowhere vanishing
smooth function f € C*°(S™). Since oo = 7, we see that

fw=n*(a)=0c"t"(a) = (foo)(—1)""w.

Hence if n is even, f oo = —f. This means that if f(p) > 0, then f(—p) < 0. Since f is
nonzero and S™ is connected this leads to a contradiction.



