Nonorientable Manifolds

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Abstract

We give two examples of nonorientable manifolds. Most often no rigorous proof is given to establish the nonorientability in text-books/lectures. Here are the details! Please go through the items 1-3 and verify them as suggested. As I typed this in a hurry, there could be typing/mathematical mistakes. So go through this with a keen eye for details..

Mobius band

There is a neat geometric realization of Mobius band. It is described as the surface of revolution got by revolving the line segment $(-1, 1)e_3$ around the circle c of radius 2 with center at the origin in the xy-plane, but moving the line segment along the circle in such a way that if we have moved a distance u -radians, the angle between the line segment at that point and e_3 is $u/2$ and the line segment at u lies in the plane perpendicular to the circle, that is, perpendicular to $c'(u)$. More explicitly, we have the following parameterization:

$$
\varphi(u, v) = 2(\cos u, \sin u, 0) + v(\cos u \sin(u/2), \sin u \sin(u/2), \cos(u/2)).
$$

An atlas is given as follows:

$$
\varphi_1(u, v) = ((2 + v \sin(u/2)) \cos u, (2 + v \sin(u/2)) \sin u, v \cos(u/2)),
$$

\nfor $(u, v) \in V_1 := (0, 2\pi) \times (-1, 1)$
\n
$$
\varphi_2(u, v) = ((2 + v \sin(u/2)) \cos u, (2 + v \sin(u/2)) \sin u, v \cos(u/2)),
$$

\nfor $(u, v) \in V_2 := (-\pi/2, \pi/2) \times (-1, 1).$

The following are easily checked:

- 1. $\varphi_1 = \varphi_2$ on $(0, \pi/2) \times (-1, 1)$.
- 2. Let $W_1 := (3\pi/2, 2\pi) \times (-1, 1)$ and $W_2 := (-\pi/2, 0) \times (-1, 1)$. Then $\varphi_1(W_1) = \varphi_2(W_2)$. The transition map $\varphi_2^{-1} \circ \varphi_1$ maps W_1 homeomorphically onto W_2 : **Verify**

$$
\varphi_2^{-1} \circ \varphi_1(u, v) = (u - 2\pi, -v), \text{ for } (u, v) \in W_1.
$$
 claims!

these

3. Thus the jacobian of the transition map on the open set $Z_1 \cup Z_2 := (0, \pi/2) \times (-1, 1) \cup$ $(3\pi/2, 2\pi) \times (-1, 1)$ takes the value 1 on Z_1 and -1 on Z_2 .

From these observations, it follows that the Mobius band is not orientable. The reasoning is as follows. If there exists a nowhere vanishing 2-form ω on the Mobius band, then we can write $\omega = f(u, v)du \wedge dv$ on U_1 with $f \neq 0$. Since U_1 is connected either $f > 0$ on U_1 or $f < 0$ on U_1 . Assume that $f > 0$ on U_1 . Similarly, if $\omega = g du_1 \wedge du_2$ on U_2 , either $g > 0$ or $g < 0$ on U_2 . But this is not possible as there exist points $p, q \in U_1 \cap U_2$ at which the jacobian the transition map takes opposite signs, say positive at p and negative at q. So, if we express ω at these points in terms of, say, u, v , then

$$
\omega_p = f(p)du \wedge dv = g(p)du_1 \wedge du_2 = g(p) \det(\partial(u_1, v_1)/\partial(u, v))du \wedge dv
$$

$$
\omega_q = f(q)du \wedge dv = g(q)du_1 \wedge du_2 = g(q) \det(\partial(u_1, v_1)/\partial(u, v))du \wedge dv.
$$

If $g > 0$ on U_2 , the above equations say that $f(p) > 0$ while $f(q) < 0$, a contradiction. If $g < 0$ on U_2 , a similar argument applies.

One can also establish the non-orientability of the Mobius band M assuming the existence of an oriented atlas. Let $\{(V_i, \psi_i, U_i)\}\)$ be an oriented atlas of M. Let U_1^{\pm} be the set of points $p = (u, v) \in U_1$ with the following property:

There exists an *i* such that $p \in U_i \cap U_1$ and the determinant of $D(\psi_i^{-1} \circ \varphi_1)$ is positive (respectively negative) at p.

The following are easy to verify:

- 1. U_i^{\pm} is an open set.
- 2. $U_i^+ \cap U_i^- = \emptyset$. For, if $p \in U_i^+ \cap U_i^-$, then there exist i, j such that $p \in U_1 \cap U_i \cap U_j$, we have $\det(D(\psi_i^{-1} \circ \varphi_1)(p)) > 0$ and $\det(D(\varphi_j^{-1} \circ \varphi_1)(p)) < 0$. As $\psi_i^{-1} \circ \varphi_j = (\varphi_1^{-1} \circ \varphi_1) \circ$ $(\varphi_j^{-1} \circ \varphi_1)^{-1}$, it follows that $\det(\psi_i^{-1} \circ \varphi_j)(p) < 0$. This contradicts the assumption that they are charts from an oriented atlas.
- 3. $U = U_1^+ \cup U_1^-$. As $\det(D(\psi_i^{-1} \circ \varphi_1)(p)) \neq 0$, p has to lie in one of the sets.

These observations lead us to conclude that either $U_1 = U_1^+$ or $U_1 = U_1^-$. Assume $U_1 = U_1^+$. By a similar reasoning, we conclude that $U_2 = U_2^+$ or $U_2 = U_2^-$. Assume for definiteness sake $U_2 = U_2^+$.

Choose $q \in U_1 \cap U_2$ such that $\det(D(\varphi_2^{-1} \circ \varphi_1))(q) < 0$. We choose i, j be such that

$$
\det(D(\psi_i^{-1}\circ\varphi_1))(q)>0\text{ and }\det(D(\psi_j^{-1}\circ\varphi_2))(q)<0.
$$

Observe that

$$
\psi_i^{-1} \circ \psi_j = (\psi_i^{-1} \circ \varphi_1) \circ (\varphi_1^{-1} \circ \varphi_2) \circ (\psi_j^{-1} \circ \varphi_2)^{-1}.
$$

 \Box

This leads us to conclude that $\det(D(\psi_i^{-1} \circ \psi_j))(q) < 0$, a contradiction.

Recall that the Mobius band M can be obtained as a quotient space of a rectangular strip with horizontal sides removed. The points on the vertical sides are identified in the opposite direction, as indicated in the picture. Then M has two coordinate neighborhoods U_1 , the open rectangular strip (that is, without the vertical sides) and U_2 , the dotted portion on the left side of Figure 1 on page 3, (identified with the dotted one on the right hand side as indicated) along with the open set in M to the right of the line $x=\frac{1}{2}$ $rac{1}{2}$.

Figure 1: Möbius band

In symbols, we have

$$
U_1 = \{(x, y) : x \neq \pm 1\},
$$

\n
$$
U_2 = \{(x, y) : \frac{1}{2} < x \le 1 \text{ and } -1 \le x < -\frac{1}{2}\}.
$$

The coordinates are given by φ_1 , identity on U_1 and φ_2 on U_2 by

$$
\varphi_2(x, y) = \begin{cases} (x, y) & \text{if } \frac{1}{2} < x \le 1; \\ (2 + x, -y) & \text{if } -1 \le x < -\frac{1}{2}. \end{cases}
$$

Note that as $(1, y) = (-1, -y)$ in M, we need to check that φ_2 is well defined. It is so and it is smooth. Clearly we have on

$$
U_1 \cap U_2 = \{(x, y) : \frac{1}{2} < x < 1\} \cup \{(x, y) : -1 < x < -1/2\}.
$$

Note that U_2 is twisted and then joined to U_1 . (See Figure 1.) The Jacobian of the coordinate changes has determinant +1 on the first set on the right side above and determinant −1 on the second set. Now, as earlier, this implies that M is not orientable.

Even dimensional Projective spaces

Another example of nonorientable manifolds is the even-dimensional real projective spaces. The underlying set is the set $\mathbb{P}^n(\mathbb{R})$ of lines in \mathbb{R}^{n+1} passing through the origin. There is another way of looking at $\mathbb{P}^n(\mathbb{R})$. On $\mathbb{R}^{n+1} \setminus \{0\}$ we introduce the equivalence relation ∼ defined as follows:

$$
x \sim y \Longleftrightarrow \lambda x = y
$$
 with $\lambda \in \mathbb{R}, \lambda \neq 0$.

An equivalence class [x] containing $x \in \mathbb{R}^{n+1}$ can be identified with the line through the origin in \mathbb{R}^{n+1} joining any point in the equivalence class. This second way of looking at $\mathbb{P}^n(\mathbb{R})$ is what we are going to exploit to endow $\mathbb{P}^n(\mathbb{R})$ with a manifold structure. In $\mathbb{P}^n(\mathbb{R})$ we have some very special sets U_i for $1 \leq i \leq n+1$ defined by

$$
U_i := \{ [x] \in \mathbb{P}^n(\mathbb{R}) : x_i \neq 0 \}.
$$

Notice that the definition of U_i is independent of the choice of the representative of $[x]$. For, if $y \in [x]$, then $y_j = \lambda x_j$ for all $1 \le j \le n+1$ and for some nonzero real number λ . On these sets we define ψ_i as follows:

$$
\psi_i([y]):=\left(\frac{x_1}{x_i},\ldots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\ldots,\frac{x_{n+1}}{x_i}\right)\in\mathbb{R}^n
$$

for any $x = (x_1, \ldots, x_{n+1})$ in the equivalence class [y]. Again notice that the map ψ_i is well defined, that is, it is independent of the choice of $x \in [y]$.

It is now an easy exercise to check that the family $\{(U_i, \varphi_i)\}\$ satisfies the assumptions of the theorem. Thus $\mathbb{P}^n(\mathbb{R})$ is a manifold of dimension n. If you know about quotient topology you may be interested in verifying that the topology we gave to $\mathbb{P}^n(\mathbb{R})$ is the quotient topology induced from $\mathbb{R}^{n+1} \setminus \{0\}$ with respect to ~.

Let $\pi: S^n \to \mathbb{P}^n(\mathbb{R})$ be the quotient map. Let ω be the *n*-form on S^n given by

$$
\omega = (-1)^{i-1} \frac{1}{x_i} dx_1 \wedge \cdots \wedge dx_{i-1} \wedge dx_{i+1} \cdots dx_{n+1},
$$

on the set $U_i := \{p \in S^n : x_i(p) \neq 0\}$. Let $\sigma : S^n \to S^n$ be the diffeomorphism $\sigma(x) = -x$. Then

$$
\sigma^*(\omega) = (-1)^{i-1} \frac{1}{-x_i} d(-x_1) \wedge \cdots \wedge d(-x_{i-1}) \wedge d(-x_{i+1} \cdots d(-x_{n+1})) = (-1)^{n+1} \omega.
$$

If α is a nowhere vanishing *n*-form on $\mathbb{P}^n(\mathbb{R})$, then $\pi^*(\alpha) = f\omega$ fo r some nowhere vanishing smooth function $f \in C^{\infty}(S^n)$. Since $\pi \circ \sigma = \pi$, we see that

$$
f\omega = \pi^*(\alpha) = \sigma^*\pi^*(\alpha) = (f \circ \sigma)(-1)^{n+1}\omega.
$$

Hence if n is even, $f \circ \sigma = -f$. This means that if $f(p) > 0$, then $f(-p) < 0$. Since f is nonzero and $Sⁿ$ is connected this leads to a contradiction.