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Abstract

We give two examples of nonorientable manifolds. Most often no rigorous proof is given
to establish the nonorientability in text-books/lectures. Here are the details! Please go
through the items 1-3 and verify them as suggested. As I typed this in a hurry, there
could be typing/mathematical mistakes. So go through this with a keen eye for details..

Mobius band

There is a neat geometric realization of Mobius band. It is described as the surface of
revolution got by revolving the line segment (−1, 1)e3 around the circle c of radius 2 with
center at the origin in the xy-plane, but moving the line segment along the circle in such a
way that if we have moved a distance u-radians, the angle between the line segment at that
point and e3 is u/2 and the line segment at u lies in the plane perpendicular to the circle,
that is, perpendicular to c′(u). More explicitly, we have the following parameterization:

ϕ(u, v) = 2(cosu, sinu, 0) + v(cosu sin(u/2), sinu sin(u/2), cos(u/2)).

An atlas is given as follows:

ϕ1(u, v) = ((2 + v sin(u/2)) cosu, (2 + v sin(u/2)) sinu, v cos(u/2)) ,

for (u, v) ∈ V1 := (0, 2π)× (−1, 1)

ϕ2(u, v) = ((2 + v sin(u/2)) cosu, (2 + v sin(u/2)) sinu, v cos(u/2)) ,

for (u, v) ∈ V2 := (−π/2, π/2)× (−1, 1).

The following are easily checked:

1. ϕ1 = ϕ2 on (0, π/2)× (−1, 1).

2. Let W1 := (3π/2, 2π)× (−1, 1) and W2 := (−π/2, 0)× (−1, 1). Then ϕ1(W1) = ϕ2(W2).
The transition map ϕ−12 ◦ ϕ1 maps W1 homeomorphically onto W2: Verify

these
claims!ϕ−12 ◦ ϕ1(u, v) = (u− 2π,−v), for (u, v) ∈W1.

3. Thus the jacobian of the transition map on the open set Z1 ∪Z2 := (0, π/2)× (−1, 1)∪
(3π/2, 2π)× (−1, 1) takes the value 1 on Z1 and −1 on Z2.
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From these observations, it follows that the Mobius band is not orientable. The reasoning
is as follows. If there exists a nowhere vanishing 2-form ω on the Mobius band, then we can
write ω = f(u, v)du∧dv on U1 with f 6= 0. Since U1 is connected either f > 0 on U1 or f < 0
on U1. Assume that f > 0 on U1. Similarly, if ω = gdu1 ∧ du2 on U2, either g > 0 or g < 0
on U2. But this is not possible as there exist points p, q ∈ U1 ∩ U2 at which the jacobian the
transition map takes opposite signs, say positive at p and negative at q. So, if we express ω
at these points in terms of, say, u, v, then

ωp = f(p)du ∧ dv = g(p)du1 ∧ du2 = g(p) det(∂(u1, v1)/∂(u, v))du ∧ dv
ωq = f(q)du ∧ dv = g(q)du1 ∧ du2 = g(q) det(∂(u1, v1)/∂(u, v))du ∧ dv.

If g > 0 on U2, the above equations say that f(p) > 0 while f(q) < 0, a contradiction. If
g < 0 on U2, a similar argument applies.

One can also establish the non-orientability of the Mobius band M assuming the existence
of an oriented atlas. Let {(Vi, ψi, Ui)} be an oriented atlas of M . Let U±1 be the set of points
p = (u, v) ∈ U1 with the following property:

There exists an i such that p ∈ Ui ∩ U1 and the determinant of D(ψ−1i ◦ ϕ1) is
positive (respectively negative) at p.

The following are easy to verify:

1. U±i is an open set.

2. U+
i ∩ U

−
i = ∅. For, if p ∈ U+

i ∩ U
−
i , then there exist i, j such that p ∈ U1 ∩ Ui ∩ Uj , we

have det(D(ψ−1i ◦ϕ1)(p)) > 0 and det(D(ϕ−1j ◦ϕ1)(p)) < 0. As ψ−1i ◦ϕj = (ϕ−11 ◦ϕ1) ◦
(ϕ−1j ◦ϕ1)

−1, it follows that det(ψ−1i ◦ϕj)(p) < 0. This contradicts the assumption that
they are charts from an oriented atlas.

3. U = U+
1 ∪ U

−
1 . As det(D(ψ−1i ◦ ϕ1)(p)) 6= 0, p has to lie in one of the sets.

These observations lead us to conclude that either U1 = U+
1 or U1 = U−1 . Assume U1 = U+

1 .
By a similar reasoning, we conclude that U2 = U+

2 or U2 = U−2 . Assume for definiteness sake
U2 = U+

2 .
Choose q ∈ U1 ∩ U2 such that det(D(ϕ−12 ◦ ϕ1))(q) < 0. We choose i, j be such that

det(D(ψ−1i ◦ ϕ1))(q) > 0 and det(D(ψ−1j ◦ ϕ2))(q) < 0.

Observe that
ψ−1i ◦ ψj = (ψ−1i ◦ ϕ1) ◦ (ϕ−11 ◦ ϕ2) ◦ (ψ−1j ◦ ϕ2)

−1.

This leads us to conclude that det(D(ψ−1i ◦ ψj))(q) < 0, a contradiction.
Recall that the Mobius band M can be obtained as a quotient space of a rectangular strip

with horizontal sides removed. The points on the vertical sides are identified in the opposite
direction, as indicated in the picture. Then M has two coordinate neighborhoods U1, the
open rectangular strip (that is, without the vertical sides) and U2, the dotted portion on
the left side of Figure 1 on page 3, (identified with the dotted one on the right hand side as
indicated) along with the open set in M to the right of the line x = 1

2 .
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Figure 1: Möbius band

In symbols, we have

U1 = {(x, y) : x 6= ±1},

U2 =
{

(x, y) :
1

2
< x ≤ 1 and − 1 ≤ x < −1

2

}
.

The coordinates are given by ϕ1, identity on U1 and ϕ2 on U2 by

ϕ2(x, y) =

{
(x, y) if 1

2 < x ≤ 1;

(2 + x,−y) if −1 ≤ x < −1
2 .

Note that as (1, y) = (−1,−y) in M , we need to check that ϕ2 is well defined. It is so and it
is smooth. Clearly we have on

U1 ∩ U2 = {(x, y) :
1

2
< x < 1} ∪ {(x, y) : −1 < x < −1/2}.

Note that U2 is twisted and then joined to U1. (See Figure 1.) The Jacobian of the coordinate
changes has determinant +1 on the first set on the right side above and determinant −1 on
the second set. Now , as earlier, this implies that M is not orientable.

Even dimensional Projective spaces

Another example of nonorientable manifolds is the even-dimensional real projective spaces.
The underlying set is the set Pn(R) of lines in Rn+1 passing through the origin. There is
another way of looking at Pn(R). On Rn+1 \ {0} we introduce the equivalence relation ∼
defined as follows:

x ∼ y ⇐⇒ λx = y with λ ∈ R, λ 6= 0.

An equivalence class [x] containing x ∈ Rn+1 can be identified with the line through the origin
in Rn+1 joining any point in the equivalence class. This second way of looking at Pn(R) is
what we are going to exploit to endow Pn(R) with a manifold structure. In Pn(R) we have
some very special sets Ui for 1 ≤ i ≤ n+ 1 defined by

Ui := {[x] ∈ Pn(R) : xi 6= 0}.

Notice that the definition of Ui is independent of the choice of the representative of [x]. For,
if y ∈ [x], then yj = λxj for all 1 ≤ j ≤ n+ 1 and for some nonzero real number λ. On these
sets we define ψi as follows:

ψi([y]) :=

(
x1
xi
, . . . ,

xi−1
xi

,
xi+1

xi
, . . . ,

xn+1

xi

)
∈ Rn
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for any x = (x1, . . . , xn+1) in the equivalence class [y]. Again notice that the map ψi is well
defined, that is, it is independent of the choice of x ∈ [y].

It is now an easy exercise to check that the family {(Ui, ϕi)} satisfies the assumptions of
the theorem. Thus Pn(R) is a manifold of dimension n. If you know about quotient topology
you may be interested in verifying that the topology we gave to Pn(R) is the quotient topology
induced from Rn+1 \ {0} with respect to ∼.

Let π : Sn → Pn(R) be the quotient map. Let ω be the n-form on Sn given by

ω = (−1)i−1
1

xi
dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 · · · dxn+1,

on the set Ui := {p ∈ Sn : xi(p) 6= 0}. Let σ : Sn → Sn be the diffeomorphism σ(x) = −x.
Then

σ∗(ω) = (−1)i−1
1

−xi
d(−x1) ∧ · · · ∧ d(−xi−1) ∧ d(−xi+1 · · · d(−xn+1) = (−1)n+1ω.

If α is a nowhere vanishing n-form on Pn(R), then π∗(α) = fω fo r some nowhere vanishing
smooth function f ∈ C∞(Sn). Since π ◦ σ = π, we see that

fω = π∗(α) = σ∗π∗(α) = (f ◦ σ)(−1)n+1ω.

Hence if n is even, f ◦ σ = −f . This means that if f(p) > 0, then f(−p) < 0. Since f is
nonzero and Sn is connected this leads to a contradiction.
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