Burnside Theorem on Matrix Algebras and Its Application to Group Theory

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

In 1905, Burnside proved the following remarkable result on groups of invertible matrices over the complex field \mathbb{C} :

Theorem 1 (Burnside). Let G be a group of invertible $n \times n$ matrices over \mathbb{C} . Then G has no nontrivial invariant subspaces in \mathbb{C}^n iff G contains n^2 linearly independent matrices, that is, iff the \mathbb{C} -span of G in $\mathbf{M}_n(\mathbb{C})$ is $\mathbf{M}_n(\mathbb{C})$ itself.

Remark 2. The "if" part is easy, since $\mathbf{M}_n(\mathbb{C})$ has no nontrivial invariant subspaces in \mathbb{C}^n (the "trivial" ones being $\{0\}$ and \mathbb{C}^n). Thus, the gist of Burnside's Theorem is in its "only if" part.

Remark 3. For an explicit example, take G to be the dihedral group G generated by the rotation $r = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and the reflection $s = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. It can be seen that G has no invariant subspaces in \mathbb{C}^2 , and in fact, $r, s, rs = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, together with the identity matrix clearly form a basis of $\mathbf{M}_2(\mathbb{C})$.

Remark 4. Burnside's Theorem (and its subsequent generalization by Frobenius and Schur) proved to be a fundamental result in the representation theory of groups, and has appeared in many books on that subject. From a ring-theoretic perspective, these yield a more general result, nowadays also called Burnside's Theorem, which can be formulated as follows.

Theorem 5. Let A be a subring of $\mathbf{M}_n(\mathbb{C})$ containing all scalar matrices. If A has no nontrivial invariant subspaces in \mathbb{C}^n , then $A = \mathbf{M}_n(\mathbb{C})$.

Remark 6. Note that Theorem 1 follows from Theorem 2 by applying the latter to the \mathbb{C} -span of the group G.

For the rest of this article, let $V = \mathbb{C}^n$, $R = \mathbf{M}_n(\mathbb{C})$, and let $A \subseteq R$ be a subring satisfying the hypotheses of Theorem 5.

Lemma 7. Any $g \in R$ commuting with all $f \in A$ is a scalar matrix.

Proof. Let $\lambda \in \mathbb{C}$ be an eigenvalue of g, and $E \subseteq V$ be the associated eigenspace $\{v \in V : gv = \lambda v\}$. For any $f \in A$, fg = gf clearly implies that $f(E) \subseteq E$. Since $E \neq 0$, we have E = V, and so $g = \lambda I$.

Lemma 8. Let $v \in V$ and W be a subspace of V. Assume that the following holds: If any $f \in A$ is zero on W, (that is, f(W) = 0) then f(v) = 0. It then follows that $v \in W$.

Proof. We proceed by induction on dim $W \ge 0$. The case dim W = 0 is clear, in view of the fact that $I_n \in A$. In case dim W > 0, write W as a sum of a proper subspace W_0 and a line $\mathbb{C}w$ where $w \notin W_0$, and consider the \mathbb{C} -subspace

$$H = \{h \in A : h(W_0) = 0\} \subseteq A.$$

By the inductive hypothesis, $H(w) \neq 0$. Since $AH \subseteq H$, we have $A(H(w)) \subseteq H(w)$, and so H(w) = V. Now define a linear map $g: V \to V$ by g(h(w)) = h(v) (for any $h \in H$). To check well-definition, suppose h(w) = 0 (for some $h \in H$). Then h(W) = 0, and so h(v) = 0 by assumption. Now g commutes with any $f \in A$, since

$$(gf)(h(w)) = g((fh)(w)) = (fh)(v) = f(g(h(w))) = (fg)(h(w))$$

for any $h \in H$. Therefore, by Lemma 7, g = aI for some $a \in \mathbb{C}$. Thus, h(v) = g(h(w)) = ah(w), and so h(v - aw) = 0 for any $h \in H$. By the inductive hypothesis again, we have $v - aw \in W_0$, and hence $v \in W$ as desired.

Proof. It suffices to show that A contains all the matrix units E_{ij} . For ease of notation, assume that j = 1. Let $e_1, ..., e_n \in V$ be the standard basis. Let $H = \{h \in A : h(e_2) = \cdots = h(e_n) = 0\}$. By Lemma 8, $H(e_1) \neq 0$, and as before, $H(e_1)$ is invariant under A. Therefore, $H(e_1) = V$; in particular, there exists $h \in H$ such that $h(e_1) = e_i$. We have then $h = E_{i1} \in A$, as desired.

We give an alternative proof of Theorem 5 following [1].

Theorem 9 (Burnside). Let V be a finite dimensional vector space over an algebraically closed field. Assume dim V > 1. If \mathcal{A} is an algebra of linear maps of V such that \mathcal{A} leaves no nontrivial subspace invariant, then $\mathcal{A} = \text{End}(V)$.

Proof. We claim that \mathcal{A} contains at least one element of rank 1. Let $A \in \mathcal{A}$ of minimal nonzero rank. If rank of A is not one, then there exist v_1 and v_2 such that Av_1 and Av_2 are linearly independent. Since $\mathcal{A}v = V$ for any nonzero v, we can find $B \in \mathcal{A}$ such that $BAv_1 = v_2$. Hence $ABAv_1$ and Av_1 are linearly independent so that $ABA - \lambda A \neq 0$ for any scalar λ . Since the field is algebraically closed, there exists λ such that $AB - \lambda I$ is not invertible on AV.But then, the rank of $(AB - \lambda I)A$ is less than that of A and is not zero—a contradiction.

Since any linear map is the sum of linear maps of rank one, it suffices to show that all rank one maps are in \mathcal{A} .

By the first paragraph, we know there exists at least one map of rank one, say, T. Let $Tv = f(v)v_0$ for some fixed $v_0 \in V$ and a fixed nonzero linear functional on V. Note that if

 $A \in \mathcal{A}$ and if we set $\psi(v) := f(Av)$, then $\psi \in A$, for, $\psi = T \circ A$. Now, if v is annihilated by all such ψ , then, since $\mathcal{A}v = V$ and $f \neq 0$, we conclude that v = 0. This means that all Tsuch that $Tx = g(x)v_0$ for some nonzero linear functional g lie in \mathcal{A} . Now, any rank one map B is of the form Bx = g(x)v for some linear functional g and a fixed vector $v \in V$. Consider $Ax := g(x)v_0$. Let $A_0 \in \mathcal{A}$ be such that $A_0v_0 = v$. Then $A_0Ax = A_0(g(x)v) = g(x)v$. That is, \mathcal{A} contains all rank one maps. \Box

As applications, we shall indicate proofs of some results related th the restricted Burnside problem.

Remark 10. Let G be finitely generated group such that there exists $N \in \mathbb{N}$ such that $x^N = e$ for all $x \in G$. The restricted Burnside problem poses the following question:

Is G finite?

We give two results which are in the affirmative.

Lemma 11. Let $G \subset GL(n, \mathbb{C})$ be a subgroup. Assume that the only subspaces invariant under G are the zero subspace and \mathbb{C}^n . (That is, if $W \subset \mathbb{C}^n$ is a vector subspace such that $gw \in W$ for all $g \in G$ and $w \in W$, then $W = \{0\}$ or $W = \mathbb{C}^n$.) Assume further that the image $\operatorname{Tr}(G) \subset \mathbb{C}$ is a finite subset with r elements. Then G is finite with at most r^{n^2} elements.

Proof. By Burnside's theorem, the set of finite linear combination of elements from G is $M(n, \mathbb{C})$. Hence we can find $g_k \in G$, $1 \leq k \leq n^2$ which form a basis of $M(n, \mathbb{C})$. Consider the map $\tau: M(n, \mathbb{C}) \to \mathbb{C}$ given by

$$\tau(\sigma) := (\operatorname{Tr}(\sigma g_1), \dots, \operatorname{Tr}(\sigma g_{n^2})), \qquad \sigma \in M(n, \mathbb{C}).$$

The map τ is obviously linear. We show that its kernel is trivial. Let $\tau(\sigma) = 0$. It follows that $\operatorname{Tr}(\sigma a) = 0$ for any $a \in M(n, \mathbb{C})$. If we take $a = E_{ij}$, a matrix unit, then we deduce that that (ij)-th entry of σ is zero. Consequently, $\sigma = 0$. So we conclude that τ is one-one and hence a linear isomorphism. Now for any $g \in G$, each of the n^2 -coordinates of $\tau(g)$ has r choices. Thus, $|\tau(G)| \leq r^{n^2}$.

Theorem 12 (Burnside). Let $G \subset GL(n, \mathbb{C})$. Assume that there exists $N \in \mathbb{N}$ such that $g^N = I$ for any $g \in G$. Then $|G| \leq N^{n^2}$.

Proof. If n = 1, the result is clear. So, we assume that $n \ge 2$. Since $x^N = 1$ for all $x \in G$, any eigenvalue of x is an N-th root of unity. In particular, Tr(x), being the sum of the eigenvalues of x, takes at most $r = N^n$ values in \mathbb{C} .

If there exists no nontrivial G-invariant subspace of \mathbb{C}^n , it follows from the last lemma that $|G| \leq r^{n^2} = N^{n^3}$.

If $W \subset \mathbb{C}^n$ is a nontrivial *G*-invariant subspace, then we choose a basis of *W* and extend it to a basis of \mathbb{C}^n . With respect to this basis, *G* will consist elements of the form $\begin{pmatrix} g_1 & h \\ 0 & g_2 \end{pmatrix}$ where g_1 is matrix of size $n_1 = \dim W$ and g_2 of size $n_2 = n - \dim W$. If we set G_i to be the set of such g_i that arise in the above representation of $g \in G$, it is easy to check that G_i are subgroups with the property that $x^N = 1$ for $x \in G_i$, i = 1, 2. We can apply indiction on n to conclude that $|G_i| \leq N^{n_i^3}$. The map $g \mapsto (g_1, g_2)$ of G into $G_1 \times G_2$ is verified to be a homomorphism. We claim that this map is one-one. For, if $g = \begin{pmatrix} g_1 & h \\ 0 & g_2 \end{pmatrix}$ lies in the kernel, then $g_1 = I$ and $g_2 = I$ and

$$I = g^{N} = \begin{pmatrix} I & h^{N} \\ 0 & I \end{pmatrix} = \begin{pmatrix} I & Nh \\ 0 & I \end{pmatrix}.$$

We conclude that h = 0. Thus the above map is one-one and so

$$|G| \le |G_1| \cdot |G_2| \le N^{n_1^3} \cdot N^{n_2^3} \le N^{n^3}.$$

Theorem 13. A subgroup $G \subset GL(n, \mathbb{C})$ is finite iff it has a finite number of conjugacy classes

Proof. Since the trace is a constant on conjugacy classes, we deduce that Tr(G) is finite. If there exist no nontrivial G-invariant subspaces, then the result follows from Lemma 11.

Let there exist a nontrivial G-invariant subspace. We use the notation of the proof of the last theorem. We leave it as an exercise to show that G_i have only finitely many conjugacy classes. By induction, we conclude that G_i are finite. The kernel H of the map $g \mapsto (g_1, g_2)$ is normal in G. It consists of elements of the form $\begin{pmatrix} I & h \\ 0 & I \end{pmatrix}$. This normal subgroup is abelian:

$$\begin{pmatrix} I & h \\ 0 & I \end{pmatrix} \begin{pmatrix} I & h' \\ 0 & I \end{pmatrix} = \begin{pmatrix} I & h+h' \\ 0 & I \end{pmatrix} = \begin{pmatrix} I & h' \\ 0 & I \end{pmatrix} \begin{pmatrix} I & h \\ 0 & I \end{pmatrix}.$$

We claim that any $g \in H$ has only finitely many *G*-conjugates. For, note that $[G : H] \leq |G_1| \cdot |G_2| < \infty$. Hence the index of the centralizer $C_G(g)$ in *G* is also finite. Since there are only finitely many *G*-conjugacy classes, *H* must be finite. (The reader should justify this.) Since we have already noted that $[G : H] < \infty$, it follows that *G* is finite.

Acknowledgement: I thank Raja Sridharan for bringing Lam's paper [2] to my attention. This write-up owes a lot to it.

References:

- (1) I. Halperin and P. Rosenthal, Amer. Math. Monthly, vol. 87, (1980), p. 810.
- (2) T.Y. Lam, Amer. Math. Monthly, vol. 105, (1998), pp. 651–653.
- (3) T.Y. Lam, A first course in noncommutative rings, Springer-Verlag, 1991, GTM 131