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In 1905, Burnside proved the following remarkable result on groups of invertible matrices
over the complex field C :

Theorem 1 (Burnside). Let G be a group of invertible n× n matrices over C. Then G has
no nontrivial invariant subspaces in Cn iff G contains n2 linearly independent matrices, that
is, iff the C-span of G in Mn(C) is Mn(C) itself.

Remark 2. The “if” part is easy, since Mn(C) has no nontrivial invariant subspaces in Cn

(the “trivial” ones being {0} and Cn). Thus, the gist of Burnside’s Theorem is in its “only
if” part.

Remark 3. For an explicit example, take G to be the dihedral group G generated by the

rotation r =

(
0 −1
1 0

)
and the reflection s =

(
1 0
0 −1

)
. It can be seen that G has no

invariant subspaces in C2, and in fact, r, s, rs =

(
0 1
1 0

)
, together with the identity matrix

clearly form a basis of M2(C).

Remark 4. Burnside’s Theorem (and its subsequent generalization by Frobenius and Schur)
proved to be a fundamental result in the representation theory of groups, and has appeared
in many books on that subject. From a ring-theoretic perspective, these yield a more general
result, nowadays also called Burnside’s Theorem, which can be formulated as follows.

Theorem 5. Let A be a subring of Mn(C) containing all scalar matrices. If A has no
nontrivial invariant subspaces in Cn, then A = Mn(C).

Remark 6. Note that Theorem 1 follows from Theorem 2 by applying the latter to the
C-span of the group G.

For the rest of this article, let V = Cn, R = Mn(C), and let A ⊆ R be a subring satisfying
the hypotheses of Theorem 5.

Lemma 7. Any g ∈ R commuting with all f ∈ A is a scalar matrix.
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Proof. Let λ ∈ C be an eigenvalue of g, and E ⊆ V be the associated eigenspace {v ∈ V :
gv = λv}. For any f ∈ A, fg = gf clearly implies that f(E) ⊆ E. Since E 6= 0, we have
E = V , and so g = λI.

Lemma 8. Let v ∈ V and W be a subspace of V . Assume that the following holds: If any
f ∈ A is zero on W , (that is, f(W ) = 0) then f(v) = 0. It then follows that v ∈W .

Proof. We proceed by induction on dim W ≥ 0. The case dim W = 0 is clear, in view of the
fact that In ∈ A. In case dim W > 0, write W as a sum of a proper subspace W0 and a line
Cw where w /∈W0, and consider the C-subspace

H = {h ∈ A : h(W0) = 0} ⊆ A.

By the inductive hypothesis, H(w) 6= 0. Since AH ⊆ H, we have A(H(w)) ⊆ H(w), and so
H(w) = V . Now define a linear map g : V → V by g(h(w)) = h(v) (for any h ∈ H). To
check well-definition, suppose h(w) = 0 (for some h ∈ H). Then h(W ) = 0, and so h(v) = 0
by assumption. Now g commutes with any f ∈ A, since

(gf)(h(w)) = g((fh)(w)) = (fh)(v) = f(g(h(w)) = (fg)(h(w))

for any h ∈ H. Therefore, by Lemma 7, g = aI for some a ∈ C. Thus, h(v) = g(h(w)) =
ah(w), and so h(v − aw) = 0 for any h ∈ H. By the inductive hypothesis again, we have
v − aw ∈W0, and hence v ∈W as desired.

Proof. It suffices to show that A contains all the matrix units Eij . For ease of notation,
assume that j = 1. Let e1, ..., en ∈ V be the standard basis. Let H = {h ∈ A : h(e2) = · · · =
h(en) = 0}. By Lemma 8, H(e1) 6= 0, and as before, H(e1) is invariant under A. Therefore,
H(e1) = V ; in particular, there exists h ∈ H such that h(e1) = ei. We have then h = Ei1 ∈ A,
as desired.

We give an alternative proof of Theorem 5 following [1].

Theorem 9 (Burnside). Let V be a finite dimensional vector space over an algebraically
closed field. Assume dimV > 1. If A is an algebra of linear maps of V such that A leaves no
nontrivial subspace invariant, then A = End(V ).

Proof. We claim that A contains at least one element of rank 1. Let A ∈ A of minimal
nonzero rank. If rank of A is not one, then there exist v1 and v2 such that Av1 and Av2
are linearly independent. Since Av = V for any nonzero v, we can find B ∈ A such that
BAv1 = v2. Hence ABAv1 and Av1 are linearly independent so that ABA − λA 6= 0 for
any scalar λ. Since the field is algebraically closed, there exists λ such that AB − λI is not
invertible on AV .But then, the rank of (AB − λI)A is less than that of A and is not zero—a
contradiction.

Since any linear map is the sum of linear maps of rank one, it suffices to show that all
rank one maps are in A.

By the first paragraph, we know there exists at least one map of rank one, say, T . Let
Tv = f(v)v0 for some fixed v0 ∈ V and a fixed nonzero linear functional on V . Note that if
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A ∈ A and if we set ψ(v) := f(Av), then ψ ∈ A, for, ψ = T ◦ A. Now, if v is annihilated by
all such ψ, then, since Av = V and f 6= 0, we conclude that v = 0. This means that all T
such that Tx = g(x)v0 for some nonzero linear functional g lie in A. Now, any rank one map
B is of the form Bx = g(x)v for some linear functional g and a fixed vector v ∈ V . Consider
Ax := g(x)v0. Let A0 ∈ A be such that A0v0 = v. Then A0Ax = A0(g(x)v) = g(x)v. That
is, A contains all rank one maps.

As applications, we shall indicate proofs of some results related th the restricted Burnside
problem.

Remark 10. Let G be finitely generated group such that there exists N ∈ N such that
xN = e for all x ∈ G. The restricted Burnside problem poses the following question:

Is G finite?

We give two results which are in the affirmative.

Lemma 11. Let G ⊂ GL(n,C) be a subgroup. Assume that the only subspaces invariant
under G are the zero subspace and Cn. (That is, if W ⊂ Cn is a vector subspace such that
gw ∈ W for all g ∈ G and w ∈ W , then W = {0}} or W = Cn.) Assume further that
the image Tr(G) ⊂ C is a finite subset with r elements. Then G is finite with at most rn

2

elements.

Proof. By Burnside’s theorem, the set of finite linear combination of elements from G is
M(n,C). Hence we can find gk ∈ G, 1 ≤ k ≤ n2 which form a basis of M(n,C). Consider
the map τ : M(n,C)→ C given by

τ(σ) := (Tr(σg1), . . . ,Tr(σgn2)), σ ∈M(n,C).

The map τ is obviously linear. We show that its kernel is trivial. Let τ(σ) = 0. It follows
that Tr(σa) = 0 for any a ∈ M(n,C). If we take a = Eij , a matrix unit, then we deduce
that that (ij)-th entry of σ is zero. Consequently, σ = 0. So we conclude that τ is one-one
and hence a linear isomorphism. Now for any g ∈ G, each of the n2-coordinates of τ(g) has
r choices. Thus, |τ(G)| ≤ rn2

.

Theorem 12 (Burnside). Let G ⊂ GL(n,C). Assume that there exists N ∈ N such that
gN = I for any g ∈ G. Then |G| ≤ Nn2

.

Proof. If n = 1, the result is clear. So, we assume that n ≥ 2. Since xN = 1 for all x ∈ G, any
eigenvalue of x is an N -th root of unity. In particular, Tr(x), being the sum of the eigenvalues
of x, takes at most r = Nn values in C.

If there exists no nontrivial G-invariant subspace of Cn, it follows from the last lemma
that |G| ≤ rn2

= Nn3
.

If W ⊂ Cn is a nontrivial G-invariant subspace, then we choose a basis of W and extend

it to a basis of Cn. With respect to this basis, G will consist elements of the form

(
g1 h
0 g2

)
where g1 is matrix of size n1 = dimW and g2 of size n2 = n − dimW . If we set Gi to be
the set of such gi that arise in the above representation of g ∈ G, it is easy to check that Gi
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are subgroups with the property that xN = 1 for x ∈ Gi, i = 1, 2. We can apply indction on
n to conclude that |Gi| ≤ Nn3

i . The map g 7→ (g1, g2) of G into G1 × G2 is verified to be a

homomorphism. We claim that this map is one-one. For, if g =

(
g1 h
0 g2

)
lies in the kernel,

then g1 = I and g2 = I and

I = gN =

(
I hN

0 I

)
=

(
I Nh
0 I

)
.

We conclude that h = 0. Thus the above map is one-one and so

|G| ≤ |G1| · |G2| ≤ Nn3
1 ·Nn3

2 ≤ Nn3
.

Theorem 13. A subgroup G ⊂ GL(n,C) is finite iff it has a finite number of conjugacy
classes

Proof. Since the trace is a constant on conjugacy classes, we deduce that Tr(G) is finite. If
there exist no nontrivial G-invariant subspaces, then the result follows from Lemma 11.

Let there exist a nontrivial G-invariant subspace. We use the notation of the proof of the
last theorem. We leave it as an exercise to show that Gi have only finitely many conjugacy
classes. By induction, we conclude that Gi are finite. The kernel H of the map g 7→ (g1, g2)

is normal in G. It consists of elements of the form

(
I h
0 I

)
. This normal subgroup is abelian:

(
I h
0 I

)(
I h′

0 I

)
=

(
I h+ h′

0 I

)
=

(
I h′

0 I

)(
I h
0 I

)
.

We claim that any g ∈ H has only finitely many G-conjugates. For, note that [G : H] ≤
|G1| · |G2| <∞. Hence the index of the centralizer CG(g) in G is also finite. Since there are
only finitely many G-conjugacy classes, H must be finite. (The reader should justify this.)
Since we have already noted that [G : H] <∞, it follows that G is finite.

Acknowledgement: I thank Raja Sridharan for bringing Lam’s paper [2] to my attention.
This write-up owes a lot to it.
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