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1. Fourier Series and a Complete ON Basis for L2[−π, π]. A good reference, which
we follow closely, is Rudin’s Real and Complex Analysis, especially §4.23–§4.26.

(a) A trigonometric polynomial p(x) is an expression of the form p(x) =
∑
|k|≤n cke

ikx.
It is said to be of degree n if at least one of |c−n| and |cn| is non-zero where ck ∈ C.
Note that p is a continuous of period 2π (in the sense that p(x+ 2π) = p(x) for all
x ∈ R). ck is given by

ck =
1

2π

∫ π

−π
p(x)e−ikxdx,

since
1

2π

∫ π

−π
e−irxdx =

{
0 if r 6= 0

1 if r = 0.

A trigonometric series is of the form
∑∞
−∞ cke

ikx (just a formal expression; no
assumption is made on the convergence of the series).

If f ∈ L1[−π, π], then the Fourier series of f is the trigonometric series

∞∑
−∞

cke
ikx where ck := f̂(k) =

1

2π

∫ π

−π
f(x)e−ikxdx.

We then write f ∼
∑
f̂(k)eikx. f̂(k) are called the Fourier coefficients of f . Note

that |f̂(k)| ≤ ‖f ‖L1[−π,π] = ‖f ‖L1 .

Let sn(f, x) :=
∑
|k|≤n f̂(k)eikx be the n-th symmetric partial sum of the Fourier

series of f ∈ L1[−π, π].

(b) Prove the Riemann Lebesgue Lemma: For f ∈ L1[−π, π], limn f̂(n) = 0. Hint:
Prove this for a characteristic function of an interval [a, b] ⊆ [−π, π]. Use the fact
that step functions are dense in L1[−π, π].

(c) A sequence {Kn} of real valued continuous functions in [−π, π] (with period 2π)
is called an approximate identity on [−π, π] if it has the following three properties:

(i) Kn is periodic and Kn ≥ 0.

(ii)
1

2π

∫ π

−π
Kn = 1.
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(iii) Given ε > 0 and δ > 0, there exists N such that if n ≥ N then(∫ −δ
−π

+

∫ π

δ

)
Kn < ε

Geometrically, (iii) says that the area under the graph of Kn accumulates around
the point 0 as n→∞.

(d) Let {Kn} be an approximate identity on [−π, π]. Let f be a continuous function as
[−π, π] of period 2π. Then fn(x) := f ∗Kn(x) = 1

2π

∫ π
−π f(t)Kn(x− t)dt converges

uniformly to f on [−π, π].

|fn(x)− f(x)| =
1

2π
|
∫
f(t)Kn(x− t)dt−

∫
f(x)K(t)dt|

≤ 1

2π
|
∫

[f(x+ t)− f(x)]K(t)dt|

≤ 1

2π

∫
|[f(x+ t)− f(x)]|K(t)dt

≤ 1

2π

(∫ −δ
−π

+

∫ π

δ
+

∫ δ

−δ

)
,

where δ is chosen by uniform continuity of f . The first two terms are estimated
using the bound for f and property (iii) of an approximate identity. The third is
estimated using the uniform continuity of f .

(e) We now give an explicit approximate identity. Let Kn(t) := Cn

(
1+cos t)

2

)n
where

Cn is chosen so that Cn
2π

∫ π
−πKnt) dt = 1.

(f) Observe that Kn is even, decreasing on [0, π] and that it satisfies the first two
properties of an approximate identity (as in Item 7j).

(g) We need an upper bound for Cn, that is, a lower bound for
∫ π
−πKn(t) dt. Enough

to consider the integral over [0, π].∫ π

0
Kn(t) dt ≥

∫ π

0
Kn(t) sin t dt (1)

=

∫ 1

0
undu =

1

n+ 1
. (2)

(h) To verify that the third condition in Item 7j also holds, we establish a stronger
property: Given 0 < δ < π,

Mn(δ) := sup
t≥δ

Kn(t)→ 0.

Since Kn is decreasing we have, for t ≥ δ,

Kn(t) ≤ Kn(δ) ≡ Cn
(

1 + cos δ

2

)n
≥ (n+ 1)rn,

where r := 1+cos δ
2 . As (n+ 1)rn → 0 as n→∞ (why?), the result follows.
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(i) Note that pn(t) := 1
2π

∫ π
−π f(s)K(s−t) dt is a trigonometric polynomial. So we have

shown that the vector subspace/algebra of trigonometric polynomials is dense in
C(T), ‖ ‖∞).

(j) Let f ∈ C([−π, π]) be periodic. Assume f̂(k) = 0 for all k ∈ Z. Then f = 0. Hint:
Assume f to be real. Then

∫
fp = 0 for all trigonometric polynomials p. Use the

last exercise to conclude that
∫
f2 = 0.

(k) Show that the set of continuous functions in C[−π, π] which are periodic, i.e.,
f(+π) = f(−π) is dense in L2[−π, π]. Hint: Recall that C[−π, π] is dense in
L2[−π, π]. Given g ∈ C[−π, π] ⊆ L2[−π, π], consider

gn =

{
g(t) if −π ≤ t ≤ tn := π − 1

n2

g(tn)− [g(−π)− g(tn)]
(
t−tn
π−tn

)
if t ∈ [tn, π].

(l) Show that the set of periodic continuous functions C(T) is not dense in (C[−π, π], ‖ ‖∞).

(m) Is the set of trigonometric polynomials dense in L2[−π, π]? If so, the last item is
‘obvious’.

(n) Let f ∈ L2[−π, π] be such that f̂(n) = 0 for all n ∈ N. Then f = 0 a.e. Hint:
Assume f to be real. The hypothesis implies that

∫
fg = 0 for any periodic

continuous function g. Use Item 7o. Or use Item 7q.

(o) For a lot of examples of approximate identities and their uses in analysis, refer to
my artilce on “Approximate Identities”.
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2. The set {en(z) :=
√
n+ 1zn} is an O.N. set in L2

H(D). We show that it is complete by
showing that if f ∈ L2

H(D, dA) is such that
∫
D f(z)zndA = 0, then f = 0.

If f is holomorphic in D, then we have a power series expansion of f in D (Why?):

f(z) =
∑
m∈Z+

cnz
m, z ∈ D.

The power series is uniformly convergent on compact subsets of D, in particular, uni-
formly convergent on B(0, r) = rD. Hence∫

rD
f(z)zn dA =

∑
m

cm

∫
rD
zmzn = cmπ

r2(n+1)

n+ 1
.

Note that f(z)zn ∈ L2(D) ⊂ L1(D). We use DCT to take the limit r → 1 and arrive at∫
D f(z)zn dA = π cn

n+1 . The assumption f ⊥ zn now leads to us to conclude that cn = 0.
Hence f = 0.

3. Laguerre Functions and a Complete ON Basis for L2[0,∞).

(a) The Laguerre polynomials are defined by the formulas

Ln(x) = exDn(xne−x)(−1)nxn +
n−1∑
k=0

(−1)k
(
n

k

)
n(n− 1) · · · (k + 1)xk,

for n ∈ Z+. Note that Ln is a polynomial of degree n.

(b) Laguerre functions φn are defined by

φn(x) =
1

n!
e−x/2Ln(x), n ∈ Z+.

(c) We claim that {φn : n ∈ Z+} is an orthogonal subset of L2(0,∞).

Let m < n. If we show that
∫∞
0 xkLn(x)e−x dx = 0 for all k < n, it will follow

that 〈Lm, Ln〉 = 0. For, Lm is a polynomial of degree m and m < n.

To prove this, we integrate
∫∞
0 xkLn(x)e−x dx by parts k-times:∫ ∞

0
xkLn(x)e−x dx =

∫ ∞
0

xkDn(xne−x) dx = (−1)kk!

∫ ∞
0

Dn−k(xne−x) dx = 0.

(Why? The integrand has a primitive, as n − k > 0 and the primitive takes the
value 0 at the end points.)

(d) ‖φn‖2 ≡ ‖φn‖L2(0,∞) = 1.

We use the last item and integrate by parts n-times.∥∥∥∥ 1

n!
e−x/2Ln

∥∥∥∥2 =
1

(n!)2

∫ ∞
0

Ln(x)Ln(x)e−x dx

=
1

(n!)2

∫ ∞
0

(−1)nxnDn(xne−x) dx

=
1

(n!)2
(n!)2

∫ ∞
0

xne−x dx

= 1.
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(e) The difficult step is to show that the ON set is a complete ON basis. If f ∈ L2(0,∞)
is such that 〈f, φn〉 = 0 for n ∈ Z+, then f = 0 a.e.

Let g(x) = f(x)e−x/2. Note that
∫∞
0 g(x)xLn(x) dx = 0. (Why?) This implies

that
∫∞
0 xng(x) = 0 for n ∈ Z+. (Why?) Enough to show that g = 0 a.e. We do

this in a series of steps.

i. Consider F (s) :=
∫∞
0 e−sxg(x) dx. We show that F is holomorphic on Re s > 0,

zero for 0 < s < 1/2 and hence F = 0. Since F is the Laplace transform of g,
and since Laplace transform is one-one, it will follow that g = 0 a.e.

ii. We show that F is holomorphic in Re s > 0. To do this, we use Lagrange’s
formula for differentiation under the integral sign. Fix t with Re t > 0. Then
there exists r > 0 and δ > 0 such that for all z ∈ B(t, r) we have Re z > δ.
Then there exists M > 0 such that

|∂e
−sx

∂s
g(x)| ≤ | − xe−sxg(x)| ≤M |g(x)|.

(Why? xne−x → 0 as x → ∞.) Since |g| ∈ L1(0,∞) (why?), we can differen-
tiate under the integral sign and get F ′(s) = −

∫∞
0 xe−sxg(x) dx. Hence F is

holomorphic.

iii. Using Holder’s inequality and the definition of gamma function, we obtain∫ ∞
0
|xng(x)| dx =

∫ ∞
0
|xne−x/2f(x)| dx ≤ ‖f ‖ (2n!)1/2.

iv. In particular, for s ≥ 0, we have∫ ∞
0

sn

n!
|g(x)| dx ≤ sn

n!
‖f ‖ (2n!)1/2 =: an, say.

v. The ratio test shows that the series
∑∞

n=0 an is convergent for 0 < s < 1/2.
Hence by DCT it follows that

∞∑
n=0

(−1)n
(sx)n

n!
g(x) = e−sxg(x) in L1, 0 < s < 1/2.

vi. It follows

F (s) =

∞∑
n=0

(−1)n
sn

n!
, 0 < s < 1/2.

vii. Hence F (s) = 0 for 0 < s < 1/2. By the identity theorem for holomorphic
functions, F = 0 on Re s > 0. Hence g = 0 a.e.

4. (An Extension of DCT.) Let (X,B, µ) be a measure space, J ⊂ R an interval.
(i) Assume that f : X × J → R be such that ft(x) := f(x, t) is measurable for each
t ∈ J .
(ii) Assume further that there exists g ∈ L1 such that |ft(x)| ≤ g(x) a.e.
(iii) For t0, a cluster point of J , assume that limt→t0 ft(x) = h(x) exists a.e.
Then h is integrable and

lim
t→t0

∫
f(x, t) dµ(x) =

∫
lim
t→t0

f(x, t) dµ(x) =

∫
h(x) dµ(x).
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5. (Differentiation under the integral sign.) Let (X,B, µ) be a measure space. Let
f : X × (a, b) → R be a function such that ft ∈ L1 for t ∈ (a, b). Assume that for
t0 ∈ (a, b), the partial derivative ∂f

∂t (x, t0), defined as

∂f

∂t
(x, t0) = lim

t→t0

f(x, t)− f(x, t0)

t− t0
,

exists a.e. Assume further that there exists g ∈ L1 and δ > 0 such that

|f(x, t)− f(x, t0)

t− t0
| ≤ g(x)a.e.

Then
(a) ∂f

∂t (x, t0) is in L1

(b)the function F : (a, b) → R defined as F (t) :=
∫
f(x, t)dµ(x) is differentiable at t0

and we have

F ′(t0) =

∫
∂f

∂t
(x, t0)dµ(x).

6. Laplace Transform. Let L : L1[0,∞)→ Cb[0,∞) be defined by

Lf(s) :=

∫ ∞
0

e−stf(t) dt, for s ≥ 0.

Lf is called the Laplace transform of f . We list some of the properties of the Laplace
transform.

(a) e−stf(t) is measurable. Since |e−stf(t)| ≤ |f | for s ≥ 0, it is integrable.

(b) |Lf(s)| ≤ ‖f ‖1 for s ≥ 0 and hence ‖Lf ‖∞ ≤ ‖f ‖1. Hence Lf is bounded.

(c) Note that lims→s0 e
stf(t) = e−s0tf(t). Using the extension of DCT (Item 4), we

see that

lim
s→s0

Lf(s) = lim
s→s0

∫ ∞
0

e−stf(t) dt

=

∫ ∞
0

lim
s→s0

e−stf(t) dt

= Lf(s0).

We therefore conclude that L maps L1[0,∞) into Cb[0,∞).

(d) In fact, the last argument shows that Lf is a continuous function vanishing at
infinity.

(e) Thus we have shown L : (L1[0,∞), ‖ ‖1)→ (Cb[0,∞), ‖ ‖∞) is a continuous linear
map.

(f) We now show that L is one-one. Let f ∈ L1[0,∞) be such that Lf(s) = 0 for s ≥ 0.

Let u = e−t so that the integral for Lf(s) becomes
∫ 1
0 u

s−1f(− log u) du = 0 for any
s ≥ 0, in particular for any s ∈ Z+. Using the density of the space of polynomials
in L1[0, 1], we deduce that f(− log u) = 0 a.e. on [0,1]. Since any Lipschitz function
maps sets of measure zero to sets of measure zero, it follows that f = 0 a.e. (Work
out the details!)
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7. The aim of this item is to prove the following result.

Theorem 1. {einx : n ∈ Z} is a complete O.N. basis for L2[−π, π].

(a) A trigonometric polynomial p(x) is an expression of the form p(x) =
∑
|k|≤n cke

ikx.
It is said to be of degree n if at least one of |c−n| and |cn| is non-zero where ck ∈ C.
Note that p is a continuous of period 2π (in the sense that p(x+ 2π) = p(x) for all
x ∈ R). ck is given by

ck =
1

2π

∫ π

−π
p(x)e−ikxdx,

since
1

2π

∫ π

−π
e−irxdx =

{
0 if r 6= 0

1 if r = 0.

A trigonometric series is of the form
∑∞
−∞ cke

ikx (just a formal expression; no
assumption is made on the convergence of the series).

If f ∈ L1[−π, π], then the Fourier series of f is the trigonometric series

∞∑
−∞

cke
ikx where ck := f̂(k) =

1

2π

∫ π

−π
f(x)e−ikxdx.

We then write f ∼
∑
f̂(k)eikx. f̂(k) are called the Fourier coefficients of f . Note

that |f̂(k)| ≤ ‖f ‖L1[−π,π] = ‖f ‖L1 .

Let sn(f, x) :=
∑
|k|≤n f̂(k)eikx be the n-th symmetric partial sum of the Fourier

series of f ∈ L1[−π, π].

(b) Prove the Riemann Lebesgue Lemma: For f ∈ L1[−π, π], limn f̂(n) = 0. Hint:
Prove this for a characteristic function of an interval [a, b] ⊆ [−π, π]. Use the fact
that step functions are dense in L1[−π, π].

(c) Derive the following expression for sn(f, x):

sn(f, x) =
1

π

∫ π

−π
f(t)

1

2

∑
|k|≤n

eik(x−t)

 dt.

Let Dn(x) := 1
2

∑n
−n e

ikx. Then Dn(x) is called the n-th Dirichlet kernel and

sn(f, x) = 1
π

∫ π
−π f(t)Dn(x− t)dt.

(d) Sum the geometric series Dn(x) to get Dn(x) =
1

2

sin(n+ 1/2)x

sin(x/2)
.

(e) Given a sequence (αn) of complex numbers, we say that αn converges to α in

Ceasaro means (and write this as C−limαn = α) if the averages an :=
α1 + · · ·+ αn

n
→

α.

If limαn = α, then C − limαn = α. The converse however is not true.

(f) Define the Ceasaro summability of a series as: If
∑
αn is given, define sn :=

∑k
1 αk

and σn := 1
n

∑k
1 sk. We say

∑
αn is Ceasaro summable to σ if limσn = σ. We

then write C −
∑
αn = σ.

If
∑
αn = s, then C −

∑
αn = s. However, converse is not true. Hint: Take

αn = zn, for |z| = 1, with z 6= 1.
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(g) Given f , we let

σn(f, x) :=
s0(f, x) + · · ·+ sn(f, x)

n+ 1
, n ∈ Z+

called the n-th Ceasaro sum of f .

(h) Show that for f ∈ L1[−π, π],

σn(f, x) :=
1

π

∫ π

−π
f(t)Kn(x− t)dt

where Kn(x) :=
1

n+ 1

n∑
k=0

Dk(x) is the n-th Fejer kernel.

(i) Show that

Kn(x) =
1

2(n+ 1)
·

sin2( (n+1)x
2 )

sin2 x
2

.

Hint:

n∑
k=0

Dk(x) =

n∑
k=0

sin(k + 1
2)x

2 sin x
2

=
1

2 sinx/2
× Im

(
n∑
k=0

ei(k+1/2)x

)

=
1

2 sinx/2
× Im

(
eix/2

1− ei(n+1)x

1− eix

)
.

(j) The sequence {Kn} of Fejer kernels has the following properties:
(i) Kn is periodic and Kn ≥ 0.

(ii)
1

2π

∫ π

−π
Kn = 1.

(iii) Given ε > 0 and δ > 0, there exists N such that if n ≥ N then(∫ −δ
−π

+

∫ π

δ

)
Kn < ε

Hint: To prove (iii) observe that

1

n

∫ π

δ

sin2 nt/2

sin2 t/2
dt ≤ 1

n

∫ π

δ

1

sin2 t/2
dt

and the last integral is a real number.

Geometrically, (iii) says that the area under the graph of Kn accumulates around
the point 0 as n→∞.

(k) A sequence {Kn} of real valued continuous functions in [−π, π] (with period 2π) is
called an approximate identity on [−π, π] if it has the three properties listed in the
last exercise. Thus the sequence {Kn} of Fejer kernels is an approximate identity.
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(l) Let {Kn} be an approximate identity on [−π, π]. Let f be a continuous function as
[−π, π] of period 2π. Then fn(x) := f ∗Kn(x) = 1

2π

∫ π
−π f(t)Kn(x− t)dt converges

uniformly to f on [−π, π].

|fn(x)− f(x)| =
1

2π
|
∫
f(t)Kn(x− t)dt−

∫
f(x)K(t)dt|

≤ 1

2π
|
∫

[f(x+ t)− f(x)]K(t)dt|

≤ 1

2π

∫
|[f(x+ t)− f(x)]|K(t)dt

≤ 1

2π

(∫ −δ
−π

+

∫ π

δ
+

∫ δ

−δ

)
,

where δ is chosen by uniform continuity of f . The first two terms are estimated
using the bound for f and property (iii) of an approximate identity. The third is
estimated using the uniform continuity of f .

(m) Let f ∈ C([−π, π]) be periodic. Then given ε > 0, there exists a trigonometric
polynomial p such that |f(x) − p(x)| < ε for x ∈ [−π, π]. Hint: p = σn(f, x) for
sufficiently large n.

(n) Let f ∈ C([−π, π]) be periodic. Assume f̂(k) = 0 for all k ∈ Z. Then f = 0. Hint:
Assume f to be real. Then

∫
fp = 0 for all trigonometric polynomials p. Use the

last exercise to conclude that
∫
f2 = 0.

(o) Show that the set of continuous functions in C[−π, π] which are periodic, i.e.,
f(+π) = f(−π) is dense in L2[−π, π]. Hint: Recall that C[−π, π] is dense in
L2[−π, π]. Given g ∈ C[−π, π] ⊆ L2[−π, π], consider

gn =

{
g(t) if −π ≤ t ≤ tn := π − 1

n2

g(tn)− [g(−π)− g(tn)]
(
t−tn
π−tn

)
if t ∈ [tn, π].

(p) Show that the set of periodic continuous functions C(T) is not dense in (C[−π, π], ‖ ‖∞).

(q) Show that the set of trigonometric polynomials is dense in L2[−π, π].

(r) Let f ∈ L2[−π, π] be such that f̂(n) = 0 for all n ∈ N. Then f = 0 a.e. Hint:
Assume f to be real. The hypothesis implies that

∫
fg = 0 for any periodic

continuous function g. Use Item 7o. Or use Item 7q.

8. We now indicate another proof which directly exhibits an approximate identity and
proceeds as in Item 7l that C(T) is dense in L2[−π, π].

(a) Let Kn(t) := Cn

(
1+cos t)

2

)n
where Cn is chosen so that Cn

2π

∫ π
−πKnt) dt = 1.

(b) Observe that Kn is even, decreasing on [0, π] and that it satisfies the first two
properties of an approximate identity (as in Item 7j).

(c) We need an upper bound for Cn, that is, a lower bound for
∫ π
−πKn(t) dt. Enough

to consider the integral over [0, π].∫ π

0
Kn(t) dt ≥

∫ π

0
Kn(t) sin t dt (3)

=

∫ 1

0
undu =

1

n+ 1
. (4)
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(d) To verify that the third condition in Item 7j also holds, we establish a stronger
property: Given 0 < δ < π,

Mn(δ) := sup
t≥δ

Kn(t)→ 0.

Since Kn is decreasing we have, for t ≥ δ,

Kn(t) ≤ Kn(δ) ≡ Cn
(

1 + cos δ

2

)n
≥ (n+ 1)rn,

where r := 1+cos δ
2 . As (n+ 1)rn → 0 as n→∞ (why?), the result follows.
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