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1. Fourier Series and a Complete ON Basis for L?[—7,7]. A good reference, which
we follow closely, is Rudin’s Real and Complex Analysis, especially §4.23-54.26.

(a)

(b)

()

A trigonometric polynomial p(x) is an expression of the form p(x) = Z\k\<n cpethr
It is said to be of degree n if at least one of |c_,| and |c,| is non-zero where ¢;, € C.
Note that p is a continuous of period 27 (in the sense that p(x + 27) = p(x) for all
x € R). ¢ is given by
1 " ikx
L= — x)e "fdx,
F= o | p(z)

since

1 [™ i 0 ifr#£0
— e dr =
27 J_, 1 ifr=0.

A trigonometric series is of the form Y% c,e™® (just a formal expression; no
assumption is made on the convergence of the series).
If f € LY[—7, 7], then the Fourier series of f is the trigonometric series

2%6 where ¢, == f(k) = % f( e k2 g,

We then write f ~ > f(k:)e““”. f(kz) are called the Fourier coefficients of f. Note
that |FU < Il pnm = I1F

Let sn(f, @) = 32 j51<n f(k‘)e"kx be the n-th symmetric partial sum of the Fourier
series of f € L[—m, ).

Prove the Riemann Lebesgue Lemma: For f € L'[—7, 7], lim,, f(n) = 0. Hint:

Prove this for a characteristic function of an interval [a,b] C [—m, 7]. Use the fact
that step functions are dense in L![—m, 7.

A sequence {K,} of real valued continuous functions in [—m, 7] (with period 27)
is called an approximate identity on [—m, | if it has the following three properties:
K is periodic and K, > 0.

)5 [ K=t
—T



()

(f)
(2)

(h)

(iii) Given € > 0 and d > 0, there exists N such that if n > N then

-6 T
( / + / > K, <e
—m 1
Geometrically, (1ii) says that the area under the graph of K, accumulates around
the point 0 as n — oo.

Let {K,,} be an approximate identity on [—, 7]. Let fbea continuous function as
[—m, 7] of period 2m. Then fy(z) := f* Ky(x) = 5= [ f(t)Ky(x — t)dt converges
uniformly to f on [—m, 7.

o) = f@I = 5l [ FOK x—uﬁ—/f (t)at
\/ flz+1) ()] K (t)dt|

2ﬂ/ﬂﬂx+®—f@mKﬁﬂt
1 -4 T 6
< = < / + / + / )»
2r \J-x Js -5
where ¢ is chosen by uniform continuity of f. The first two terms are estimated

using the bound for f and property (iii) of an approximate identity. The third is
estimated using the uniform continuity of f.
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We now give an explicit approximate identity. Let K, (t) := C, (HCQO 2 t)) where
C,, is chosen so that C o [T Kpt)dt =1.

Observe that K, is even, decreasing on [0,7] and that it satisfies the first two
properties of an approximate identity (as in Item 7j).

We need an upper bound for C),, that is, a lower bound for f:r K, (t)dt. Enough
to consider the integral over [0, 7].

/OWKn(t)dt > /K 1) sin di (1)

a /0 ”du_n+1 @

To verify that the third condition in Item 7j also holds, we establish a stronger
property: Given 0 < § < m,

M, (6) == sup K, (t) — 0.
t>6

Since K, is decreasing we have, for t > ¢,

K(t) < Kn(6) = Co (HSOS(;)” > (n 4 1)

where 7 1= X0 - Ag (n + 1)r™ — 0 as n — oo (why?), the result follows.



(i) Note that p,,(t) := o= ST f(s)K(s—t)dt is a trigonometric polynomial. So we have
shown that the vector subspace/algebra of trigonometric polynomials is dense in

C(T), | Nloo)-

(j) Let f € C(]—m,n]) be periodic. Assume f(k) =0 for all k € Z. Then f = 0. Hint:
Assume f to be real. Then [ fp = 0 for all trigonometric polynomials p. Use the
last exercise to conclude that [ f2 = 0.

(k) Show that the set of continuous functions in C[—m, 7| which are periodic, i.e.,
f(+7) = f(—n) is dense in L?[—m,«]. Hint: Recall that C[—n,7] is dense in
L?*[—m,7]. Given g € C[—m, 7] C L*[—m, ], consider

_{g(t) if —r<t<tpi=m—2%
77 ottn) — lo(=m) — g(ta)] (£2) it € [ta, 7],

ow that the set of periodic continuous functions is not dense in (C[—m, 7, .

1) Show that the set of periodi ti functi C(T) i t d in (C oo

(m) Is the set of trigonometric polynomials dense in L2[—,7|? If so, the last item is
‘obvious’.

(n) Let f € L2[—m, ] be such that f(n) = 0 for all n € N. Then f = 0 a.c. Hint:
Assume f to be real. The hypothesis implies that [ fg = 0 for any periodic
continuous function g. Use Item 7o. Or use Item 7q.

(o) For a lot of examples of approximate identities and their uses in analysis, refer to
my artilce on “Approximate Identities”.



2. The set {e,(2) :== v/n + 12"} is an O.N. set in L% (D). We show that it is complete by
showing that if f € L3, (D, dA) is such that [p f(2)z"dA =0, then f = 0.

If f is holomorphic in I, then we have a power series expansion of f in D (Why?):
flz) = Z 2™,z € D.
mEZy

The power series is uniformly convergent on compact subsets of I, in particular, uni-
formly convergent on B(0,r) = rD. Hence

2(n+1)

r
N dA — - m=n _ - )
/TDf(z)z %:c /r]D)Z 2 =emm

Note that f(2)z" € L*(D) C L*(D). We use DCT to take the limit 7 — 1 and arrive at
Jp f(2)2" dA = 725 The assumption f L 2" now leads to us to conclude that ¢, = 0.
Hence f = 0.

3. Laguerre Functions and a Complete ON Basis for L2[0, o).

(a) The Laguerre polynomials are defined by the formulas
n—1
L,(z)=€*D"(z"e ") (—1)"a" + Z(—l)k (Z)n(n — 1) (k4 1)z*,
k=0

for n € Z,. Note that L, is a polynomial of degree n.
(b) Laguerre functions ¢,, are defined by

¢Tl(x) = %e_x/QLn(m),n c Z+.

(c) We claim that {¢, : n € Z, } is an orthogonal subset of L?(0,00).
Let m < n. If we show that [;°z*L,(z)e ™ dx = 0 for all k < n, it will follow
that (L, L,) = 0. For, L,, is a polynomial of degree m and m < n.
To prove this, we integrate fooo 2L, (2)e™® dx by parts k-times:

/ 2L, (2)e ™" dx = / a* DM (z"e ) dx = (—1)kk!/ D" F(z"e %) dx = 0.
0 0 0

(Why? The integrand has a primitive, as n — k > 0 and the primitive takes the
value 0 at the end points.)

(d) lI¢nlly = 1o llL20,00) = 1-
We use the last item and integrate by parts n-times.

2

1 1 o
= omT/2 — —x
e L, = (n!)Q/o Ly(x)Ly(z)e " dx
1 > n,..n n n_—x
= (n!)2/0 (=1)"2"D"(a"e ") dx
1 2 > n,_ —
= (12 (n!) /0 2"e " dx
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(e) The difficult step is to show that the ON set is a complete ON basis. If f € L?(0, co)
is such that (f, ¢,) =0 for n € Z, then f=0a.e.
Let g(x) = f(z)e */2. Note that Iy~ 9(x)xLy(x) de = 0. (Why?) This implies
that [, z"g(z) =0 for n € Z. (Why‘?) Enough to show that g = 0 a.e. We do
this in a series of steps
. Consider F'(s fo e *g(x) dr. We show that F' is holomorphic on Re s > 0,
zero for 0 < s < 1/2 and hence F = 0. Since F is the Laplace transform of g,
and since Laplace transform is one-one, it will follow that g = 0 a.e.

ii. We show that F' is holomorphic in Res > 0. To do this, we use Lagrange’s
formula for differentiation under the integral sign. Fix ¢ with Ret > 0. Then
there exists 7 > 0 and 0 > 0 such that for all z € B(t,r) we have Rez > ¢.
Then there exists M > 0 such that

Je™ %
| 0s
(Why? z"e™% — 0 as  — oc.) Since |g| € L*(0,00) (why?), we can differen-

tiate under the integral sign and get F'(s) = — [;¥ we™*"g(x) dz. Hence F is
holomorphic.

9(@)] < | —ze™*g(x)| < Mlg(x)|.

iii. Using Holder’s inequality and the definition of gamma function, we obtain

[ etg@an = [T e @) e < 1 2nn
0 0

iv. In particular, for s > 0, we have
| SHla@)lde < 2171 @02 = a, say
0

v. The ratio test shows that the series Y ° a, is convergent for 0 < s < 1/2.
Hence by DCT it follows that

Z(—l)nwg(x) =e g(x)in L',0 < s < 1/2.

|
=0 n:
vi. It follows
o0 Sn
F(s) = Z(—l)nm,o <s<1/2
n=0

vii. Hence F(s) = 0 for 0 < s < 1/2. By the identity theorem for holomorphic
functions, F' =0 on Res > 0. Hence g =0 a.e.

4. (An Extension of DCT.) Let (X, B, 1) be a measure space, J C R an interval.
(i) Assume that f: X x J — R be such that fi(x) := f(z,t) is measurable for each
teJ.
(i) Assume further that there exists g € L! such that |fi(z)| < g(x) a.e.
(iii) For tg, a cluster point of J, assume that lim;_,;, fi(z) = h(x) exists a.e.
Then h is integrable and

hm/fxtdu /hmf:ntd,u /h ) du(x



5. (Differentiation under the integral sign.) Let (X, B, ) be a measure space. Let
f: X x (a,b) — R be a function such that f; € L! for t € (a,b). Assume that for
to € (a,b), the partial derivative %{(m,to), defined as

8f f($,t)—f(l',t0)

YJ — 1
ot ($7 tO) tigt t—to ;

exists a.e. Assume further that there exists g € L' and § > 0 such that

f(m7t) - f(Q?,to)
t—to

| < g(x)a.e.

Then
(a) &L (x,to) is in L'
(b)the function F': (a,b) — R defined as F(t) := [ f(z,t)d u(x) is differentiable at ¢,

and we have

F(to) = / ?;(x, to)d ().

6. Laplace Transform. Let £: L'[0,00) — C3[0, 00) be defined by

Lf(s):= /000 e Stf(t)dt, for s > 0.

Lf is called the Laplace transform of f. We list some of the properties of the Laplace
transform.

(a) e stf(t) is measurable. Since |e™ 5! f(t)| < |f| for s > 0, it is integrable.

(b) [Lf(s)] < |[fll; for s > 0 and hence || Lf||,, < || f]l;- Hence Lf is bounded.

(c) Note that limg_,g, €5t f(t) = e %0 f(t). Using the extension of DCT (Item 4), we

see that
lim £ = i —SUE() dt
dm Lf(s) = Dm0
= lim e %t f(¢)dt
[ e
= Lf(s0)-

We therefore conclude that £ maps L'[0, 00) into Cy[0, 00).

(d) In fact, the last argument shows that L£f is a continuous function vanishing at
infinity.

(e) Thus we have shown £: (L'[0,00), | [l;) = (Cb[0,00), || |l.) is a continuous linear
map.

(f) We now show that £ is one-one. Let f € L'[0,00) be such that Lf(s) = 0 for s > 0.
Let u = e~! so that the integral for £f(s) becomes fol u*~! f(—logu) du = 0 for any
s > 0, in particular for any s € Z,. Using the density of the space of polynomials
in L'[0, 1], we deduce that f(—logu) = 0 a.e. on [0,1]. Since any Lipschitz function
maps sets of measure zero to sets of measure zero, it follows that f = 0 a.e. (Work
out the details!)



7. The aim of this item is to prove the following result.

Theorem 1. {e* : n € Z} is a complete O.N. basis for L*[—, ).

(a)

A trigonometric polynomial p(x) is an expression of the form p(z) = Z\k\gn cpe't®.
It is said to be of degree n if at least one of |c_,| and |¢,| is non-zero where ¢ € C.
Note that p is a continuous of period 27 (in the sense that p(x + 27) = p(x) for all
x € R). ¢ is given by

1 ™

= 5= p(x)e_ikmdxa
2 J_,

Ck

since
i s ef’iTIdaf: _ 0 lf T # O
2 J_ . 1 ifr=0.
A trigonometric series is of the form Y% cpe™® (just a formal expression; no
assumption is made on the convergence of the series).
If f € LY[—7, 7], then the Fourier series of f is the trigonometric series
> . ~ 1 [7 .
chemz where ¢ := f(k) = o f(x)e *2dy,
T

—00 -

We then write f ~ > j?(k:)eikz. f(k‘) are called the Fourier coefficients of f. Note

~

that [f(B)] < [ fllpiprm = 1/ ll21-

Let sn(f, @) = 32 51<n f(k‘)e““ be the n-th symmetric partial sum of the Fourier
series of f € L[—m,n].

Prove the Riemann Lebesgue Lemma: For f € L'[—7, 7], lim,, f(n) = 0. Hint:

Prove this for a characteristic function of an interval [a,b] C [—m, 7]. Use the fact
that step functions are dense in L'[—m, 7.

Derive the following expression for s, (f,z):

Sn(fa l‘) = l /ﬂ— f(t) % Z eik(r—t) dt.

L —
|k|<n
Let Dy(z) := 13" e**. Then D,(z) is called the n-th Dirichlet kernel and

Sn(fa l‘) = %fjw f(t)Dn(x - t)dt'

1 si 1/2
Sum the geometric series D, (x) to get Dy (x) = QW
sin(z

Given a sequence (ay,) of complex numbers, we say that o, converges to « in

Ceasaro means (and write this as C—lim «,, = «) if the averages a,, :=
a.

n

If lim av,, = «, then C — lim oy, = . The converse however is not true.

Define the Ceasaro summability of a series as: If > a, is given, define s,, := Z’f o
and o, = %Zlf si. We say > oy, is Ceasaro summable to o if limo, = 0. We
then write C' — > ay, = 0.

If Yoy, = s, then C — > oy, = s. However, converse is not true. Hint: Take
ap = 2", for |z| =1, with z # 1.

ot-tam



(g) Given f, we let

so(f, ) + -+ sulf, 7)

(fa ) : n+1 , ne /A
called the n-th Ceasaro sum of f.
(h) Show that for f € L'[—m, 7],
1 s

on(f,x) = - F) Ky (x —t)dt

—T

n

1
where K, (z) := o kzo Dy(x) is the n-th Fejer kernel.
(i) Show that
1 sin?(HUT)
Kn( ): ’ 2z
2(n+1) sin® §
Hint:
n n . k‘ l
ZDk(:C) = sm2( +z2):c
k=0 k=0 St g
1 oy
_ I i(k+1/2)x
2sinx/2 o (kzoe

I S S
2sinx/2 1—e®

() The sequence {K,} of Fejer kernels has the following properties:
K is periodic and K,, > 0.

) o [ K=t
—T

(iii) leen € > 0 and 6 > 0, there exists N such that if n > N then

([ [) e

Hint: To prove (iii) observe that

1 (7 sin?nt/2 1M 1
/ Sl,nzn/dtg/ B —
n Js sin“t/2 n Js sin“t/2

and the last integral is a real number.

Geometrically, (iii) says that the area under the graph of K, accumulates around
the point 0 as n — oo.

(k) A sequence {K,} of real valued continuous functions in [—m, 7] (with period 27) is
called an approzimate identity on [—m, ] if it has the three properties listed in the
last exercise. Thus the sequence {K,} of Fejer kernels is an approximate identity.



(1) Let {K,} be an approximate identity on [—m , . Let fbea continuous function as
[—7, ] of period 27. Then f,(x) := f* K,(z) = f f(t) K, (x —t)dt converges
uniformly to f on [—7,7].

ful) — f(2)] = y/f m—tﬁ—/f (t)dt]
<\/ Fla 1) — Fa) K@)
< 5 [+ 0 - FlK @

< s (L[ ])

where ¢ is chosen by uniform continuity of f. The first two terms are estimated
using the bound for f and property (iii) of an approximate identity. The third is
estimated using the uniform continuity of f.

(m) Let f € C([-m,7]) be periodic. Then given € > 0, there exists a trigonometric
polynomial p such that |f(z) — p(z)| < ¢ for x € [—m,7]. Hint: p = on(f,z) for
sufficiently large n.

(n) Let f € C([—m,n]) be periodic. Assume f(k‘) =0 for all k € Z. Then f = 0. Hint:
Assume f to be real. Then [ fp =0 for all trigonometric polynomials p. Use the
last exercise to conclude that [ f2=o.

(o) Show that the set of continuous functions in C[—m,n| which are periodic, i.e.,
f(+7) = f(—=) is dense in L?[—7,7]. Hint: Recall that C[—,n] is dense in
L?[~7, 7). Given g € C[—m, 7] C L?[—, ], consider

g(t) if—wStStn::W—n—lg
In = _ .
9(ta) = lg(=m) = gta)] (=) ift € [t, 7.
(p) Show that the set of periodic continuous functions C(T) is not dense in (C[—7, 7|, || ||.)-

Show that the set of trigonometric polynomials is dense in L?[—, 7].

Let f € L2[—m, ] be such that f(n) = 0 for all n € N. Then f = 0 a.e. Hint:
Assume f to be real. The hypothesis implies that [ fg = 0 for any periodic
continuous function g. Use Item 7o. Or use Item 7q.

—_
e
S—

8. We now indicate another proof which directly exhibits an approximate identity and
proceeds as in Item 71 that C(T) is dense in L?[—n, 7).

n
(a) Let K, (t) :=C, (HCZOSt)) where C), is chosen so that g—; T Knt)dt = 1.

(b) Observe that K, is even, decreasing on [0, 7] and that it satisfies the first two
properties of an approximate identity (as in Item 7j).

(¢) We need an upper bound for C,,, that is, a lower bound for f:r K, (t)dt. Enough
to consider the integral over [0, 7.

/OﬂKn(t)dt > /K t)sintdt (3)

- /0 ”du—n+1. (4)




(d) To verify that the third condition in Item 7j also holds, we establish a stronger
property: Given 0 < § < ,

M, (9) :=sup K,,(t) — 0.
t>6

Since K, is decreasing we have, for t > 6,

1+ cosd

&@g&@5@< :

>” > (n+1)r",

where 7 := HCTOS";. As (n+1)r" — 0 as n — oo (why?), the result follows.
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