Existence and Uniqueness of Solutions of ODE Smooth Flow Associated to a Smooth Vector-field

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

1 Existence of Solutions of ODE

Proposition 1. Let $U \subset \mathbb{R}^N$ be an open set. Let $X: U \to \mathbb{R}^N$ be a Lipschitz map with Lipschitz constant $L: ||X(x) - X(y)|| \le L ||x - y||$ for all $x, y \in U$. Let $x_0 \in U$ be fixed. Let $B[x_0, r] \subset U$ and M > 0 be such that $||X(x)|| \le M$ for $x \in B[x_0, r]$. Let $\varepsilon < \min\{1/L, r/M\}$. Then there exists a unique C^1 curve $x: [-\varepsilon, \varepsilon] \to B[x_0, r]$ which is a solution of the following initial value problem (IVP):

$$x'(t) = X(x(t))$$
 and $x(0) = x_0.$ (1)

Proof. In view of the fundamental theorem of calculus, IVP Eq. 1 is equivalent to the integral equation:

$$x(t) = x_0 + \int_0^t X(x(s)) \, ds.$$
(2)

We solve this by Picard's method of iteration. Let $x_0(t) = x_0$ for $t \in [-\varepsilon, \varepsilon]$. Define x_n recursively:

$$x_{n+1}(t) = x_0 + \int_0^t X(x_n(s)) \, ds.$$

We prove by induction that $x_n(t) \in B[x_0, r]$ for $t \in [-\varepsilon, \varepsilon]$. We have

$$\|x_1(t) - x_0\| \le \int_0^t \|X(x_0)\| \, ds \le M \, (\text{mod } t) \le M\varepsilon < r$$

Assume that we have proved the result for all $k \leq n$. Now, since $x_n(s) \in B[x_0, r]$ for $s \in [-\varepsilon, \varepsilon]$, we have

$$\|x_{n+1}(t) - x_0\| \le \int_0^t \|X(x_n(s))\| \, ds \le M \, (\text{mod } t) \le M\varepsilon < r.$$

We next claim that the sequence (x_n) converge uniformly. To show this, we observe that

$$\begin{aligned} \|x_{n+1}(t) - x_n(t)\| &\leq \int_0^t \|X(x_n(s)) - X(x_{n-1}(s))\| \, ds \\ &\leq L \, (\bmod t) \sup_s \|x_n(s) - x_{n-1}(s)\| \\ &\leq L^2 \, (\bmod t)^2 \sup_s \|x_{n-1}(s) - x_{n-2}(s)\| \\ &\vdots \\ &\leq L^n \, (\bmod t)^n \sup_s \|x_1(s) - x_0(s)\| \\ &\leq ML^n \, (\bmod t)^{n+1}. \end{aligned}$$

Since $M \sum_{n} L^{n} \pmod{t}^{n+1} \leq M \varepsilon \sum_{n} (L\varepsilon)^{n}$ is a convergent geometric series, it follows from Weierstrass M-test, the series $\sum_{n} [x_{n}(t) - x_{n-1}(t)]$ and hence (x_{n}) is uniformly convergent on $[-\varepsilon, \varepsilon]$ to a continuous function $x \colon [-\varepsilon, \varepsilon] \to B[x_{0}, r]$. Hence appealing to the result on interchange of uniform limit and the Riemann integral for a sequence of continuous functions, we deduce that x satisfies the integral equation Eq. 2.

To prove uniqueness, let y be another solution of the IVP Eq. 1 and hence the integral equation 2 on $[-\varepsilon, \varepsilon]$. The continuous function $t \mapsto ||x(t) - y(t)||$ assumes its maximum value, say, at t_0 . We then have

$$\|x(t_0) - y(t_0)\| = \left\| \int_0^t [X(x(s)) - X(y(s))] \, ds \right\|$$

$$\leq \int_0^t \| [X(x(s)) - X(y(s))] \| \, ds$$

$$\leq L\varepsilon \sup_s \|x(s) - y(s)\|$$

$$= L\varepsilon \|x(t_0) - y(t_0)\|.$$

Since $L\varepsilon < 1$, this inequality is true iff $||x(t_0) - y(t_0)|| = 0$, i.e. iff x(t) = y(t) for $t \in [-\varepsilon, \varepsilon]$.

Ex. 2. Let $A: [-a, a] \times U \to M(n, \mathbb{R})$ be a continuous matrix valued function. Then the IVP

$$\frac{a}{dt}\psi(t,x) \equiv \psi'(t,x) = A(t,x)\psi \quad \text{and} \quad \psi(0,x) = I, \text{Identity}$$
(3)

has a unique solution in $[-\varepsilon, \varepsilon]$ for some $\varepsilon > 0$. *Hint:* Adapt the above proof. Use the operator norm $||A|| := \max\{||Au|| : u \in \mathbb{R}^n \text{ and } ||u|| = 1\}$. Observe that $||AB|| \le ||A|| ||B||$.

Ex. 3. Generalize the above proposition as follows. Let $\Lambda \subset \mathbb{R}^N$ be open. Assume that $X: U \times \Lambda \to \mathbb{R}^n$ is continuous. Assume further that X is uniformly Lipschitz in x: there exists a constant L such that

$$||X(x,\lambda) - X(y,\lambda)|| \le L ||x - y||, \quad \text{ for all } x, y \in U, \lambda \in \Lambda.$$

Then there exists a unique continuous solution $x(t, \lambda)$ on $[-\varepsilon, \varepsilon] \times \Lambda$ for some suitable ε .

Keep the notation of the proposition. Let the unique solution of IVP Eq. 1 be denoted by $\gamma_{x_0}(t)$. Then γ_{x_0} is a C^1 curve from $[-\varepsilon, \varepsilon] \to B(x_0, r)$ such that $\gamma_{x_0}(0) = x_0$ and that $\gamma'_{x_0}(t) = X(\gamma_{x_0}(t))$. The next theorem shows that if we can cut down the neighbourhood of x_0 to $B(x_0, r/2)$, then we can find an $\varepsilon > 0$ such that for each $x \in B(x_0, r/2)$, we have a C^1 curve $\gamma_x \colon [-\varepsilon, \varepsilon] \to B(x_0, r)$ such that $\gamma_x(0) = x$ and $\gamma'_x(t) = X(\gamma_x(t))$ for $t \in [-\varepsilon, \varepsilon]$. More over, if we set $F(t, x) \coloneqq \gamma_x(t)$ for $x \in B(x_0, r/2)$ and $(\text{mod } t) < \varepsilon$, then F is jointly continuous on $[-\varepsilon, \varepsilon] \times B(x_0, r/2)$. Before proving this, we need a celebrated inequality.

Lemma 4 (Gronwall Inequality). Let $f, g: [a, b] \to \mathbb{R}$ be nonnegative continuous functions. Assume that there is a $C \ge 0$ such that

$$f(t) \le C + \int_{a}^{t} f(s)g(s) \, ds.$$

Then

$$f(t) \le C \exp\left(\int_{a}^{t} g(s) \, ds\right), \quad \text{for } t \in [a, b].$$

Proof. Assume that C > 0. Let $h(t) := C + \int_a^t f(s)g(s) \, ds$. Then $f(t) \le h(t)$. We observe that h(t) > 0 and $h'(t) = f(t)g(t) \le h(t)g(t)$ so that

$$\frac{h'(t)}{h(t)} \le g(t).$$

Integrating this inequality yields $h(t) \leq C \exp\left(\int_a^t g(s) \, ds\right)$. Since $f(t) \leq h(t)$, the result follows.

If C = 0, use the result for $C_{\varepsilon} = \varepsilon$ and take limits to get h(t)=0 and hence f(t) = 0. \Box

Theorem 5. Let $\Lambda \subset \mathbb{R}^k$ and $U \subset \mathbb{R}^N$ be open. Let $X : U \times \Lambda \to \mathbb{R}^N$ be Lipschitz continuous on U uniformly in the variable from Λ :

$$||X(x,\lambda) - X(y,\lambda)|| \le L ||x - y||, \quad \text{for all } x, y \in U, \lambda \in \Lambda.$$

Fix a point $x_0 \in U$. Choose r > 0 such that $B(x_0, 2r) \subset U$. Then there exists an $\varepsilon > 0$ and a continuous function

$$F: [-\varepsilon, \varepsilon] \times B(x_0, r) \times \Lambda \to B(x_0, 2r)$$

such that $\frac{d}{dt}F(t,x,\lambda) = X(F(t,x,\lambda))$ and $F(0,x,\lambda) = x$ for all $x \in B(x_0,r)$, $t \in [-\varepsilon,\varepsilon]$ and $\lambda \in \Lambda$.

In fact, F is Lipschitz in x uniformly in the variables (t, λ) .

Proof. We shall only highlight the arguments as the details are as in the proof of Proposition 1. We shall not write the parameter variables explicitly in what follows.

For $x \in B(x_0, r)$, consider the integral equation

$$x(t) = x + \int_0^t X(x(s)) \, ds.$$

We take $\varepsilon < \min\{1/L, r/(2M)\}$. As earlier, start with $x_0 = x$ and define $x_n(t) = x + \int_0^t X(x_{n-1}(s)) ds$. It is easily seen by induction that $x_n(s) \in B(x_0, r)$. Then x_n converges to a function $F(s, x) := \gamma_x(s)$ uniformly on $[-\varepsilon, \varepsilon]$.

To show the continuity of F, let f(t) := ||F(t,x) - F(t,y)|| for $x, y \in B(x_0,r)$. We have

$$f(t) = \left\| \int_0^t \left[X(F(s,x)) - X(F(s,y)) \right] \, ds + (x-y) \right\|$$

$$\leq \|x-y\| + L \int_0^t f(s) \, ds$$

$$\leq e^{L \, (\text{mod } t)} \|x-y\|,$$

by Gronwall's inequality. Note that this shows that the solution F is Lipschitz in the xvariable. The joint continuity follows from the observation and the fact that F is C^1 in t:

$$\|F(s,x) - F(t,y)\| \leq \|F(s,x) - F(s,y)\| + \|F(s,y) - F(t,y)\|$$

$$\leq e^{L \pmod{s}} \|x - y\| + \|F(s,y) - F(t,y)\|.$$

Theorem 6. Let $X: U \to \mathbb{R}^n$ be a C^k vector field. Let $x_0 \in U$ be fixed. Then the function F of Theorem 5 is C^k on $(-\varepsilon, \varepsilon) \times B(x_0, r/4)$.

Proof. Let $x \in B(x_0, r/4)$. Choose $h \in \mathbb{R}^n$ such that ||h|| < r/4 so that $x + h \in B(x_0, r)$. Let $F(t, x) := \gamma_x(t)$ and $F(t, x + h) := \gamma_{x+h}(t)$ be the unique solutions of the IVP with initial values x and x + h respectively. We recall that F is Lipschitz in x-variable uniformly in t:

$$||F(t, x+h) - F(t, x)|| \le ||h|| e^{L\varepsilon}.$$
 (4)

We now define ψ to be the matrix valued solution of the IVP:

$$\psi' = DX(F(t,x)) \circ \psi$$
 with $\psi(0) = I$, Identity.

Note that such a solution $\psi(t, x)$ exists, say, in [-a, a] by Exer. 2 and Exer. 3.

We claim that
$$\frac{\partial}{\partial x}F(t,x) = \psi(t,x)$$
. Let $M_1 := \max\{\|DX(x)\| : x \in B[0,r]\}$. We have
 $F(t,x+h) - F(t,x) - \psi(t,x)h$ (5)
 $= \int_0^t [X(F(s,x+h)) - X(F(s,x)) - DX(F(s,x)) \circ \psi(s,x) \cdot h]$
 $= \int_0^t DX(F(s,x)) [F(s,x+h) - F(s,x) - \psi(s,x)h]$
 $+ \int_0^t [X(F(s,x+h)) - X(F(s,x)) - DX(F(s,x)) (F(s,x+h) - F(s,x))] ds.$ (6)

Let $f(t) := ||F(t, x + h) - F(t, x) - \psi(t, x)h||$. The integrand in the first integral is dominated by

$$\|DX(F(s,x))[F(s,x+h) - F(s,x) - \psi(s,x)h]\| \le \sup \|DX(F(s,x))\| \|F(s,x+h) - F(s,x) - \psi(s,x)h\| \le M_1 f(t).$$
(7)

Since X is differentiable, given $\eta > 0$, there exists $\delta > 0$ such that if $||h|| < \delta$, then

$$\|X(F(s, x+h)) - X(F(s, x)) - DX(F(s, x)) (F(s, x+h) - F(s, x))\| < \eta \|F(s, x+h) - F(s, x)\|,$$
(8)

for $s \in [-\varepsilon, \varepsilon]$.

It follows from Equations 6, 7, 8 and 4, that

$$f(t) \le M_1 \int_0^t f(s) \, ds + \eta \, \|h\| \, \varepsilon e^{L\varepsilon},\tag{9}$$

for $t \in [-\varepsilon, \varepsilon]$, $x \in B(x_0, r/4)$ and $||h|| < \min\{\delta, r/4\}$.

By Gronwall's inequality, it follows that for each $\eta > 0$,

$$f(t) \le \eta \|h\| \varepsilon e^{L\varepsilon} e^{M_1 a}, \qquad t \in [-\varepsilon, \varepsilon], \ x \in B(x_0, r/4) \& \|h\| < \min\{\delta, r/4\}.$$

The claim is thus established. It follows from this that F is C^1 in x and C^2 in t, if X is C^1 .

We prove that F is C^k in x-variable and C^{k+1} in the t-variable by induction. Since,

$$\frac{\partial}{\partial t}F(t,x) = X(F(t,x)),$$

we deduce that

$$\begin{array}{lll} \displaystyle \frac{\partial}{\partial t} \frac{\partial}{\partial t} F(t,x) & = & DX(F(t,x))X(F(t,x)) \\ \displaystyle \frac{\partial}{\partial t} \frac{\partial}{\partial x} F(t,x) & = & DX(F(t,x)) \frac{\partial}{\partial x} F(t,x). \end{array}$$

The first equation shows that F is C^{k+1} in the *t*-variable while the second shows that F is C^k in the *x*-variable.