Exercises in ODE

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

- 1. The geometric interpretation of a vector field is to attach to each point $p \in U$, the vector F(p) as a directed line segment emanating from p. A typical physical model for this concept is the velocity vector F(p) in the domain of a (time-independent) fluid flow.
- 2. Let $f: [a, b] \to \mathbb{R}^n$ be continuous. If we write $f(t) = (f_1(t), \ldots, f_n(t))$, we define

$$\int_a^b f(t) dt = \left(\int_a^b f_1(t) dt, \dots, \int_a^b f_n(t) dt\right).$$

The following observation is very useful and may be taken as the defining equation for $\int_a^b f(t) dt$:

$$\left\langle \int_{a}^{b} f(t) \, dt, v \right\rangle = \int_{a}^{b} \left\langle f(t), v \right\rangle \, dt, \text{ for all } v \in \mathbb{R}^{n}.$$
(1)

- 3. We have the fundamental theorem of calculus: $g(x) := \int_a^x f(t) dt$ is differentiable with derivative g'(x) = f(x) for $x \in [a, b]$.
- 4. In particular, if $f: [a, b] \to \mathbb{R}^n$ is a continuously differentiable function, then $\int_a^b f'(t) dt = f(b) f(a)$.
- 5. We have the following fundamental inequality:

$$\left\|\int_{a}^{b} f(t) dt\right\| \leq \int_{a}^{b} \|f(t)\| dt.$$

- 6. Let $f, f_n: [a, b] \to \mathbb{R}^N$ be a sequence of continuous functions. Write $f_n = (f_{n1}, \ldots, f_{nN})$ and $f = (f_1, \ldots, f_N)$. Then $f_n \to f$ uniformly on [a, b] iff $f_{nk} \to f_k$ uniformly on [a, b]as $n \to \infty$.
- 7. We have the analogue of Weierstrass *M*-test. With the notation of the last item, assume that $||f_n|| \leq M_n$ for all *n*. Then the sequence $s_n := \sum_{j=1}^n f_j$ converges uniformly to a function $s: [a, b] \to \mathbb{R}^N$. We say that the series $\sum_{n=1}^{\infty} f_n$ is uniformly convergent on [a, b] to the function *s*.
- 8. If $f_n \to f$ uniformly, then $\int_a^b f_n \to \int_a^b$.

- 9. Let X and Y be metric spaces. A function $f: X \to Y$ is said to be Lipschitz if there exists L > 0 such that $d(f(x_1), f(x_2)) \leq Ld(x_1, x_2)$ for all $x_1, x_2 \in X$. The constant L is called a Lipschitz constant of f. Note that if L' > L, then L' is also a Lipschitz constant of f and that any Lipschitz function is uniformly continuous.
- 10. Two most important examples of Lipschitz functions are (i) a linear map $A \colon \mathbb{R}^m \to \mathbb{R}^n$ and (ii) a differentiable map $f \colon U \subset \mathbb{R}^m \to \mathbb{R}^n$ with
- 11. f is said to be locally Lipschitz, if for each $x \in X$, there exists $r_x > 0$ such that the restriction of f to $B(x, r_x)$ is Lipschitz.
- 12. The most important examples of locally Lipschitz functions are: C^1 functions with bounded derivative.

Ex. 1. Show that $f(t) = t^2$ is Lipschitz on any closed and bounded subset of \mathbb{R} . Is it Lipschitz on \mathbb{R} ?

Ex. 2. Show that f(x) = 1/x is Lipschitz on any interval of the form $[\delta, \infty)$ where $\delta > 0$. Is it Lipschitz on $(0, \infty)$?

Ex. 3. Let $f(x,t) = x^2 e^{-t^2} \sin t$ on $R := \{(x,t) : 0 \le x \le 2, t \in \mathbb{R}\}$. Show that f is Lipschitz on R.

Ex. 4. Show that any linear map $A \colon \mathbb{R}^m \to \mathbb{R}^n$ is Lipschitz.

Ex. 5. Show that a differentiable function on a convex open set with bounded derivatives is Lipschitz. (Here the norm on any linear map A is defined as $||A|| := \sup\{||Ax|| : ||x|| \le 1\}$.)

Ex. 6. Apply the method of successive approximation to the following initial value problems:

- (a) x'(t) = x(t) and x(0) = 1.
- (b) x'(t) = x + t and x(0) = 0.
- (c) x'(t) = 4tx(t) and x(0) = 3.
- (d) x'(t) = Ax(t) with x(0) = b where A is an $n \times n$ real matrix and $b \in \mathbb{R}^n$.

(e) Data as in (d) where n = 2 and $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $x(0) = e_1 + e_2$.

(f) Data as in (d) where $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ and $x(0) = e_1$.

Ex. 7. Show that $f(t) = t^{2/3}$ is not Lipschitz on \mathbb{R} . Exhibit two distinct solutions of the IV problem: $x'(t) = 3x^{2/3}$ with x(0) = 0.

Ex. 8. Show that the IV problem $x' = x^3$ and x(0) = 2 has a solution on an interval of the form $(-\infty, b)$ for some $b \in \mathbb{R}$. What is the behaviour of x(t) as $t \to b_-$?

Ex. 9. Find the integral curves of the following vector fields on the open sets $U \subset \mathbb{R}^2$: (a) $f(x, y) = e_1$ where $e_1 = (1, 0) \in \mathbb{R}^2$ on $U = \mathbb{R}^2$.

- (b) f(x,y) = v, a fixed vector $v \in \mathbb{R}^2$ on \mathbb{R}^2 .
- (c) $f(x, y) = e_2 = (0, 1)$ on $U = \mathbb{R}^2 \setminus \{0\}$.
- (d) f(x, y) = (x, y) on $U = \mathbb{R}^2$.
- (e) f(x, y) = (-y, x) on $U = \mathbb{R}^2$.
- (f) f(x, y) = (x, -y) on $U = \mathbb{R}^2$.

Ex. 10. Extend the basic theorem of ODE to following situation: Let Λ be any set and let $U \subset \mathbb{R}^n$ be open. Let $f: U \times \Lambda \to R^n$ be uniformly Lipschitz in the first variable: there exists L > 0 such that $||f(x_1, \lambda) - f(x_2, \lambda)|| \leq L ||x_1 - x_2||$ for all $\lambda \in \Lambda$. Thus the vector field f now depends on a parameter " λ ". For instance, the vector field may depend on time!

Ex. 11. Solve the IV problem $x' = tx + 2t - t^3$ with x(0) = 0.