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1 Groups

1. Binary operations. A binary operation on a nonempty set X is a map ? : X ×X → X.
We denote the image ?(x, y) by x ? y or xy if the binary operation is understood.

2. Examples.

(a) The standard addition on Z:

+: Z× Z→ Z defined by + (m,n) := m+ n.

Similarly, the standard addition on Q, R, C, the set M(n,R) of all square matrices
of size n defines a binary operation the respective sets.

(b) While the subtraction − : Z × Z → Z defined by −(m,n) := m − n is a binary
operation on Z, it is not a binary operation on N

(c) The map (x, y) 7→ x+ y − 1 defines a binary operation on R.

(d) The map (x, y) 7→ x+ y + xy defines a binary operation on R.

(e) The map (A,B) 7→ A ∩ B defines a binary operation on the power set P (X) of a
set X.

(f) If S is any nonempty set, let X := F (S,R) denote the set of all real valued
functions on X. The map (f, g) 7→ f + g where f + g ∈ F (S,R) is defined as
(f + g)(x) = f(x) + g(x) is a binary operation on X.

3. Groups: Definition.

4. Examples of groups.

(1) The standard groups such as the additive group of integers, rational numbers, real
numbers, complex numbers

(2) The multiplicative group of the nonzero rational numbers, nonzero real numbers
and nonzero complex numbers

(3) The n-th roots of unity and all roots of unity

(4) S1 := {z ∈ C : |z| = 1} under multiplication of complex numbers.
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(5) The set of matrices of a given type under addition

(6) Groups of nonsingular matrices such as GL(n,R), SL(n,R), O(n,R). Give examples

such as

(
1 x
0 1

)
,

(
a −b
b a

)
, (a, b) 6= (0, 0).

(7) Functions from X to a group.

(8) Sym(X).

(9) ax+ b group

(10) Let G := {
(
a b
0 1

)
, a ∈ R∗, b ∈ R} is a group under matrix multiplication. (Do you

observe any similarity between the binary operations of this group with the ax+ b
group?)

(11) Dihedral Groups

(12) Zn as the set of all congruences classes under a well-defined addition.

(13) Un := Z∗n.

(14) R under the operation (x, y) 7→ x + y − 1 as well as (x, y) 7→ x + y + xy. The
underlying principle. See also the next example.

(15) On Q+, define a ? b := ab/2 where ab is the standard multiplication of two rational
numbers.

(16) Klein’s four group (as a set of matrices):(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
−1 0

0 1

)
,

(
−1 0

0 1

)
.

(17) Quaternion group (as a set of matrices):(
1 0
0 1

)
,

(
i 0
0 −i

)
,

(
0 i
i 0

)
,

(
0 1
−1 0

)
,

(
−1 0

0 −1

)
,

(
−i 0

0 i

)
,

(
0 −1
1 0

)
,

(
0 −i
−i 0

)
.

If we let e =

(
1 0
0 1

)
, a =

(
i 0
0 −i

)
and b =

(
0 i
i 0

)
, we have

a4 = e, b2 = a2, and b−1ab = a3.

(18) A matrix A ∈ GL(2,R) is said to be stochastic if the coulmns add up to 1. Thus(
a b
c d

)
∈ GL(2,R) is stochastic if a+c = 1 = b+d. Show that the set of stochastic

matrices from a group under matrix multiplication.

(19) Let G be a group and X a nonempty set. Let H := {f : X → G}. For α, β ∈
F (X,G) we define α?β ≡ αβ : X → G as (αβ)(x) := α(x)β(x). (Do you understand
the right side?) With this binary operation, F (X,G) becomes a group.

5. Basic Properties

(a) Uniqueness of the identity

(b) Uniqueness of the inverse

(c) Cancellation laws

(d) The only idempotent element is the identity
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6. Generalized associativity and law of indices.

7. Exercises:

(1) Show that the complex numbers ±1,±i form a group under multiplication. More
generally, show that for any n > 1, the complex n-th roots of unit from a group
under multiplication.

(2) Show that the maps fab : x 7→ ax+ b (a, b ∈ R, a 6= 0) form a group under composi-
tion. Write down formulae for the product and inverse.

(3) Let G := {(x, y) ∈ R2 : ax + by = 0} for a fixed a, b ∈ R. Let (x1, y1) + (x2, y2) :=
(x1 + x2, y1 + y2). Show that this defines a binary operation on G and that G is a
group under it.

(4) Consider the set of functions f1(x) = x, f2(x) = 1
1−x , f3(x) = x−1

x , f4(x) = 1
x ,

f5(x) = 1 − x and f6(x) = x
x−1 defined on R \ {0, 1}. Show that it forms a group

under the composition of functions.

(5) Let Gi be a group, i = 1, 2. Let G := G1 × G2 be the cartesian product. Define
(x1, y1)? (x2, y2) := (x1x2, y1y2). Show that G is group under this binary operation.

(6) If a1, . . . , an are elements of a group G, show that

(a1a2 · · · an)−1 = a−1n . . . a−11 .

Deduce that (an)−1 = (a−1)n for all a ∈ G and n ∈ N.

(7) Show that G := R \ {−1} is a group under the binary operation

a ∗ b = a+ b+ ab, a, b ∈ G.

(8) Let G be a group and fix c ∈ G. Define a binary operation a ∗ b = acb for a, b ∈ G.
Show that (G, ∗) is a group.

(9) Let n ∈ N. Let G be the set of all complex n-th roots of unity, that is, Cn :=

{e
k2πi
n : k ∈ Z}. Show that G is a group under the usual multiplication of complex

numbers.

(10) Show that the following statements are equivalent in a group G:
(i) G is abelian;
(ii) (xy)n = xnyn for all x, y ∈ G and all n ∈ Z;
(iii) (xy)n = xnyn for all x, y ∈ G and for three consecutive integers n;
(iv) (xy)2 = x2y2 for all x, y ∈ G;
(v) (xy)−1 = x−1y−1 for all x, y ∈ G.

(11) Let G be a group which has a unique element g of order n ≥ 2. Show that n = 2
and gx = xg for all x ∈ G.

(12) Let G be a finite group. Show that the number of elements x such that x2 6= 1 is
even. Hence conclude that if G is finite group of even order, then G has an element
of order 2.

(13) Let a and b two non-commuting elements of a group. Show that the elements of
the set {1, a, b, ab, ba} are all distinct. Hence conclude that any non-abelian group
has at least six elements.
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(14) Let G be finite group. Show that for any g ∈ G, there exists m ∈ N such that
gm = e.

(15) Given a, b, c ∈ G, show that there exists a unique x ∈ G such that axb = c.

(16) Let a ∈ G be fixed. Show that the left translation x 7→ ax is a bijection of G onto
itself. In particular, if G = {x1, . . . , xn}, then G = {ax1, . . . , axn}.

(17) Let G be a group. Let a, b ∈ G and n ∈ N. Show that (aba−1)n = aba−1 iff b = bn.

(18) Let G be a finite group and A, B subsets of G. Show that either G = AB or
|G| ≥ |A|+ |B|. Hint: Let c ∈ G\AB. Consider the set {ca−11 , . . . , ca−1m , b1, . . . , bn}.

(19) Let A be a subset of a group G with |A| > |G| /2. Show that each element of G is
a product of two elements of A.

(20) Let G be a group. Let K be a set and f : G→ K be a bijection. For y1, y2 ∈ K, we
define y1 ? y2 := f(x1x2) where yi = f(xi), i = 1, 2. Show that (K, ?) is a group.

(21) If a group G is generated by elements a, b and ba = abk, an = 1 show that every
element of G can be written in the form arbs (0 ≤ r < n); show also that if k 6= 1,
then bm = 1 for some m > 1.

Hint: Any product ar1bs1ar2bs2 · · · armbsm can be simplified by moving b past a,
using the “relation” ba = abk and reducing the exponent of a modulo n. Moreover,
ban = anbk

n
, hence bm = 1 for m = kn − 1.

(22) Let G be a group. Let a, b ∈ G. Let n ∈ N. Assume that we have the following
relations: an = e, b2 = e and aba = b. Show that the set

{e, a, . . . , an−1, b, ba, ba2, . . . , ban−1}

is the set of all possible finite products of a and b and that this set is a group under
the induced binary operation.

This group of 2n elements is known as the n-th dihedral group and is denoted by
D2n.

(23) We now give a matrix representation of D2n. Let ζ = e2πi/n be a primitive n-th

root of unity. Let A =

(
ζ 0
0 ζ

)
and B =

(
0 1
1 0

)
.

(i) Prove that A has order n and that B has order 2.
(ii) Prove that BAB = A−1.
(iii) Prove that the matrices of the form Ai and BAi , for 0 ≤ i < n, form a

multiplicative subgroup G ≤ GL(2,C).
(iv) Prove that each matrix in G has a unique expression of the form BiAj where

i ∈ {0, 1} and 1 ≤ j < n.

(24) Let G = R∗ Define a ? b := |a|b, the right side being the standard product of two
real numbers. Is G a group?

(25) Let (G, ·) be a group. Define a new binary operation on G as follows: a ? b := b · a.
Is (G, ?) a group?

(26) Let G be a finite abelian group, say, G = {xk : 1 ≤ k ≤ n}. Show that if x =
x1 · · ·xn, then x2 = e.

(27) Let G be a finite group. Assume that each element has a square root. That is, for
each a ∈ G, we can find x ∈ G such that x2 = a. Show that each element has a
unique square root. (Hint: This has nothing to do with group theory. Any map
from a finite set to itself is one-one iff it is onto!
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2 Subgroups

1. Let f : X → Y be any map. Let S ⊂ X. We then have a map g : S → Y defined by
g(a) = f(a) for a ∈ A. The map g is called the restriction of f to A. It is usually
denoted by f |A or by f itself if there is no confusion.

2. Let H be a nonempty subset of G. When we restrict the binary operation on G to
H (that is, the map ? : G × G → G to H × H), it may not be a binary operation as
?(x, y) /∈ H though x, y ∈ H.

3. A nonempty subset H ⊂ G of a group is a subgroup of G if the binary operation on G
induces a binary operation on H and H is a group under the induced binary operation.

4. Two subtle points to note:

• If eH denotes the identity of the element of the group H under the induced binary
operation, then eH = e, the identity element of G. This is true since e2H = eH and
the only element in G satisfying this relation is the identity element of G.

• If x ∈ H and y ∈ H is such that xy = yx = eH(= e), then y = x−1 by the
uniqueness of the inverses in G.

5. If H is nonempty and finite with the property that xy ∈ H for all x, y ∈ H, then H is
a subgroup.

If H is infinite this may not be true. Look at N ⊂ Z under addition,

6. Let H ⊂ G be a nonempty subset of a group. Then H is a subgroup of G iff for all
x, y ∈ H we have xy ∈ H and x−1 ∈ H. This is equivalent to the condition that for all
x, y ∈ H, the element xy−1 ∈ H.

7. Lots of examples of subgroups.

8. Complete description of subgroups of Z; mZ ∩ nZ, mZ+ nZ.

9. Fix A ⊂ X and look at Sym(X;A) that leave A invariant.

10. All bijections that are identity outside a finite subset A, (A may vary).

Let f, g ∈ Sym(X;A). Let A and B be the finite subsets that correspond to f and g.
Let x /∈ A ∪ B. Then (f ◦ g)(x) = f(g(x)) = f(x) = x. Thus, f ◦ g is the identity
outside the finite set A ∪B.

11. Intersection of a family of subgroups; smallest subgroup containing S ⊂ G. Its descrip-
tion when S is a singleton, all its elements commute etc.

12. Exercises:

(1) Any subgroup of Z is of the form mZ for a nonnegative integer m.

(2) In Z, we have mZ ⊂ dZ iff d divides m.

(3) Let m,n ∈ N. Then the subgroup (?) set (mZ) ∩ (nZ) is `Z where ` = lcm(m,n).
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(4) Let m,n ∈ N. Then the set mZ+ nZ is dZ where d = gcd(m,n). In particular, we
have the Bezout’s identity:

d = gcd(m,n) = am+ bn for some a, b ∈ Z.

(5) This is perhaps the best place to introduce the group Un ≡ Z∗n of units modulo n. Details!

(6) Give examples of subgroups H, K of a group G such that H ∪K is not a subgroup.

(7) If H,K are subgroups of a group, show that H ∪K is not a subgroup unless one
contains the other.

Hint: If neither contains the other, let x ∈ H \K and y ∈ K \H. Then xy ∈ H ∪K
so that xy ∈ H or xy ∈ K. In the first case, x−1(xy) = y ∈ H while in the second
case x = (xy)y−1 ∈ K, a contradiction.

(8) Let H be a subgroup of G and a ∈ G. Show that a ∈ H iff aH = H = Ha.

(9) If H is a subgroup of a group G, show that HH = H. Conversely, if H is a non-
empty finite subset of G such that HH = H, then H is a subgroup of G. Give an
example to show that the converse id false if H is infinite.

(10) Show that a finite group cannot be the union of two of its proper subgroups. Does
this hold true if we replace two by three?

(11) Let G be an abelian group. Show that H := {a ∈ G : a2 = 1} is a subgroup of G.

(12) Let G be a group and a, b, c ∈ G. If a commutes with b and c, show that the set

Ca(G) := {x ∈ G : ax = xa}

is a subgroup of G. Ca(G) is called the centralizer of a in G. Deduce that, for any
subset X of G, the set CX(G) := ∩x∈XCx(G) is a subgroup.

(13) Let Z(G) := {g ∈ G : gx = xg for all x ∈ G}. Show that Z(G) is a subgroup of G.
It is called the centre of G.

Can you get this as the intersection of a family of subgroups?

(14) Let a ∈ G. Show that CG(a), the centralizer of a in G is a subgroup of G and that
Z(G) ≤ CG(a).

(15) The normalizer NG(A) of any set A in a group G is defined as

NG(A) := {g ∈ G : gAg−1 = A}.

Show that NG(A) is a subgroup of G. If A is subgroup of G, show that A ≤ NG(A).

(16) If H is a proper subgroup of a group G, show that G =< G \ H >. Hint: Let
h ∈ H. If a ∈ G \H, consider ah /∈ H. Hence a−1(ah) ∈ 〈G \H〉.

(17) Let G be abelian. Let H,K ≤ G. Show that the set HK := {hk : h ∈ H, k ∈ K} is
a subgroup of G.

(18) Find all subgroups of a cyclic group.

(19) Find all subgroups of D6, D8 and D2n.

(20) Let H ≤ G. Define a relation ∼ on G by setting x ∼ y iff xy−1 ∈ H. Show that
this defines an equivalence relation.
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(21) Fix n ∈ N, n ≥ 2. Let Pn := {gn : g ∈ G}. Can you think of a sufficient condition
under which Pn is a subgroup? Hint: Abelian.

(22) Let H,K ≤ G. Show that HK := {xy : x ∈ H, y ∈ K} is a subgroup of G iff
HK = KH.

(23) Let H,K ≤ G be finite. Show that |HK| = |H||K|
|H∩K| . (Observe that HK need not be

a subgroup.)

(24) Let (Hn) be a sequence of subgroups of a group G such that Hn ⊂ Hn+1 for each
n ∈ N. Show that H := ∪n∈NHn is a subgroup of G.

(25) If G is a group and x, y ∈ G, define their commutator to be xyx−1y−1, and define
the commutator subgroup G to be the subgroup generated by all the commutators
(the product of two commutators need not be a commutator).

(i) Prove that G′ is normal subgroup of G.
(ii) Prove that G/G′ is abelian.
(iii) If f : G → A is a homomorphism, where A is an abelian group, prove that

G′ ≤ ker f . Conversely, if G′ ≤ ker f , prove that Im f is abelian.
(iv) If G′ ≤ H ≤ G, prove that H is normal in G. (v) Let G2 be subgroup

generated by {x2 : x ∈ G}. Show that G′ ≤ G2.

3 Order of an element

(1) Order of an element. Let g ∈ G. Let 〈g〉 denote the smallest subgroup containing
g. We have 〈g〉 = {gn : n ∈ Z}. If this subgroup is finite, we define the order of g
by the equation

|g| ≡ ord(g) := | 〈g〉 |.

If 〈g〉 is not finite, we then say that g is of infinite order.

Observe that Zg := {n ∈ Z : gn = e} is a subgroup of Z. We have Zg = nZ if
ord(g) = n.

(2) Fix a ∈ G. Consider the map f : Z → G defined by f(n) = an. It is a group
homomorphism. Its kernel is the subgroup Za, introduced in the last item. It is a
subgroup of Z of the form nZ, n ≥ 0. If n > 0, then we observe that ord(a) = n.
The element a is of infinite order iff the kernel is trivial or what is the same, the
homomorphism is one-one.

(3) Let a ∈ G be of finite order, say n. When is 〈a〉 =
〈
ak
〉
? It happens iff gcd(k, n) = 1.

Use Bezout’s idendity.

(4) Let ord(a) = n and d divisor of n. The ord(xd) = n/d. More generally, for any
positive integer k, ord(ak) = n/gcd(n, k).

Again, use Bezout’s idendity to show that
〈
ak
〉

=
〈
agcd(n,k)

〉
.

(5) Let ord(a) = n. Then ar = as iff r ≡ s ( (modn)). In particular, ak = ar if r is the
reminder of k when divided by n.

(6) Exercises (on Order of an element)

(1) Find the orders of the following elements in their respective groups: (a) [6] in
Z8, (b) [26] in Z30.
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(2)
〈
gag−1

〉
= g 〈a〉 g−1 and hence ord(gag−1) = ord(a). Hint: Observe that

(gag−1)m = gamg−1.

(3) ord(ab) = ord(ba). Hint: Are they conjugates?

(4) Let ord(a) = m, ord(b) = n. Assume that gcd(a, b) = 1 and that ab = ba. Show
that ord(ab) = mn.

(5) Find the possibilities of ord(g) if
(i) g3 = e = g20.
(ii) g2 = g6 and g3 = g12.
(iii) g44 = e = g33 and g2 6= e.

(6) Let a, b ∈ G be such that ord(a) = 12 and ord(b) = 33. Assume that 〈a〉 ∩ 〈b〉
is nontrivial. Show that a4 = b11.

(7) Let ord(a) = m, ord(b) = n. Assume that gcd(a, b) = d and that ab = ba. Show
that then are exists an element c such that ord(c) = mn/d. Hint: Let x = ad.
Observe that ord(c) = m/d is co-prime to n.

(8) Let H ≤ G. Assume that ord(g) = n and gm ∈ H. If gcd(m,n) = 1, show that
g ∈ H.

(9) Let g ∈ G be the unique element of order n. Show that gx = xg for all x ∈ G.
Hint: To say xg = gx is the same as saying xgx−1 = x.

(10) Let |G| = n and k ∈ N be such that gcd(n, k) = 1. Fix a ∈ G. Show that there
exists a unique solution to the equation xk = a. Hint: Bezout’s identity and
Lagrange’s theorem.

(11) Let G be a finite group and n > 2. Show that the number of elements of order
n is even.

(12) Groups of even order have an odd number of elements of order 2.

(13) Consider ([1], [1]) ∈ Z2 × Z3. What is its order? Can you generalize this?

(14) Let m,n ∈ N be relatively prime. Show that Zm × Zn is cyclic.

(15) Let A =

(
0 −1
1 0

)
and B =

(
0 −1
1 −1

)
. Find the orders of A, B and AB.

(16) Let H ≤ G be a subgroup of index 2. Then
(i) For any x ∈ G, we have x2 ∈ H.
(ii) H is normal in G.

(17) A4 does not have a subgroup of order 6.
If one such H exists, its index is 2 and hence for any σ ∈ S4, we have σ2 ∈ A4.
There are eight (4×3×23 ) 3-cycles in S4. If α is one of them, then α = α4 =
(α2)2 ∈ A4.

(18) Find the centre of GL(2,R). Hint: Any element has to commute with

(
1 1
0 1

)
and with

(
1 0
1 1

)
.

A general proof using the permutations may be indicated for GL(n,R).

(a) Lots of examples to show the power of the concept in settling the existence non-
existence of isomorphisms, homomorphisms between groups.
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4 Lagrange’s Theorem

(1) Recall that if 1 < n ∈ N, we defined an equivalence relation by setting a ≡ b if
b−a = −a+ b is divisible by n. In terms of the subgroup nZ, a ≡ b iff −a+ b ∈ nZ.

(2) We mimic the congruence relation if we are given a subgroup H ≤ G. We say that
a ≡ b if a−1b ∈ H. This defines an equivalence relation on G.

(3) The equivalence class [a] of a ∈ G is the left coset aH := {ah : h ∈ H}.
(4) The map h 7→ ah is a bijection from H onto aH.

(5) Let G be finite. Let the equivalence classes be eH, a1H, . . . , ak−1H. Since their
union is disjoint and all of G, we arrive at Lagrange’s theorem: |G| = |H| × k. k is
called the index of H in G and is denoted by [G : H].

(6) If H ≤ G, the set of left cosets of H in G is denoted by G/H.

(7) Let G be finite. Then ord(G) is a divisor of |G|.
(8) If |G| = n, then gn = e for any g ∈ G.

(9) Let G be finite. If H ≤ G, then |G/H| = |G|/|H|.
(10) Exercises:

(1) Every group of order p is cyclic and is isomorphic to Zp.
(2) Let |G| = 4. Show that G is abelian. Hint: If G is not cyclic, what can you say

about ord(x) for x ∈ G?

(3) Every group of order 4 is isomorphic to Z4 or Z2 × Z2.

(4) If G is a group which has only {e} and G as its subgroups, then G is isomorphic
to Zp for some prime p.

(5) Let a ∈ G be of order 30. What is the index of
〈
a4
〉

in 〈a〉?
(6) Let H ≤ K ≤ G. Show that [G : H] = [G : K]× [K : H].

(7) Let H ≤ G and K ≤ G. Assume that gcd(|H|, |K|) = 1. Show that H ∩K =
{e}.

(8) Let H ≤ G and K ≤ G. Assume that there exist distinct primes p and q such
that [G : H] = p and [G : K] = q. Show that pq divides [G : H ∩K].

(9) Let H ≤ G be proper. Show that 〈G \H〉 = G. Hint: Enough to show H is
captured. Look at the coset decomposition.

5 Normal subgroups

(1) We say that a subgroup H ≤ G is normal in G if all g ∈ G and h ∈ H, we have
ghg−1 ∈ H. We denote this by H E G.

(2) The following are equivalent for a subgroup H ≤ G:
(i) H E G.
(ii) For each a ∈ G, we have aHa−1 ⊂ H.
(iii) For each a ∈ G, we have aHa−1 = H.
(iv) For each a ∈ G, we have aH = Ha.

(3) Exercises:

(1) Let H ≤ Z(G). Show that H is normal in G.
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(2) Any subgroup of an abelian group is normal.

(3) Any subgroup of the quaternion group Q is normal.
The only significant case is when |H| = 2. The only element of order 2 in Q is
−1 which lies in the centre.

(4) Let [G : H] = 2. Prove that H is normal in G.

(5) Let H be the unique subgroup of order |H|. Prove that H E G.

(6) Let G be finite. Assume that H ≤ G is the only subgroup of index [G : H].
Prove that H E G.

(7) Let N E G be cyclic. Let H ≤ N . Show that H E G.

(8) Show that ker f of any homomorphism is a normal subgroup of the domain.

(9) Show that An E Sn.

(10) Show that SL(n,R) E GL(n,R).

(11) Show that SF (X) E S(X). (Recall that SF (X) consists of bijections of X that
move only finite subsets of X. ) Give Ref!

(12) The commutator subgroup G′ of G is normal. In fact, any subgroup containing
the commutator subgroup is normal.

(13) Let N E G and N ∩G′ = {e}. Show that N ⊂ G′.
(14) Let N E G and H ≤ G. Show that NH = HN is a subgroup of G. Show

further that it is normal if H E G.

(15) With the notation of the last item, show that H ∩N E H.

(16) Lt f : G→ H be an onto homomorphism. If N E G, show that f(N) E H.

(17) Let f : G→ H be an onto homomorphism. Show that a subgroup K such that
ker f ≤ K ≤ G is normal in G iff f(K) is normal in H.

(18) The diagonal subgroup ∆(G) := {(g, g) : g ∈ G} is normal in G iff G is abelian.

(19) Let G be a group and N ∈ N. Let H := {gN : g ∈ G}. Show that H is a
subgroup iff it is a normal subgroup.

(20) Prove that a subgroup N ≤ G is normal iff for all x, y ∈ G we have xy ∈ N iff
yx ∈ N.

(21) Let H E G and K E G. Assume that H ∩K = {e}. Show that for x ∈ H and
y ∈ K, we have xy = yx.

(22) Prove that the intersection of normal subgroups is again a normal subgroup.

(23) Let H be a subgroup of order m in a group G. Prove that the intersection of
all subgroups of order m is a normal subgroup of G.

(24) The set of inner automorphisms of a group is a normal subgroup of the group
of automorphisms of G.

(25) A subgroup H ≤ G is normal iff the product of any two left cosets is again a
left coset.

(26) Let H E G and |H| = 2. Show that H ≤ Z(G).

(27) Show that G× {e} E G×H.

(28) True or false? N E G and x ∈ N , g ∈ G =⇒ gxg−1 = x.

(29) Assume that every subgroup ofG is normal. Let x, y ∈ G and gcd(ord(x), ord(y)) =
1. Show that xy = yx.

(30)
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13. Centre, centralizer and normalizer. Normal Subgroups in S5 and A5; centres of Sn, An,
D2n and GL(n,R).

6 Cyclic Groups

1. Cyclic Groups. We say that a group G is cyclic if there exists a ∈ G such that
G = 〈a〉 = {an : n ∈ Z}.

2. Examples of cyclic groups.

(a) Z.

(b) Zn.

In fact, these are the only cyclic groups up to isomorphism. Explain the statement. For
instance, the cyclic n-th roots of unity is isomorphic to Zn.

3. Subgroups of cyclic groups. The following theorem gives complete information on this
issue.

Theorem 1. Let G be a cyclic group.
(1) Let G be an infinite cyclic group, say, G = 〈a〉. Then G = 〈x〉 iff x ∈ {a, a−1}. Any
of its subgroup H is of the form H = 〈an〉 where n is the least non-negative integer such
that an ∈ H.
(2) Let G = 〈a〉 be finite, say, of order n. Then

(i) G =
〈
ak
〉

iff gcd(k, n) = 1.

(ii) For each divisor d of n, there exists a unique subgroup Hd =
〈
an/d

〉
. There are

the only subgroups of G.

4. A group G of order n is cyclic if and only if, for each divisor d of n, there is at most
one (cyclic?) subgroup of order d.

One way is already seen.

Conversely, define a relation on a group G by ab if 〈a〉 = 〈b〉. It is easy to see that this
is an equivalence relation and that the equivalence class [a] of a ∈ G consists of all the
generators of C = 〈a〉. Thus, we denote [a] by Gen(C), and

G = ∪C cyclicGen(C).

Hence, n = |G| =
∑

C |Gen(C)|, where the sum is over all the cyclic subgroups of G.
We know that |Gen(C)| = ϕ(|C|). By hypothesis, G has at most one (cyclic) subgroup
of any order, so that

n =
∑
C

|Gen(C)| ≤
∑
d|n

ϕ(d) = n.

Therefore, for each divisor d of n, there must be a cyclic subgroup C of order d con-
tributing ϕ(d) to

∑
C |Gen(C)|.

5. Exercises on Cyclic Groups.

(1) Show that Z× Z is not cyclic.

11



(2) Show that Z2 × Z2 is not cyclic.

(3) Let |G| = 20. Assume that there exist 3 elements of order 4 in G. Can G be cyclic?
What if G has only two elements of order 4?

(4) Show that an abelian group of square-free order (i.e. of order not divisible by a
square) is cyclic.

Hint: Pick an element of largest order r. If |G| > r, there is an element b of prime
order p not dividing r but ab has order pr > r, a contradiction.

(5) Let H be the subgroup 〈[28], [88]〉 in Z154. Find k such that H = 〈[k]〉.
(6) Euler’s ϕ-function. Group theoretic proof of

∑
d|n ϕ(d) = n. N&S for a finite group

to be cyclic.

7 Homomorphisms

(1) Homomorphisms: Definition and examples; Fix a ∈ G, consider n 7→ an. Standard
properties. All homomorphisms of Z to itself.

(2) Let G and H be groups. A map f : G → H is said to be a homomorphism if for
all x1, x2 ∈ G , we have f(x1x2) = f(x1)f(x2). Do you understand what is the
meaning of x1x2 on the left side and that of f(x1)f(x2) on the right side?

(3) Any homomorphism of Z to itself is of the form f(x) = mx for some m ∈ Z.

(4) Projection map πi : G1 ×G2 → Gi, given by π1(x1, x2) = x1 etc. Can you think of
a group homomorphism from Gi to G1 ×G2?

(5) The map f : Z→ Zn given by f(k) = [k].

(6) Let p, q ∈ N with gcd(p, q) = 1. The map f : Z×Z→ Zp×Zq defined by f(m,n) :=
([m], [n]) where [m] is the congruence class of m modulo p etc.

(7) The map f : GL(n,R)→ R∗ defined by f(X) = det(X).

(8) The map f : M(n,R)→M(n,R) defined by f(A) := A+At where At is the tanspose
of A.

(9) Fix a ∈ G. The map f : G→ G defined by f(x) := axa−1.

(10) Consider the group R with the binary operation ? : (x, y) 7→ x+ y − 1. Show that
the map f : (R,+)→ (R, ?) defined by f(s) = s+ 1 is an isomorphism.

(11) Can you think of an analogous homomorphism from (R∗, ·) to (R \ {−1}), ?) where
?(a, b) := a+ b+ ab?

(12) The map f : C∗ → C∗ defined by f(z) = zn, n ∈ Z fixed.

(13) The map f : C∗ → R+ defined by f(z) = |z|.
(14) The map f : C∗ → S1 defined by f(z) := z

|z| .

(15) The map f : R→ R+ defined by f(x) = ex.

(16) Exerices:

(1) Show that a group G is abelian iff the map f(x) = x−1 is a homomorphism.

(2) Show that a group G is abelian iff the map f(x) = x2 is a homomorphism.

(3) Consider the map x 7→ 3x from (Q+, ·) to itself. Is it an isomorphism? Is it an
isomorphism of (Q,+)?
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(4) Is (Q,+) isomorphic to Q+, ·)?
(5) Let f, g : G → K be group homomorphisms. Let H := {x ∈ G : f(x) = g(x)}.

What can you say about H?

(6) Let f : Z29 → G be a group homomorphism such that f is not one-one. Deter-
mine f .

(7) Let G be a finite group such that there exists an onto homomorphism of f : Z→
Zn. What can you say about |G|?

(8) Let G be a finite group such that Z20 and Z12 are f(G) and g(G) for homo-
morphisms f and g. What can you say about |G|?

(9) Let f : Z21 → Z7 be onto. Determine ker(f).

(10) Find all homomorphisms of Zn to itself.

(11) Fix m,n ∈ N. Consider the map f : Z× Z→ Z defined by f(x, y) = mx+ ny.
Identify the image and kernel of f .

(12) Let m,n ∈ N. Define f : Zmn → Zm ×Zn by setting f([k]) = ([k], [k]). (Do you
understand that [k] has different meanings in this definition?) Show that this
is well-defined and that it is an isomorphism iff gcd(m,n) = 1.

(13) Deduce from the last exercise that if gcd(m,n) = 1, we have ϕ(mn) = ϕ(m)ϕ(n).

(14) Let f : G → K be a homomorphism and a ∈ G. Show that ord(f(a)) divides
ord(a). (Assume that a is of finite order.)

(15) Find all homomorphisms from Z6 to Z13. Can you generalize your observation?

(16) Let G be abelian. Fix n ∈ N. Show that f : G → G defined by f(g) = gn is a
homomorphism.

(17) With the notation of the last exercise, let |G| = m. Show that f is an automor-
phism iff gcd(m,n) = 1.

(18) Let f : G → G be an automorphism. Assume that the only fixed point of f
(that is, an element x ∈ G sucht hat f(x) = x) is the identity. Show that
G = {xf(x−1) : x ∈ G}.

(19) Let f : G → G be an automorphism. Assume that the only fixed point of f
(that is, an element x ∈ G sucht hat f(x) = x) is the identity. Assume further
that f ◦ f is the identity. Prove that the group G is abelian. Hint: Enough to
show that f(xyx−1y−1) = xyx−1y−1.

(20) Let f : G→ H be a homomorphism. Assume that ker f ≤ K ≤ G. Prove that
K E G.

(21) Let H be a simple group, that is, the only normal subgroups of H are {e}
and H. Let f : G → H a homomorphism. Show that either f is trivia or f is
one-one.

(17) Use of isomorphisms:

i. Let G := {
(
a −b
b a

)
: a, b ∈ R, a2 + b2 6= 0}. Show that G is a group under

matrix multiplication and that it is isomorphic to C∗.

ii. Let A =

(
a −b
b a

)
, with a2 + b2 6= 0. Let n ∈ N. Show that there exists a

matrix B =

(
u −v
v u

)
such that Bn = A.
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iii. Show that the ax+b group and the stochastic group (on page 2) are isomorphic.

Hint: If A is stochastic, let f(A) := BAB−1 where B =

(
1 0
1 1

)
.

8 Symmetric Groups

Cycle structure, transposition, sign of a permutation, alternating groups.

(1) Let X be any nonempty set. The set of bijections of X is a group under composition
of maps. It is called the symmetric group on X,

(2) If X is a finite set, say, X = {1, . . . , n}, the group S(X) is denoted by Sn. We have
|Sn| = n!

(3) If |X| ≥ 3, then S(X) is not abelian. For, if x, y, z are distinct elements of X,
consider σ ∈ S(X) defined by σ(x) = y, σ(y) = x and σ(x) = x for x /∈ {x, y}.
Similarly, define τ(y) = z, τ(z) = y and τ(x) = x for x 6= y, z. Then σ ◦ τ(x) =
σ(x) = y whereas τ ◦ σ(x) = τ(y) = z.

(4) If σ ∈ Sn, we denote it as a 2× n matrix where a1i = i and and a2i = σ(i):(
1 2 . . . n− 1 n

σ(1) σ(2) . . . σ(n− 1) σ(n)

)
.

(5) Fix σ ∈ S(X). Let H := 〈σ〉. We have the natural action of H on X. We have
an oribit decomposition of X under H. Let X = tXi be the disjoint union of the
orbits. Then σ maps each Xi to itself. If we dfine σi to be restriction of σ to Xi we
can reconstruct σ from σi’s.

It is expedient to consider σi ∈ S(X) by letting σi(x) = x if x /∈ Xi.

If S(X) = Sn, we then have the cycle decomposition of σ as σ = σ1 · · ·σk. (The
order does not matter. See the next item.) Give a few examples os that students
learn how to do this.

(6) Let α, β ∈ S(X). Assume that there exist disjoint subsets A,B ⊂ X such that
α(x) = x for x /∈ A and β(x) = x for x /∈ B. (Note that α maps A to itself etc.)
Then α ◦ β = β ◦ α.

(7) Keep the notation of the last item. Then α is called a cycle. Give examples of
cycles in Sn. What the last item says: Disjoint cycles commute.

(8) In Sn, a cycle is denoted by (i1, i2, . . . , ir). This is the bijection which maps i1 7→ i2,
i2 7→ i3, ik 7→ i1 and on the rest it is the identity.It is said to be of length k.

(9) A σ ∈ S(X) said to be a transposition if it is a cycle there exist two distinct elements
x, y such that σ(x) = y, σ(y) = x and σ(z) = z for z 6= x, y. Thus it is a cycle of
length 2.

(10) Any σ ∈ Sn is a product/composition of transpositions.

Since σ is a product of cycles, enough to show that any cycle is a product of
transpositions:

(i1 i2 . . . , ik) = (i1 ik)(i1 ik−1) · · · (i1 i2).
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(11) Consider P :=
∏n
i<j(xi − xj). If σ ∈ Sn, let σ · P :=

∏
i<j(xσ(i) = xσ(j)). Then

σ · P = εP where ε ∈ {±1}. ε defined by this equation is called the sign of the
permutation σ and denoted by ε(σ) or sign(σ).

Noe that if σ is a transposition, then ε(σ) = −1.

(12) The following are true:
(i) ε(στ) = ε(σ)ε(τ).
(ii) ε(σ−1) = ε(σ).
(iii) The map ε : Sn → {±1} is a group homomorphism.

(13) The kernel of the homormorphism is a normal subgroup called the alternating group
and is denoted by An. Note that |An| = n!/2.

(14) If σ is written as a product of k and ` transpositions, then k ≡ `( (mod 2)).

(15) Observe that if σ is a k-cycle, then ε(σ) = k − 1.

(16) If σ is a product of r-cycles including the cycles of length 1, then ε(σ) = (−1)n−r.

(17) Simplicity of An, n ≥ 5.

i. If n ≥ 3, the group An is generated by 3 cycles.
Since any 3-cycle is even, it lie sin An. Any element of An is a product of an
even number of transpositions. Observe the following:

(a, b)(c, d) = (adb)(adc) (1)

(ab)(ac) = (acb). (2)

ii. A1, A2 and A4 are not simple. A3 is simple.

iii. Let N be a proper nontrivial normal subgroup of An, n ≥ 5. Then N cannot
have 3-cycles.
Let (abc) ∈ N . Let (rst) be another 3-cycle. Let σ ∈ Sn be such that σ maps
a, b, c to r, s, t in respective order. Then σ(abc)σ−1 = (rst). It may happen that
σ /∈ An. Since n ≥ 5, we can take τ = σ(u, v) for u, v /∈ {a, b, c}. Then τ ∈ An
and we have τ(abc)τ−1 = (rst). Thus, if N has one 3-cycle, it has all three
cycles. In view of the last item, we conclude that N = An, a contradiction.

iv. Let N be a proper nontrivial normal subgroup of An, n ≥ 5. Then N cannot
any cycle of length greater than or equal to 4 in its cycle decomposition.
If it does, we shall show that it contains a 3-cycle. Let

σ = (abcd . . .) · · · ∈ N

Then N contains its An-conjugate

τ = (abc)σ(abc)−1 = (bcad . . .) · · ·

Hence τσ−1 = (abd) ∈ N . But then by an earlier observation, N = An. Hence
we conclude that the elements in N will have cycle decomposition of cycle
lengths at most 3.

v. Keep the notation as above. We claim that N cannot have an element with
two 3-cycles in its cycle decomposition.
For, if N 3 σ = (abc)(rst) · · · , then the An-conjugate

τ = (rst)σ(rst)−1 = (abr)(cts) · · · .
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Hence στ = (acrbs) · · · . But this was seen to be impossible. We are therefore
led to conclude that N contains elements which are products of even number
of transpositions.

vi. Let σ ∈ N be of the form σ = (ab)(rs). Choose c different from the 4 elements
involved in σ. Then

τ = (acb)σ(acb)−1 = (ac)(rs) ∈ N.

Hence στ = (acb) ∈ N , a contradiction.
So, if σ ∈ N , in its cycle decomposition, we must have at least 4 transpositions.
Let σ = (a1b1)(a2b2)(a3b3)(a4b4) · · · . Now,

τ = (a3b2)(a2b1)σ(a2b1)(a3b2) = (a1a2)(a3b1)(b2b3)(a4b4) · · · ∈ N.

The element στ = (a1b2a3)(a2b1b3) ∈ N, a contradiction.

vii. An is simple if n ≥ 5.
Follows from the last few items.

(18) Exercises:

(1) Find all subgroups of S4.
Answer: S4, A4, V4 Klein’s four group (four times), three subgroups of order 8
obtained by extending V by a transposition, 3 cyclic groups of order 4 generated
by a 4-cycle, 4 subgroups of order 6, arising as stabilizer of a symbol.

(2) Show that in Sn a cycle of length n commutes only with its powers. Does this
still hold for a cycle of length n− 1? Show that Sn has trivial center for n ≥ 3
and An has trivial center for n ≥ 4.
Hint: If we conjugate α = (1 2 . . . n) by σ, then we get (σ1 . . . σn). This is same
as α iff is is a cyclic permutation of (1 2 . . . n), that is, σ is a power of α.
The same holds true for β = (1 2 . . . n − 1), since if βσ = β, then σ(n) = n.
Thus effectively, σ is a permutation of the first n− 1 symbols.
For n > 3, Sn has two n cycles, and hence its center is 1. The same holds for
n = 3 as can be seen by direct verification.
For n > 4, if n is even, An contains two (n− 1) cycles not powers of each other.
When n is odd, it contains two n cycles not powers of each other. A4 has trivial
center by direct verification.

(3) Find α−1β−1αβ in the following cases: (i) α = (1 2 3), β = (1 4 5), (ii) α =
(1 2 3 4), β = (1 3 5) and (iii) α = (1 2 3), β = (4 5 6).
Answer: (i) (1 4 2), (ii) (1 3 5 4 2), (iii) 1.

(4) Show that the elements 1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3) form a subgroup of A4.
Any group isomorphic to this subgroup is called Klein’s four group.

(5) Show that Sn is generated by (1 2), (2 3), . . . , (n− 1n).
Answer:

(1 2 . . . i) = (i− 1 i)(i− 2 i− 1) · · · (1 2)

(i i+ k + 1) = (1 2 . . . i+ k)k(i+ k i+ k + 1)(1 2 . . . i+ k)−k.

(6) Show that Sn is generated by (1 2 3 . . . n) and (1 2).
Hint: (i+ 1 i+ 2) = (1 2 . . . n)−i(1 2)(1 2 . . . n)i; now use the last exercise.
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(7) Show that An is denoted by (1 2 3) and (1 2 3 . . . n) or by (1 2 3) and (2 3 . . . n)
according as whether n is odd or even.
Hint: (i+ 1 i+ 2 i+ 3) = (1 2 . . . n)−i(1 2 3)(1 2 . . . n)i.

(8) Show that an n-cycle (1 2 3 . . . n) can be expressed as a product of n− 1 cycles
but no fewer.
Hint: (1 2 . . . n) = (1 2)(1 3) · · · (1n). Let t1 · · · tkbe a representation as a prod-
uct of k transpositions (n > 2 say). Since (1 2 . . . n) interchanges no two sym-
bols, one of the symbols in tk must occur elsewhere, so tk introduces only one
new symbol; likewise for tk−1, . . . , t2, while t1 introduces two symbols. But all
symbols are moved, so k + 1 ≥ n, i.e., k ≥ n− 1.

(9) Show that every finite group is isomorphic to a subgroup of An for some n.
Hint: Let ϕ : G → Sym(X) be an one-one homomorphism. Then the map
x 7→ (ϕ(x), 1) · (ϕ(x), 2) on X × 2 is an injective homomorphism into even
permutations.

(10) Let G be subgroup of Sn not contained in An. Show that exactly half the
permutations in G are even.
Hint: Write A = G ∩An. If x ∈ G \An, then G = A ∩ xA.

(11) Show that any group of order 4n+ 2 has a subgroup of index 2. Hint: Use the
last exercise.
Answer:

9 Classes of Groups

(a) Cyclic groups: Subgroups, generators, Euler’s ϕ-function. Group theoretic proof
of
∑

d|n ϕ(d) = n. N&S for a finite group to be cyclic.

(b) Dihedral groups: Description, as a subgroup of Sn, matrix representation, genera-
tors and relations.

(c) Un := Z∗n.

(d) Matrix groups such as GL(n,R), SL(n,R), O(n,R), affine group and Euclidean
motion group etc.

10 New Groups from the old

(1) Quotient groups; the importance of the first homomorphism theorem should be
brought out in “identifying” the quotient group.

i. Examples of cosets; how to visualize it and look for a ‘transversal’ of represen-
tatives:

A. H ≤ G, Define ∀x, y ∈ G, x ∼ y if xH = yH.

B. G =
(
R2,+

)
and H = {y = 0}

C. G = C∗ and H = S1 = {z ∈ C/|z| = 1}
D. G = C∗ and H = R+.

E. G = Z and H = mZ
F. G = (R∗, ·), H = {±1}
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G. G = R∗ and H := R+.

H. G = GL(n,R) and H := SL(n,R).

I. G = C∗ and H is the n-th roots of unity for a fixed n ∈ N.

J. G = Sn and H := An.

K. ax+ b group with H consisting of (1, b).

ii. Examples of quotient groups. All the examples in the last item.

iii. Caution: H ∼= K ; G
H
∼= G

K .

iv. Hn � Hm for n 6= m but G
Hn
∼= G

Hm
.

v. Correspondence theorem.

Theorem 2. Let G be a group and H a normal subgroup. Consider the quotient
group G/H. Let L be the set of all subgroups of G/H and K be the subgroups
of G containing H. Then the map

ϕ : L → K, given by L 7→ π−1(L)

is a bijection.
Moreover, if L is a normal subgroup of G/K, then K := π−1(L) is a normal
subgroup of G.
Finally, there is a bijection of π−1(L) with L×H for any L ∈ L.

Proof. Let L ∈ L and let K := π−1(L). We show that K is a subgroup of
G. Let x, y ∈ K. That is, x, y ∈ π−1(L). Hence π(x), π(y) ∈ L. Hence
π(xy) = π(x)π(y) ∈ L, since L is a subgroup. This means that xy ∈ π−1(L) =
K. Similarly, if x ∈ K, π(x) ∈ L so that π(x)−1 ∈ L. Since π is a group
homomorphism, π(x)−1 = π(x−1). Thus, π(x−1) ∈ L or x−1 ∈ K. Thus we
have established that K is a subgroup of G. Also, if x ∈ H, π(x) = eH and
hence π−1(e) = H ⊂ K. Thus K ∈ K.
We now show that if L is normal in G/H, then K := π−1(L) is normal in G.
Let x ∈ K and g ∈ G. We have

π(gxg−1) = π(g)π(x)π(g−1) = π(g) · π(x) · π(g)−1.

Since π(x) ∈ L and L is normal in G/H, it follows thatπ(g)π(x)π(g)−1 ∈ L.
We therefore conclude that π(gxg−1) ∈ L. This means that gxg−1 ∈ K. Hence
K is normal in G.
We now show that that map ϕ is a one-one. Let L1 6= L2 ∈ L. Hence there
exists an element y in one of them and not in the other. Without loss of
generality, assume that y ∈ L2 \ L1. Since π is onto, there exists x ∈ G such
that π(x) = y. We claim that x ∈ K2 \K1. Since π(x) = y ∈ L2, we see that
x ∈ K2. If x ∈ K1 = π−1(L1), it follows that y = π(x) ∈ L1, a contradiction.
Hence we conclude that ϕ : L → K is one-one.
We now claim that that ϕ is onto. Let K ∈ K. Let L := π(K). One easily shows
that L is a subgroup of G/H. We claim that K = π−1(L) so that ϕ(L) = K.
First of all, observe that K ⊂ π−1(L). For, if x ∈ K, then π(x) ∈ π(K) = L.
Hence x ∈ π−1(L). We now show that π−1(L) ⊂ K. Let x ∈ π−1(L). Thus,
π(x) = L. But since π(x) ∈ π(K), there exists g ∈ K such that π(x) = gH.
Recall that π(x) = xH, So we have xH = gH or g−1x ∈ H. Since H ⊂ K, we
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see that g−1x ∈ K. By choice g ∈ K so that x = g(g−1x) ∈ K. Thus x ∈ K.
We have therefore shown that π−1(π(K)) = K. This establishes that ϕ is onto.
We have thus proved that ϕ : L → K is a bijection.
Let us now prove the last part. Let L := {giH : i ∈ I}. We claim that
π−1(L) = {gih : i ∈ I, h ∈ H}. For, let x ∈ π−1(L). Hence π(x) ∈ L. Thus
we can find a j ∈ I such that π(x) = gjH. But by the very definition of π, we
have π(x) = xH. It follows that xH = gjH. We deduce that g−1j x ∈ H, say,

g−1j x = h. Thus x = gjh. Hence the claim is proved.
We now claim that all the elements in the set {gih : i ∈ I, h ∈ H} are distinct.
Let gih = gjh1. We get g−1j gi = h1h

−1 ∈ H. It follows that giH = gjH and
hence gi = gj . Since gih = gjh1 = gih1, we find that h = h1. Thus the claim is
proved. The map L×H → π−1(L) given by (giH,h) 7→ gih is a bijection.

vi. A special case of the last part: if G is finite, we have |π−1(L)| = |L||H|.
vii. The result in the last part of the theorem is reminiscent of the following results

from linear algebra.
Let T : V → W be an onto linear map. Fix y ∈ W . Since T is onto, there is
x ∈ V such that Tx = y. We claim that the set of all solutions of Tx = y is
the set x + kerT . For, if z ∈ kerT , then T (x + z) = Tz + Tz = y + 0 = y.
Hence x+ kerT ⊂ T−1(y). Conversely, if v ∈ V satisfies Tv = y, we than have
Tx− Tv = 0 so that T (x− v) = 0. Thus, x− v ∈ kerT , say x− v = z ∈ kerT .
We have v = x− z ∈ x+ kerT .

viii. Let us apply the last theorem.

Theorem 3. Let G be a group of order pn. Then for each r with 0 ≤ r ≤ n
there exists a (normal) subgroup of order pr.

Proof. The proof is by induction on n. When n = 1, we have |G| = p so that
r = 0 or r = 1. The subgroups are accordingly the trivial and full groups.
Assume that the result holds true for groups of order pn−1 when n ≥ 2.
Let G be a group of order pn. Since G is a p-group, its center Z(G) is not trivial
so that |Z(g)| = pr with r > 0. By Cauchy’s theorem, there exists an element
a ∈ Z(G) of order p. Since the cyclic group < a >⊂ Z(G), the subgroup < a >
is normal in G. (For, if g ∈ G, gaig−1 = aigg−1 = ai, since ai commutes with
all elements of G.)
The quotient group G/ < a > is of order pn−1. Let 0 ≤ r ≤ n − 1. Then by
indction hypothesis, there exists a subgroup L ≤ G/ < a > whose order is pr.
By the last result, K := π−1(L) is a subgroup of G of order |L|| < a > | = pr+1.
Thus G has subgroups of order pr, 1 ≤ r ≤ n. The result is proved.

ix. An abelian group is simple iff it is finite and of prime order.

(2) Exercises:

i. Let H be a nontrivial subgroup of Sn. Show that either H ≤ An or exactly half
of the elements in H are even permutations.
Hint: Look order at H → Sn → Sn/An.

ii. Let G be a nonabelian group. Assume that there exist homomorphisms from a
group of order 12 and another of order 18 onto G. Identify G.
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iii. Let N be a normal subgroup of a finite group G with index n. Let H be a
subgroup of G with index m. Assume that gcd(m,n) = 1. Show that H ≤ N .

(3) Direct product of groups.

i. Let G, H be groups. Define a multiplication on G ×H by (g1, h1) · (g2, h2) =
(g1g2, h1h2). Show that G×H is a group under this operation. G×H is called
the (external) direct product of G and H.

ii. Prove that G×H and H ×G are isomorphic.

iii. Show that G×H is abelian iff G and H are abelian.

iv. Find subgroups isomorphic to G and H in G×H. Are they normal in G×H?
What is their intersection? Do elements of these subgroups commute with each
other?

v. Generalize the last few item to a direct product of finite number of groups.

vi. Let g = (g1, . . . , gn) ∈ G1×· · ·×Gn. Assume that each Gi is finite. Prove that

ord(g) = lcm(ord(g1), . . . , ord(gn)).

vii. Let G be a group. Let Hi ≤ G, 1 ≤ i ≤ n satisfy the following conditions:
(i) Each Hi is normal in G.
(ii) G = 〈Hi : 1 ≤ i ≤ n〉.
(iii) For each i, we have Hi ∩ 〈Hj : 1 ≤ j ≤ n, j 6= i〉 = {e}.

Then G is isomorphic to the direct product H1 × · · · ×Hn.

viii. Let G be a group and Hi ≤ G, 1 ≤ i ≤ n. Assume that each Hi is normal
in G. If each g ∈ G can be written uniquely as g = h1h2 · · ·hn with hi ∈ Hi,
1 ≤ i ≤ n, then G is the direct product H1 × · · · ×Hn.
This is similar to the (internal) direct sum definition of vector subspaces in
linear algebra.

ix. Exercises:

(1) Prove or disprove Z× Z is cyclic.

(2) Let G, H be cyclic groups of order two. Show that G×H is isomorphic to
Klein’s 4–group.

(3) Show that any group of order 4 is either cyclic or isomorphic to Z2 × Z2.

(4) Find the number of elements of order 8 in Z16 × Z24.

(5) Let gcd(m,n) = 1. Show that U(mn) is isomorphic to U(m)× U(n).

(6) Express GL(n,R) as a direct product of nontrivial groups.

(7) Consider ∆(G) := {(x, x) : x ∈ G}. Show that ∆(G) is a subgroup of
G×G.

(8) When is {(x, x−1) : x ∈ G} a subgroup of G×G?

(9) If p and q are distinct primes, find all subgroups of Zp × Zq.
(10) Fix m,n ∈ N. Can you identify {(x, y) ∈ Z × Z : mx + ny = 0} up to

isomorphism?

(11) If G×H is cyclic, show that the groups G and H are finite cyclic groups.

(12) What is the largest order of any element in Z36 × Z42?

(13) Let G and H be cyclic groups of order 2 and 3 respectively. Find the orders
of all elements of G×H. Conclude that G×H is .
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(14) Can you generalize part of the last exercise?

(15) Let H1, H2 be two normal subgroups of G such that H1 ∩ H2 = {e},
H1H2 = G. Then G is isomorphic to the (external) direct product H1×H2.
We say G is the (internal) direct product of H1 and H2.

(16) Let G be an (abelian) group of order 9. Show that G is either Z/(9) or
Z/(3)× Z/(3).

(4) Semidirect product: Only if time permits.

11 Group actions

(1) Definition and a lot of geometric examples.

(2) Let X be a set, G a group. A group action of G on X is a map α : G×X → X given by
α(ab, x) = α(a, α(b, x)) for all a, b ∈ G, x ∈ X.
α(e, x) = x for all x ∈ X.

We usually drop α and write α(g, x) as g · x or gx. Then (1) reads: (ab) · (x) = a · (b · x).
We also say G acts on X and X is a G–set (when the action α is understood).

(3) Examples of group actions.

(a) GL(n,R) = {n× n invertible matrices } acts on Rn.

(b) O(n,R) = {n× n orthogonal matrices } acts on Rn.

(c) If X is any set, SX , the symmetry group (of all bijections of X) acts on X.

(d) Let G = {±1}. Let G act on R via −1.x = −x. Can you define an action of G on
R∗?

(e) Let G = {±1}. We define two actions of G on R2.
(i) −1 · (x, y) := (y, x)
(ii) −1 · (x, y) := (−x,−y).

(f) Any group G acts on itself via left action: X = G, G×X → X given by (g, x) 7→ g ·x,
the group multiplication.

(g) A group G acts on itself via conjugation: (g, x) 7→ gxg−1. The orbits are called
conjugacy classes.

(4) The orbit of G in X is a set of the form G ·x = {g · x | g ∈ G} for a fixed x ∈ X. G ·x is
also called the orbit of x, denoted by Ox. Note that y ∈ Gx iff y = gx for some g ∈ G iff
x = g−1y for some g ∈ G iff x ∈ Gy. Thus Gx = Gy iff Ox = Oy. Define an equivalence
relation x ∼ y iff Gx = Gy. Its equivalence classes are orbits of G in X and X is the
disjoint union of orbits of G.

(5) Exercises:

(a) Find the orbits in the above examples. Draw pictures of orbits whenever possible.

(b) What are the orbits in Example 3g if G is abelian?
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(c) Let H ≤ G. Let H act on X = G via the left action: (h, x) 7→ hx. The orbits
are of the form Hx for some x ∈ G. Note that Hx = Hy iff xy−1 ∈ H. Write
G = ∪x∈GHx. Any two orbits are bijective via the map h → hx. If G is finite we
deduce Lagrange’s theorem.

(6) G acts transitively on X if for any x, y ∈ X, there is a g ∈ G such that gx = y. That is,
there is only one orbit in X.

Which of the actions in Example 3a to Example 5c are transitive?

(7) Fix x ∈ X. Let Gx := {g ∈ G | gx = x}. Then Gx is called the stabilizer of x in G and
is a subgroup. Gx is also called the isotropy subgroup of x.

(a) Let Ox = Oy. How are the stabilizers Gx and Gy related?

(b) Find the stabilizers of various elements in the above six examples.

(c) Every subgroup H of a group G occurs as a stabilizer of an element in a G–set.
Hint: Let X = {Hg | g ∈ G} be the set of (right) cosets, i.e., the orbits of H in
G with respect to the left action of H on G. Then |X| = [G : H], the index of
H in G. G acts on X by (a,Hg) 7→ Hga−1. (If Y is the set of left cosets, i.e.,
X = {gH | g ∈ G}, then G on Y by (a, gH) 7→ agH). This action is transitive. If
x = H ∈ X, then the stabilizer of x is H.

(8) Let X and Y be two G–sets. Then these are G–isomorphic if there is a bijection f : X →
Y such that g · f(x) = f(g · x) for all g ∈ G, x ∈ X. Draw a commutative diagram.

(9) Let G act transitively on X. Then X is G–isomorphic to G/H (the set of left cosets of
H in G) for some subgroup H ≤ G. Hint: H is the stabilizer of a fixed x ∈ X.

(10) |OG(x)| = |G · x| = [G : Gx]. (G acts on X, x ∈ X).

(11) Let G act on itself via conjugation. Then Gx = {g ∈ G | gx = xg} is known as the
centraliser Zx(G) of x ∈ G. G · x = Cx is called the conjugacy class of x in G. Note
that |Cx| is a divisor of |G| if G is finite. If G is finite and {C1, . . . , Cr} are disjoint
conjugacy classes, then |G| = |C1| + · · · + |Cr| is called the class equation. Note that
G = |ZG|+

∑r
i=1[G : Gxi ] if {G·xi} are the distinct conjugacy classes of G with |G·xi| > 1.

(12) Exercises:

(1) Use the class equation to prove that if |G| = pr, then Z(G), the center of G is
non-trivial.

(2) Let [G : Z(G)] = n. Show that any element has at most n conjugates.

(3) Let G act on X and Y . Define a G action on X × Y in an obvious way. Relate the
stabilizer of (x, y) with those of x and y.

(4) Let G be a group and let H,K be subgroups of index r and s respectively. Show that
H ∩K has index at most rs.

(5) Let G be a group, H, K subgroups of G of index r. Assume H and K are conjugate.
Show that H ∩K has index at most r(r − 1).

(6) Let {ci} be the conjugacy classes in a group. Show that each product CiCj is a union
of conjugacy classes.
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(7) Determine all subgroups with only two conjugacy classes.

(8) Let H ≤ G. Let X = {xH | x ∈ G}. Let G act on X by (g, xH) 7→ gxH. Prove
that H is a normal subgroup of G iff every H–orbit in X is a singleton.

(9) Let |G| < ∞ and let p be the smallest prime dividing |G|. Let H ≤ G such that
[G : H] = p. Show that H is a normal subgroup of G.

(10) Recall the class equation: G acts on itself via conjugation. Therefore |G| = |O1| +
· · · |Or|, |Oi| =

{
gxg−1 | g ∈ G

}
= Ox. |G| := |Z(G)| +

∑r
i=1 |[G : CG(x)]| in

classical notation.

(11) Let p be a prime and |G| = pn. Then G has a non-trivial centre. Hint: Apply class
equation. Note that x ∈ Z(G) iff |Ox| = 1.

(12) Let G be a p-group. If H is a proper subgroup of G, show that H ( NG(H).

Hint: Choose z ∈ Z(G). If z ∈ H, consider the quotient group G/ 〈z〉 and use
induction.

(13) If p is a prime and |G| = p2, then G ' Z/p2 or Z/p× Z/p.
(14) Let H ≤ G with [G : H] = n. Show that H contains a normal subgroup K of G such

that [G : K] ≤ n!.

(15) Let G be a simple group (i.e., having no proper normal subgroup) with a subgroup
H of finite index n > 1. Show that |G| ≤ n!.

(16) Let G be a p-group and N a normal subgroup of G. Show that N ∩ Z(G) 6= {e}.
Hint: Let G act on N \ {e} by conjugation. Does it have a fixed point?

(17) Let G be a group with a conjugacy class containing exactly two elements. Show that
G has a proper normal subgroup.

(18) Let G be nonabelian group of order p3 where p is a prime. Show that
(i) |Z(G)| = p.
(ii) Z(G) is the commutator subgroup of G.

(13) Applications of Group action

(a) Groups of even order have an odd number of elements of order 2.

(b) Lagrange’s theorem.

(c) Cauchy’s theorem

Theorem 4 (Cauchy’s Theorem). . Let G be a finite group and p a prime such that
p | |G| = n. Then there exists an element of order p in G.

Proof. Let X = {(x1, . . . , xp) | x1 · · ·xp = 1}, |X| = np−1. Let σ be the n–cycle
(12 · · · p). Then σ acts on X. (x1 · · ·xp) ∼ (y1 · · · yp) if σr(x1 · · ·xp) = (y1 · · · yp).
The orbits of σ or equivalence classes have either one element or p elements. If m is
the number of orbits with one element, then np−1 = kp+m. Hence p | m.

(d) A Fixed Point theorem.

Theorem 5. Let G be a p-group. Assume that G acts on a finite set X. Let
X0 ≡ XG denote the set of fixed points of the action by G. That is, X0 := {x ∈ G :
gx = x for all g ∈ G}. We have

|X0| ≡ |X|( (mod p)). (3)
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Observe that in the orbit decomposition of X, any non-singleton orbit will be a
positive power of p.

(e) Let G be a finite group. Assume that for any two subgroups H and K of G, we have
either H ≤ K or K ≤ H. Prove that G is of prime power order.

Hint: There cannot be two distinct prime divisors of |G|. If a ∈ G is of maximal
order, then for any x ∈ G, what is the relation between 〈x〉 and 〈a〉?

(f) Any group of order 6 is isomorphic to Z/(6) or to the dihedral group D3.

By Cauchy’s theorem, there exists x, y ∈ G such that ord(()x) = 3, ord(y) = 2.
Cosets 〈x〉∪〈x〉 y = {e, x, x2, y, xy, x2y} = G. This implies yx ∈ {e, x, x2, y, xy, x2y},
yx /∈ 〈x〉. Also, yx 6= y. Hence yx = xy or yx = x2y. The former implies G ' Z6

and the latter implies G ' D3.

(g) The quaternion group has generators i, j, k with relations i2 = j2 = k2 = −1,
ij = −jk = k. It has eight elements and is non-abelian and denoted by Q.

(h) A matrix representation of Q: Let A :=

(
0 1
−1 0

)
and

(
0 i
i 0

)
. We have

Q = {I, A,A2, A3, B,BA,BA2, BA3}.

Prove that Q is a nonabelian group of order 8 Each non-identity element g satisfies
g2 = −I. The only element of oder 2 is −I and it lies in the centre of Q.

(i) Show that the Q and D8 are not isomorphic.

(j) A group of order eight is isomorphic to one of the five: Z/(8), Z/(4)×Z/(2), Z/(2)×
Z/(2)× Z/(2), D4, Q.

Let G be a group with |G| = 8. If G is cyclic, then G ' Z/(8). Suppose that the
largest order of an element is four. Choose x ∈ G with ord(()x) = 4. Take y /∈ 〈x〉.
Then 〈x〉 ∪ 〈x〉 y = G = {e, x, x2, x3, y, xy, x2y, x3y}. This implies yx /∈ 〈x〉 and
hence yx 6= y. If yx = x2y, then yxy−1 = x2 and hence 4 = ord(()x) = ord(x2) = 2.
Therefore yx 6= x2y. Therefore yx = xy or yx = x3y. Now y2 /∈ 〈x〉 y (otherwise
y ∈ 〈x〉). Also, y2 6= x, x3 (otherwise ord(y) = 8). Hence if y has order 4, then
y2 = x2.

Case 1. yx = xy and y2 = e. The map x 7→ (1, 0), y 7→ (0, 1) in Z/(4) × Z/(2)
implies that G ' Z/(4)× Z/(2).

Case 2. yx = x3y and y2 = e. The map x 7→ r, y 7→ s yields G ' D4.

Case 3. yx = xy and y2 = x2. G is abelian and ord(xy−1) = 2 (since (xy−1)2 =
x2y−2 = e). The maps x 7→ (1, 0), xy−1 7→ (0, 1) implies that G ' Z/(4)× Z/(2).

Case 4. yx = x3y and y2 = x2. The maps x 7→ i, y 7→ j implies G ' Q.

Case 5. ord(()x) = 2 for all x 6= e. G is abelian. Choose x, y, z ∈ G, x, y, z 6= e
x 6= y, z 6= xy. H = {e, x, y, xy} ' Z/(2) × Z/(2), K = {e, z}. Then HK = G and
H ∩K = {e}. Hence G ' H ×K = Z/(2)× Z/(2)× Z/(2).

(k) Let H be a subgroup of Sn and H ⊆ An. Prove that precisely one half of the
elements of H are even permutations. Hint: You do not need Cauchy’s theorem!

(l) Let G be a group of order 4n+ 2. Use Cayley’s theorem, Cauchy’s theorem and the
last exercise to prove that G contains a group of order 2n+ 1.

(m) Let p1, . . . , pn be distinct primes. Show that an abelian group of order p1 · · · pn must
be cyclic.
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(n) Prove that a group of order 10 is either isomorphic to Z/(10) or D5.

(o) Let p be an odd prime. Then any group of order 2p is cyclic or dihedral.

ord(x) = p, ord(y) = 2. Then 〈x〉 ∪ 〈x〉 y = G, 〈x〉 ≤ G. ord(xy) = 2, p or 2p.
xyxy = e implies yx = x−1y. Hence G = Dp. ord(xy) = 2p implies G is cyclic.
ord(xy) = p cannot arise. For, 〈x〉 = 〈x〉 (xy)p = (〈x〉xy)p = (〈x〉 y)p = 〈x〉 yp =
〈x〉 y.

(p) Class equation: application to p-groups.

(q) Cayley’s theorem and its generalizations

(r) A subgroup of index p, the smallest prime divisor of |G|.

12 Sylow’s Theorems

Sylow’s theorems: It is advisable to give the standard induction proof as well as the group
action proof for the first Sylow. The other two are proved by group actions. Typical examples
should also introduce the students to some counting arguments.

1. An observation. Let S ⊂ G be such that the left translates {gS : g ∈ G} are either the
same or pairwise disjoint and their union is G. Then there exists a subgroup H such
that S is a left coset of H and hence all the translates of S are cosets of H.

Since the union of the translates of S is G, there exists a ∈ G such that e ∈ aS. We
claim that H := aS is a subgroup. If x ∈ H, then x−1H = x1aS contains e e ∈ H.
Since the only translate of S which contains e is H, it follows that x−1H = H. Since
e ∈ H, x−1e ∈ x−1H = H. We have thus shown that if x ∈ H, so is x−1. Let x, y ∈ H.
Then e ∈ xH and hence xH = S. But y ∈ H and so xy ∈ xH = H. Thus H is a
subgroup.

2. Sylow-1: Let p be a prime. Let |G| = prm. (p may still divide m.) Let nr be the
number of subgroups of order pr. Then nr ≡ 1( (mod p)). In particular, G does have a
subgroup of order pr.

Let X be the set of subsets of order pr in G. We let G act on X via (g, S) 7→ gS. Let
GS denote the stabilizer subgroup of S ∈ X. We make three observations:
(i) Since GS · S = S, it follows that S is a union of cosets of GS and hence |GS | = ps

for some s ≤ r.
(ii) For any S ∈ X, the union of the elements in the orbit of S is G. For, if g ∈ G and
s ∈ S, then x ∈ xs−1S ∈ G · S.
(iii) The orbit G · S contains |G|/|GS | elements.

The orbits in X are of two kinds:

(i) First kind: No intersection among the elements of the orbit. In view of the
observation in the last item, it follows that the element (of the orbit) containing e will
be a subgroup of order pr and the orbits is the set of cosets of this subgroup.

(ii) There are intersection between elements of the orbit. In this, there will be more
number of elements in the orbit as their union has to cover all of G. As a consequence,
|G · S| = |G|/|GS | = ptm with t ≥ 1.
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Let nr be the number of orbits of first kind and k that of the second kind. Hence

|X| ≡ nr ×m( (mod p)m).

We shall find a different congruence relation for
(
prm
pr

)
. Let C be the cyclic group of

order prm. It has a unique subgroup of order pr. Hence nr = 1 in this case. Hence we
arrive at the following: (

prm

pr

)
≡ m( (mod p)m).

Thus we have
(
prm
pr

)
≡ nrm ≡ m( (mod p)m). Therefore, m(nr− 1) ≡ 0( (mod p)m) and

so nr ≡ 1( (mod p)).

2nd Proof by Induction. We shall prove that for any divisor pr of |G|, there exists
a subgroup of that order.

If |G| = 1, the result is true. Assume that the result is true for all groups of order less
than n. Let G be a group of order n and pr | |G|.
Case 1: p divides |Z(G)|. By Cauchy’s theorem (easy for abelian groups), there exists
an element a ∈ Z(G) of order p. The subgroup 〈a〉 is normal in G (why?). Hence we
can form the quotient group G/ 〈a〉. Its order is less than n and it is divisible by pr−1.
By induction there exists a subgroup H ≤ G/ 〈a〉 whose order is pr−1. The pull-back
H := π−1(H) is a subgroup of order pr.

Case 2: p does not divide |Z(G)|. We now exploit the class equation.

n = |G| = |Z(G)|+
∑
a

[G : NG(a)],

where the sum is taken over representatives of equivalence class with more than one
element. Now, p | n and p does not divide |Z(G)|. We conclude that there exist at least
one a ∈ G \ Z(G) such that p does not divide [G : NG(a)]. Consequently, pr | |NG(a)|.
Since |NG(a)| < n, by induction there exists a subgroup H ≤ NG(a) whose order is pr.
Of course, H is a subgroup of G with order pr.

3. Sylow-2: Let H ≤ G be a subgroup and P a Sylow p-subgroup of G. Then there exists
x ∈ G such that xHx−1 ⊂ P . In particular, any two Sylow p-subgroups are conjugate.

Let S be the set of left cosets of P . Let H act on S by left action. We have

S0 ≡ SH ≡ |S| = [G : P ]( (mod p)).

Since p does not divide [G : P ] = m, p does not divide S0. In particular, |S0| 6= 0.
Hence |S0| ≥ 1.

Thus, there exists x ∈ G such that hxP = xP for any h ∈ H. But this means x−1hx ∈ P
for all h ∈ H. That is, xHx−1 ≤ P .

4. Sylow-3: The number of Sylow p-subgroups divides |G| and it is of the form 1 + kp for
some k ≥ 0.

This is already part of Sylow-1. We give another proof. Fix a Sylow p-subgroup P .
Let S be the set of all Sylow p-subgroups. Let P act on S by conjugation. Recall that
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S is the set of conjugates of P by Sylow-2. Hence |S| = [G : NG(P )], is a divisor of
|G|. Now H ∈ S0 iff xHx−1 = H for all x ∈ P . This happens iff x ∈ NG(H) for all
x ∈ P . Therefore, we conclude that if H ∈ S0, we have P ≤ NG(H). But then P and
H are both Sylow p-subgroups of NG(H). Since H is normal in NG(H) and all Sylow
p-subgroups in NG(H) are conjugate, it follows that H = P . Thus |S0| = 1. From the
fixed point theorem, we deduce

|S| ≡ |S0| ≡ 1( (mod p)).

5. Observe that we have three conditions on Np:

• Np ≡ 1( (mod p)).

• Np = [G : NG(p)] is a divisor of |G|.
• Since P ≤ NG(P ), we see that Np is a divisor of [G : P ].

6. Examples.

(1) Groups of order 15: By Sylow-1, there exists a subgroup H of order 5. The number
of such 5-subgroups are of the form 1 + k5 and it divides 15. Thus among 1, 6, 11
the only number which divided 15 is 1. Hence H is normal in G and hence G is not
simple.

We can say more. Let K be a 3-subgroup of G. The number of such subgroups is of
form 1 + 3k and is a divisor of 15. Thus the only possibility is 1. Thus K is normal
in G. Also H ∩K = {e}. (Why?)

From these information, we can conclude that G is a cyclic group of order 15. For,
let H = 〈a〉 and K = 〈b〉. Observe that

H 3 a(ba−1b−1) = aba−1b−1 = (aba−1)b−1 ∈ K.

Hence we see that aba−1b−1 = e or ab = ba. Since the orders of these two commuting
elements are co-prime, the order of ab is 15. Thus the sybgroup generated by ab is
all of G.

(2) |G| = 56. The possibilities of n7 are 1, 8 and 15. If n7 = 1, then the Sylow
7-subgroup is normal and hence G is not simple.

If n7 = 8, then these eight Sylow 7-subgroups account for 8×6 = 48 elements. This
leaves us with 8 elements which should constitute the Sylow 2-subgroup. Hence the
Sylow 2-subgroup is normal. We therefore conclude that any group of order 56 is
not simple.

(3) Groups of order 36: That these are not simple can be seen as above. We illustrate
another powerful method in the employment of group actions. Let H be a Sylow
3-subgroup. Its index is 4. Let G act on the cosets G/H via left action. Thus we
have a homomorphism ϕ : G→ S4.

kerϕ 6= (e): For, then ϕ is one-one and hence 36 = |G| = |ϕ(G)| ≤ |S4| = 24, a
contradiction.

kerϕ 6= G: For, g ∈ kerϕ iff gxH = xH for all x ∈ G, that is same as saying that
x−1gx ∈ H or g ∈ xHx−1. Thus, kerϕ = ∩x∈GxHx−1 ⊂ H ( G.

Since G has a nontrivial proper normal subgroup, G is not simple.
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(4) Group of order 48:

We claim that it has a normal subgroup of order 16 or 8. If there is only one Sylow
subgroup, then it is a normal subgroup of order 16. So assume that there exist two
Sylow subgroups of order 16, say, H and K. Now L := H ∩K is a subgroup. To
compute its order we use the product formula:

|HK| = |H||K|
|H ∩K|

.

If |H ∩K| ≤ 4, then |HK| ≥ (16 × 16)/4 = 64, an absurdity. Hence |H ∩K| = 8.
Since the index of H ∩K in H (or in K) is 2, it is normal in H and K. Hence the
normalizer N of H ∩ K must contain both H and K. Since H,K ≤ N , 16 must
divide |N | and |N | must therefore be m× 16 where m > 1. Also, |N | is a divisor of
48. It follows that |N | = 48 or N = G. Thus H ∩K is normal in G = N .

(5) Any group of order 108 has a normal subgroup of order 27 or 9. (Similar to the
last item.) Only point to worry is: Why is H ∩K normal in H and K? You may
observe that any subgroup of order pn−1 in a group of oder pn is normal.

(6) No group of order 36 is simple. Similar to the last two examples.

(7) No group of order 30 is simple. Assume otherwise and count the number of elements
in all (5) Sylow 5-subgroups and all (10) Sylow 3-subgroups. Conclude that either
there is only Sylow 5-subgroup or Sylow 3-subgroup.

(8) Groups of order pq: Let p and q be primes with q > p.

• The Sylow q-subgroup is normal and hence G is not simple.
The number of Nq of Sylow q-subgroups is of the form 1+kq and it must divide
pq and hence p. Therefore, Nq = 1.

• If p does not divide q − 1, then G is cyclic.
Since Np = 1 + kp divides q, it follows p divides q − 1 if k ≥. Hence Np = 1.
Thus P = 〈x〉 and Q = 〈y〉 are cyclic, normal and P ∩ Q = {e}. Elements of
P and Q commute: Q 3 (xyx−1)y−1 = xyx−1y−1 = x(yx−1y−1) ∈ P . Hence
ord(xy) = pq.

(9) Groups of order p2q:

If p > q, by the argument standard by now, we see that P is normal in G.

If p < q, and if Q is not normal, count the number of non-identity elements in
all Sylow q-subgroups. Conclude that there are p2(q − 1) elements of oder q. The
remaining p2q−p2(q−1) = p2 elements must be in P , the unique Sylow p-subgroup.
Work out the details.

(10) The number of Sylow subgroups in A5.

Note that any element of A5 is one of the following cycle types: (221), (311), (5).

If p = 2, then n2 ≡ 1( (mod 2)) is a divisor of [G : P ] = 60/4 = 15. Hence we
find that N2 is either 1, 3, 5 or 15. There are 5 × 3 = 15 elements of order 2. In
each Sylow 2-subgroup there will be 3 non-identity elements and hence e they fill
up at least 5 Sylow 2-subgroups. Hence N2 ≥ 5. Can it be 15? If N2 = 15, then
NG(P ) = P . For P ≤ NG(P ) ≤ G and 15 = N2 = [G : NG(P )] ≤ [G : P ] = 15.
So, this says the only elements of A5 normalizing P are in P . But then a 3-cycle
normalizes P . Details!
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(11) Groups of order p2.

(12) Let G be nonabelian and |G| = prm with p a prime. Assume that , m > 1 and pr

does NOT divide (m− 1)!. Then G is not simple.

Assume that such a group is simple. Let P be the Sylow on p-subgroup of index
m. Letting G act on the left cosets of P , we get a homomorphism ϕ : G→ Sm with
kerϕ ≤ P . Simplicity of G implies that kerϕ = {e}. But then G ∼= ϕ(G) ≤ Sm.
Hence we conclude that prm divides m! and hence p divides (m− 1)!.

(13) All groups up to order 60 are simple.

If p is a prime, then every p-group has a non-trivial center. If G is abelian, any
of its proper subgroup (which exist) is normal and hence G is not simple. If G is
nonabelian, Z(G) is a proper nontrivial normal subgroup and hence is not simple.

Now, the only integers n between 2 and 59, neither a prime power nor having a
factorization of the form n = prm as in the last item are n = 30, 40, and 56. By
the last item, these three numbers are the only candidates for orders of nonabelian
simple groups of order less than 60.

We have already seen groups of order 30 and 56 are not simple. We claim that no
group of order 40 is simple.

Let G be a group of order 40, and let P be a Sylow 5-subgroup of G. We have N5

divides 40/5 = 8 and and N5 ≡ 1( (mod 5)). These conditions force N5 = 1, so that
P is normal in G. Therefore, no simple group of order 40 can exist.

(14) Groups of order 6

(15) Groups of order 8

(16) Simplicity of A5.

• |A5| = 60 = 22 × 3× 5.

• There are 24 elements of order 5 in A5:
5×4×3×2

5 .

• There are 20 elements of order 3 in A5:
5×4×3

3 .

• Elements of order 2 in A5 are of the form (ab)(cd), product of two disjoint
transpositions. There are 15 elements of order 2 in A5:

1
2 ×

(
5×4
2 ×

3×2
2

)
.

• Let N be a proper normal subgroup of A5. We claim that N is trivial.

• Let 5 divide |N |. Since N is normal, all 24 elements of order 5 are in N . Hence
|N | ≥ 24. Since |N | also divides |An| = 60, we see that |N | ≥ 30.

• Let 3 divide |N |. Again the normality of N forces us to conclude that all 20
cycles of length 3 lie in N . Hence |N | ≥ 20.

• Since we assume that N is proper, if either 3 or 5 divide |N |, we conclude that
|N | = 30. Since both 3 and 5 divide |N |, we have |N | ≥ 20 + 24 = 44 by the
last two observations, a contradiction.

• We are thus lead to the conclusion that |N | must be a power of 2.

• Let |N | = 4. Since N is normal, it follows that N must the unique Sylow
2-subgroup of A5. Hence all elements of order 2 must lie in N . But there are
15 of them! Hence |N | 6= 4.

• We are thus left with the only possibility |N | = 2. Then A5/N is a group
of order 30. Either its Sylow 5-subgroup or its Sylow 3-subgroup is normal.
(For, if it were false, then G/N will have 6 Sylow 5-subgroups and 10 Sylow 3-
subgroups. So, G/N must have (6×4)+(10×2) = 44 elements.) If K is a proper
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normal subgroup of G/N , then its pull-back by the quotient map A5 → A5/N
will be a normal subgroup of order either 2×5 or 2×3. In particular, N would
be a proper normal subgroup whose order is either divisible by 5 or by 3. But
we have seen no such normal subgroup exists in A5. Thus |N | = 2 is also ruled
out. Thus any proper normal subgroup of N is the trivial subgroup. In other
words, A5 is simple.

(17) Another proof of simplicity of A5.

• Let N be a normal subgroup of a finite group. Assume that x ∈ G is such that
gcd(ord(x), |G/N |) = 1.
Look at xN . We have ord(xN) | ord(x) and ord(xN) | |G/N |. Hence ord(xN) =
1. Hence xN = N and so, x ∈ N .

• Let N be normal in A5. Assume |N | > 1. The possible orders of N are
2,3,4,5,6,10,12,15,20 or 30.

• Let |N | = 5, 10, 15 or 20. Then gcd(5, |G/N |) = 1. Hence any element of order
5 lies in N . Hence |N | > 24, a contradiction. So, no such normal subgroup
exists in A5.

• Let |N | = 3, 6 or 12. Again, gcd(|N |, |G/N |) = 1. Hence N contains all
elements of order 3. Thus |N | ≥ 20. So, no such normal subgroup exists in A5.

• Let |N | = 4 or 12. We have gcd(2, |G/N |) = 1. Hence all 15 elements of order
2 lie in N . So, no such normal subgroup exists in A5.

• Let |N | = 30. Then |G/N | = 2. Hence 24 elements of order 5 and 20 elements
of order 3 lie in N . Thus |N | ≥ 44. We conclude no normal subgroup of order
30 exists in A5.

• Let |N | = 2. Then A5/N is a group of order 30. Either its Sylow 5-subgroup or
its Sylow 3-subgroup is normal. For, if it were false, then G/N will have 6 Sylow
5-subgroups and 10 Sylow 3-subgroups. So, G/N must have (6×4)+(10×2) =
44 elements. If K is a proper normal subgroup of G/N , then its pull-back by
the quotient map A5 → A5/N will be a normal subgroup of order either 2× 5
or 2× 3. But we have seen no such normal subgroup exists in A5.

(18) Exercises:

(1) Let two distinct primes p and q divide |G|. Assume that G has a unique Sylow
p-subgroup of G. Show that G is not simple.

(2) Let |G| = 63. Show that Sylow 7-subgroup is normal and hence G is not simple.

(3) Let p be a prime. Find the number Sylow p-subgroup of Sp.
Ans: (p− 2)!. Hint: For, they are generated p-cycles. There are (p− 1)! = p!/p
of such cycles. But each cycle gives rise to a Sylow p-subgroup and the number
of generators of each is p− 1.

(4) Show that any group of order prm with m < p is not simple.

(5) Let G be a noncyclic group of order 21. Show that G has 14 elements of order
3.

(6) Let |G| = 48. Show that any two distinct Sylow 2-subgroups must have 8
elements common.

(7) Let G be a finite group. Assume that the order every element is a power of a
fixed prime p. Show that G is a p-group.
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(8) Let H be a normal p-subgroup. Show that H is a subgroup of any Sylow
p-subgroup.

(9) Let H be a normal subgroup of G. Assume that [G : H] is coprime to p. Then
H contains each of the Sylow p-subgroup.

(10) G is a direct product of its Sylow groups iff each of its Sylow subgroups is
normal.
Let n = |G| = pn1

1 · · · p
nk
k be the prime decomposition. Let P − i be the unique

Sylow pi-subgroup. Consider the map

f : P1 × · · · × Pk → G defined by f(x1, . . . , xk) = x1 · · ·xk.

We claim that f is an isomorphism. By standard argument, xixj = xjxi
where xr ∈ Pr. Hence it follows that f is a group homomorphism. Let
f(x1, . . . , xk) = x1 · · ·xk = e. For any i, we have x−1i = x1 . . . xi−1xi+1 · · ·xk.
Since pi divides ord(xi) and xi ∈ P1 · · ·Pi−1Pi+1 · · ·Pk, we see that ord(xi) is a
divisor of pn1

1 . . . p
ni−1

i−1 p
ni+1

i+1 · · · p
nk
k , it follows thatord(xi) = 1. Thus xi = e for

all i. Thus f is one-one. Since |G| = |P1 × · · · × Pk|, f is onto.

(11) Use Sylow’s theorem to prove that A4 does not have a group of order 6.
Let H ≤ A4 be of order 6. If P is Sylow 3 -subgroup of H, then P is of index
2 and hence normal in H. There are 8 Sylow-subgroups in A4 and all of them
are normal in A4. They all lie in H now.

(12) Show that any subgroup of order 11 in a group of order 99 is normal.

(13) Let H be a p-subgroup of a finite group G. Show that H is a Sylow p-subgroup
iff p does not divide [G : H].

(14) Let N be a normal subgroup of G. Assume that P is a Sylow p-subgroup of G
and that P ⊂ N . Show that the number of Sylow p-subgroup of N is the same
as that of G.

(15) Let P be a normal Sylow p-subgroup of a finite group G. Let f : G → G be a
homomorphism. Prove that f(P ) ≤ P .

(16) Let N be a normal subgroup with |N | = pn in a finite group G. Show that
N ≤ P where P is any Sylow p-subgroup of G.

(17) Let G be a nonabelian with |G| = pq, product of distinct primes. Prove that
Z(G) = {e}.

(18) Let |G| = 2m with m odd. Show that there exists exactly one element of order
2.
Hint: Let ord(x) = 2. The number of Sylow subgroups is odd and it is |CG(x)|.
Hence |CG(x)| is even and let y ∈ CG(x) be of order 2. What can you do with
〈x, y〉?

(19) Let |G| = pmqn where p and q are distinct primes. Assume that p does not
divide qk − 1 for 1 ≤ k ≤ n. Prove that G has a unique Sylow p-subgroup and
hence G is not simple.
List numbers of this form and are at most 100.

(20) Let G be of finite order n. Assume that for each divisor d of n, there exist at
most d elements of order d. Prove that G is cyclic.
Hint: Let P be Sylow p-subgroup order pm. Since 1 + p + · · · + pm−1 < pm,
conclude that P is cyclic. Show that P is the only Sylow p-subgroup. Hence it
is normal. It follows that G is direct product of its Sylow p-subgroups.
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(21) Let G be finite. Let f : G→ H be an onto homomorphism.
(i) If P is Sylow p-subgroup of G, show that f(P ) is a Sylow p-subgroup of

H.
(ii) If Q is a Sylow p-subgroup of H, there exists a Sylow p-subgroup P of G

such that Q = f(P ).
(iii) Np(H) ≤ Np(G).

(22) Let H ≤ G, a finite group. Let P be a Sylow p-subgroup of H. If NG(P ) ≤ H,
prove that P is a Sylow p-subgroup of G.

(23) Let |G| = p(p + 1). Prove that G has either a normal subgroup of order p or
one of order p+ 1.
Hint: If Np > 1, choose x ∈ G of order different from 1 or p. Show that
|CG(x)| = p+ 1. Now count the elements.

(24) Let G be a finite group in which every Sylow p-subgroup is normal. If P is a
Sylow p-subgroup show that Z(P ) ≤ Z(G). Also, if N is normal in G, then
|N ∩ Z(G)| > 1.

(25) Show that the center of a group of oder 60 cannot be of order 4.

(26) Let |G| = 60. If Sylow p-subgroup for 3 is normal, so is Sylow p-subgroup for
5.
Hint: Let H be the Sylow 3-subgroup. If Ki, 1 ≤ i ≤ 6 are the Sylow 5-
subgroups, count the number of elements in Ki and the generators of HKi.
They will be 24 + 6× 8 > 60 elements.

(27) Show that a group G of order 105 has a subgroup of order 35. Show that it is
normal in G. Hence conclude that the Sylow subgroups of 7 and 5 are normal.
Hint: If N7 = 15, there are 90 elements of order 90. The rest 15 elements come
from the product of Sylow 3 and 5 subgroups. In particular, Sylow 5-subgroup
is normal. Recall product of a normal subgroup and a subgroup is a subgroup.
Let H be the product group, What is its index? To show the last part, compare
N5(G) and N5(H) to reduce N5(G) etc. See Item 6(18)14 on page 31

(28) Let a prime p divide |G|. Let the Sylow p-subgroup for p is normal. Let n be
the number of elements of order p. Show that p divides n+ 1.
Hint: Let |P | = pm. Let ni be the number of elements of order pi. Then

n = pm − (nm−1 + · · ·+ n2 + n0).

Note that every summand on the right except the last term is divisible by p
and n0 = 1.

(29) Show that a group of order 108 has a normal subgroup of order 9 or 27.
Hint: Let P be a Sylow 3-subgroup,. Let G act on the left cosets of P . We
have a homomorphism ϕ : G→ S4 What are the possible orders of kerϕ?

13 Finite Abelian Groups

1. Let G be a finite abelian group. Let H be any subgroup of G. Then there exists a
complement K such that G = H ⊕K.

Let M be a subgroup such that M ∩ H = (0) and M is maximal with this property.
We claim that G = H ⊕M . If not, then there exists an x ∈ G \ (H + M). We may
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assume that the order o(x) is minimal with this property and hence is a prime. Observe
that the subgroup M+ < x > contains M properly and hence M+ < x > ∩H 6= (0).
Let y + jx = h. Note that j 6= 0. Now, jx ∈ H + M But < jx >=< x > and hence
x ∈ H +M , a contradiction.

2. Structure Theorem for Finite Abelain Groups–Invariant Factors Form. Let
G be a finite abelian group. Then G is a finite direct sum of cyclic groups Hi, 1 ≤ i ≤ r
such that |Hi+1| divides the order of |Hi| for 1 ≤ i ≤ r − 1.

We prove this by induction on |G| = 1. The result is true if |G| = 1. Assume that
the result is true for all natural numbers less than n > 1. Let G be a finite abelian of
order n > 1. Let a ∈ G be of maximal order. Let H1 be the cyclic group generated
by a. If H1 = G, there is nothing to prove. If not, by the last lemma there exists a
subgroup M ≤ G such that GH1 ⊕M . Since |M | < |G| = n, by induction hypothesis,
M is the direct sum of cyclic subgroups Hj , 2 ≤ j ≤ r where |Hj+1| divides |Hj | for
2 ≤ j < r. Assume that Hj is the cyclic subgroup generated by aj , 2 ≤ j < n. Since a
is of maximal order, it follows that o(x) divides o(a) for any x ∈ G. In particular, if we
let nj := o(aj) it follows that nr | nr−1 | · · · | n2 | n1 := m. The proof is complete.

3. Let G be a finite abelian group. Let p be a prime such that the order of each element
of G is of the form pr. Then |G| is of the form pn.

Trivial, if we use Cauchy’s theorem. If q is any prime divisor (other than p) of |G|, then
there exists an element of order q.

We use induction to see a direct proof. If G is cyclic, then there is nothing to prove.
Choose e 6= a ∈ G. Then 〈a〉 is a proper subgroup of G. The order of the quotient group
G/ 〈a〉 is less than |G|. The order of each element of G/ 〈a〉 is a power of p. Hence by
induction, the order of G/ 〈a〉 is a power of p. Since |G| = |G/ 〈a〉 | × | 〈a〉 |, the result
follows.

4. Let G be a finite abelian group of order pα1
1 · · · pαnn , where pi’s are distinct prime num-

bers. Let G(pi) := {x ∈ G : pαii x = 0}. Then each G(pi) is a pi-subgroup of G.

It is easy to see that this is a subgroup of G. That it is a pi-group follows from the last
item.

5. With the notation as above, we claim that each x ∈ G can be written as x = x1+· · ·+xn
where xi ∈ G(pi), 1 ≤ i ≤ n. Thus, we have G = G(p1) + · · ·+G(pn).

Let qi be defined by |G| = pαii qi. That is, qi = pα1
1 · · · p̂

αi
i · · · pαnn . Since pi’s are distinct,

the qi’s have 1 as their GCD. Hence there exists mi such that 1 = m1q1 + · · ·+ mnqn.
Hence we have

x = 1 · x = m1q1x+ · · ·+mnqnx = x1 + · · ·+ xn, wherexi = miqix.

Clearly, pαii xi = mi|G|x = 0 and hence xi ∈ G(pi).

6. The sum in the last item is direct.

Enough to show that if x1 + · · · + xn = 0, with xi ∈ G(pi), then each xi = 0. Let
pi and qi be as earlier. Since they are relatively prime, there exists s, t ∈ Z such that
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spαii + tqi = 1. Note that xi = −(x1 + · · ·+ x̂i + · · ·+ xn). We have

xi = 1 · · ·xi = spixi + t
∑
j 6=i

qixj .

Since xi ∈ G(pi), the first summand is zero. The presence of p
αj
j in qi ensures qixj = 0

for j 6= i. Hence we conclude that each xi = 0.

7. We have thus proved the following result known as the primary decomposition theorem:

Theorem 6. Let G be a finite abelian group of order pα1
1 · · · pαnn , where pi’s are distinct

prime numbers. Let G(p) := {x ∈ G : pαx = 0} where p is one of the pi’s and α is the
corresponding αi.

8. Let G be a finite abelian p-group. Let a ∈ G be of maximal order. Let H := 〈a〉. Then
there exists a subgroup K ≤ G such that G = H ⊕K.

To look at the nontrivial part, assume that G is not cyclic. Let a ∈ G be of maximal
order, say, pm. We claim that there exists an element x ∈ G \ 〈a〉 of order p.

Let b ∈ G \ 〈a〉 be of least possible order. Note that b 6= 0. if pb = 0, we are through.
Assume that ord(b) = pr. Consider pb. Its order is pr−1. By our hypothesis on b, pb
must be in 〈a〉. Thus, pb = ka. Hence we obtain

0 = prb = pr1(pb) = pr−1(ka) = (pr−1k) = a.

Since ord(a) = pr, it follows that pr divides pr−1k and hence p divides k. Therefore,
k = pq for some q ∈ Z. Let c := b− qa. Then c /∈ 〈a〉 since otherwise b = c+ qa ∈ 〈a〉,
a contradiction. Also, we have

pc = pb− pqa = pb− ka = 0.

We conclude that c /∈ 〈a〉 is of order p.

Changing the notation, we may assume that b is of order p. Clearly, 〈a〉 ∩ 〈b〉 = (0).
(For, otherwise 〈b〉 ⊂ 〈a〉.) It follows that the element a + 〈b〉 is order pm in the
quotient group G/ 〈b〉. By induction hypothesis, there exists a subgroup, say, K such
that G/ 〈b〉 = 〈a+ 〈b〉〉 ⊕K. Let K ≤ G be such that K = K/ 〈b〉.
We claim that G = K +H. For, 〈b〉 ⊂ K, we have G = K + (〈a〉+ 〈b〉) = K + 〈a〉.
We claim that K ∩ 〈a〉 = (0). If x ∈ K ∩ 〈a〉, then x ∈ K ∩ (〈a〉 + 〈b〉) = 〈b〉. Thus
x ∈ 〈a〉 ∩ 〈b〉 = (0).

9. Any finite abelian p-group is a direct sum of cyclic p-subgroups.

Follows by induction and the last result.

10. Are the p-subgroups in the primary decomposition unique?

1. Some counting theorems such as |AB| = |A||B|
|A∩B| , Poincare’s theorem on subgroups of

finite indices, Burnside lemma. Some number theoretic results such as Fermat, Wilson
etc.

2. Conjugacy classes in Sn, An, D2n and GL(2,R).
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