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The pancake problem can be roughly stated as follows: Suppose that two pancakes of
arbitrary size lie on a plate. Is it possible to cut each of them exactly into two equal portions?
If, for example, each pancake is like a disk, then the line through their centres will provide
such a cut. If the pancakes are of irregular shape, then the problem becomes more difficult.
The precise mathematical formulation is stated as

Theorem 1. If A and B are two bounded regions in the same plane, the there is a line in
the plane which divides each region into two regions of half area.

Recall that a region in R2 is a connected open subset. Note that the theorem does not
rule out the possibility that the regions may overlap.

The topological tools we decisively use here are the intermediate value theorem and the
following lemma which is an immediate consequence of the intermediate value theorem.

Theorem 2 (Borsuk). Let f : S1 → R be continuous. Then there exists a point x ∈ S1 such
that f(x) = f(−x).

Proof. Suppose that f(x) 6= f(−x) for all x ∈ S1. We set h : S1 → R be the map h(x) =
f(x)−f(−x). We let g : [0, 1]→ S1 be the continuous map g(t) = eπit. Now, h◦g(0) = h(1) =
f(1) − f(−1) and h ◦ g(1) = h(−1) = f(−1) − f(1) = −h ◦ g(0). Therefore by intermediate
value theorem, there exists a point t ∈ [0, 1] such that h(0) = 0, i.e., f(−x) = f(x).

The physical interpretation of this result is as follows: At any given instant of time and
a given a great circle on the surface of the earth, there is a pair of antipodal points with the
same temperature.

The crucial idea behind the proof of the Pancake theorem is the following observation.
Let us start with a single region and a point eit ∈ S1. As we move the line perpendicular to
this point from −∞ to ∞ the line begins to divide the region into two parts. If we denote by
h(t) the area of portion of the region which is on the negative side of the direction, then h(t)
increases from 0 to the full area as t increases from −∞ to ∞. If h is continuous, then, by
intermediate value theorem there is a t0 such that h(t0) is exactly half the area. The lemma
below is a precise version of this statement.
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Lemma 3. Let A ⊂ B(0, 1) be a bounded region in R2. For any x ∈ S1, we let x′ stand for
the antipode, the point on the circle diametrically opposite to x. Let Dx denote the diameter
joining x and x′. For any x ∈ S1, the family of all lines perpendicular to Dx contains one
and only one line L(A, x) which divides in half by area.

The next lemma says that this point of intersection depends continuously on x ∈ S1.

Lemma 4. Let the notation be as in Thm. 1 and Lemma 3. Let xA denote the point of
intersection of Dx and L(x,A). On the line Dx we have a natural coordinate gx given by
gx(y) = d(y, x′)− 1. Let ϕA(x) := gx(xA). Then ϕA : S1 → R is continuous.

Assuming these two lemmas, we shall prove the theorem.

Proof. (of Thm. 1) Since A and B are bounded, there is an R such that A ⊂ B(0, R) and
B ⊂ B(0, R). We shall assume without loss of generality that R = 1. By Lemma 3 for
B and x ∈ S1¡ we get a unique line, say, L(x,B). Let xA (resp. xB) denote the points of
intersection of Dx and L(x,A) (resp. L(x,B)). On the line Dx we have a natural coordinate
gx given by gx(y) = d(y, x′) − 1. Note that gx(x′) = −1, gx(x) = 1 and gx(0) = 0. We let
ϕ(x) := ϕA(x)− ϕB(x) ≡ gx(xA)− gx(xB). By Lemma 4, ϕ is continuous.

We observe that ϕ(x′) = −ϕ(x) for any x ∈ S1. This follows from the following observa-
tions: Dx′ = Dx so that L(A, x) = L(A, x′) and L(B, x′) = L(B, x). However, gx′(y)− gx(y)
so that ϕ(x′) = gx′(xA) − gx′(xB) = −gx(xA) + gx(xB) = −ϕ(x). Now, by Thm. 2, there
exists a point x ∈ S1 such that ϕ(x) = ϕ(x′). It follows that ϕ(x) = 0 or xA = xB. Then,
L(A, x) = L(B, x) divides both A and B in half by area.

Ex. 5. Let one of the regions be a regular 2n-gon and the other a regular 2m-gon. Can you
describe the line which would bisect the regions into parts of equal area?

It now remains to give rigorous proofs of the two lemmas.

In this section we use some knowledge of fundamental groups and covering spaces to prove
the following result.

Theorem 6. There is no map f : Sn → S1 such that f(−x) = −f(x) for x ∈ Sn for n ≥ 2.

Proof. If f is such a map, then f induces a map g : Pn → P1. Recall that πn(Pn) ' Z2 for
n ≥ 2 while π1(P1) ' Z as P1 is homeomorphic to S1. Now consider a commutative diagram.
The map g∗ : π1(Pn)→ π1(P1) is the trivial homomorphism. Hence by the fundamental lemma
on the lifting of maps, we see that g lifts to a map h : Pn → S1 so that p1 ◦ h = g. Consider
the maps h ◦ pn, f : Sn → S1. We claim that they are both lifts of the map g ◦ pn : Sn → P1.
For, p1 ◦ h ◦ pn = g ◦ pn and p1 ◦ f = g ◦ pn. (Write down a commutative diagram!) Also,
the maps h ◦ pn and f agree at the base point. Hence by the uniqueness of the lifts, they
are the same: h ◦ pn = f . But this is impossible, as f(−x) 6= f(x) for any x ∈ Sn whereas
h ◦ pn(−x) = h ◦ pn(x) for every x ∈ Sn! This contradiction shows that such an f does not
exist.

Theorem 7. If f : S2 → R2 is continuous, then there is an x ∈ S1 with f(x) = f(−x).
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Proof. If the result were false, then the map x 7→ f(x) − f(−x) is never zero on S2 so that

the map g(x) := f(x)−f(−x)
‖f(x)−f(−x)‖ is continuous. Also, we have g(−x) = −g(x), contradicting

Thm. 6

Ex. 8. There is no homeomorphic copy of S2 in R2.

This exercise says that there could be no homeomorphic copy of the earth on the paper
of an atlas!

Theorem 9 (Lusternik-Schnirelmann Theorem). If S2 = ∪3i=1Fi is the union of three closed
subsets then one of the fi’s contains a pair of antipodal points.

Proof. Let x′ denote the antipodal point −x of a given point and A′ the set of antipodal
points of the elements of a set A. If Fi ∩ F ′i 6= ∅ for i = 1, 2 we have nothing prove. So
we assume that Fi ∩ F ′i = ∅ for i = 1, 2. Then, by Urysohn’s lemma, there exist continuous
functions gi such that gi : S

1 → [0, 1] and gi = 0 on Ai and g1 = 1 on A′i. Consider the
map f : S2 → R2 given by f(x) := (g1(x), f2(x)) for x ∈ S2. By Thm. 7, there is an x ∈ S2

such that f(x) = f(−x). We claim that this x /∈ Fi for i = 1, 2. For, if x ∈ F1, say, then
f(x) = (g1(x), g2(x)) = (g1(x

′), g2(x
′)) = f(x′) would imply that 0 = g1(x) = g1(x

′) = 1—a
contradiction. Hence we conclude that x ∈ F3. A similar reasoning shows that x′ ∈ F3.

Incomplete!
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