
Partial Order, Total Order and Well-ordering

S. Kumaresan
School of Math. and Stat.
University of Hyderabad

Hyderabad 500046
kumaresa@gmail.com

1. Definition of a relation R between two sets X and Y as a subset of the product X × Y .
Definition of a relation on a set X is a relation between X and X. Given (x, y) ∈ R,
we write xRy. Later we shall write x ≤ y in place of xRy or (x, y) ∈ R.

2. Given a relation R between X and Y , the inverse relarion R−1 between Y and X is
given by R−1 := {(y, x) ∈ Y ×X : (x, y) ∈ R}.

3. Definition when a relation is reflexive, symmetric, antisymmetric and transitive.

4. Definition of partial order, total order and equivalence. A set X with a partial order ≤
(or the pair (X,≤)) is called a partially ordered set (or a poset for brevity).

5. Typical examples.

(a) Standard ≤ relation on Z, Q and R.

(b) In P (X), A ≤ B iff A ⊆ B. This is a partial order which is not a total order.
(Perhaps, the most important example!) We say that this order is defined by the
inclusion.

(c) In N, we define a � b iff a divides b. This is a partial order which is not a total
order.

(d) The relation R := {(x, x)} is an equivalence as well as a partial order. This is
nothing other than equality relation.

(e) If a relation R on X is a partial order, then so is R−1.

(f) In R2, we define (x1, y1) ≤ (x2, y2) iff either x1 < x2 (and no requirement on y1 and
y2) or x1 = x2 and y1 ≤ y2. This is a total order, called dictionary or lexicographic
order.

(g) C is a totally ordered set. Compare this with what you learnt in complex analysis.
Most students have problem here.

6. Given relations R on X and S on Y , we have a relation T on X × Y by setting
(x1, y1)T (x2, y2) if x1Rx2 and if x1 = x2, then y1Sy2. If we agree to denote all the
relations by ≤, then the realtion on X × Y is defined as follows:

(x1, y1) ≤ (x2, y2) iff x1 ≤ x2 and if x1 = x2 then y1 ≤ y2.
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This is known as lexicograhic or dictionary relation on X×Y . If the relations on X and
Y are partial orders (respectively, total orders), the lexicographic relation is a partial
order (respectively total order) on X × Y .

7. Consider the standard total order ≤ on R. For (x1, y1), (x2, y2) ∈ R2, define (x1, y1) ≤
(x2, y2) iff x1 ≤ x2 and y1 ≤ y2. Show that the new relation on R2 is a partial order
which is not a total order. (Can you generalise this result?)

8. Restriction of a partial order to a subset. Chain = totally ordered set.

9. Consider the subset A := {2n : n ∈ N} in the partially ordered set of Item 5c. Then A
is a chain.

10. A chain need not be a countable set. For example, consider X = [0, 1] and P (X) with
inclusion as the partial order. Then the family {[t, 1] : 0 < t ≤ 1} is a chain in P (X).

11. Definition of an upper bound, lower bound, l.u.b., and g.l.b. Examples in R and P (R).

12. Definition of minimum, maximum, minimal and maximal elements. Maximum and
minimum are unique.

13. Any maximum (in fact, the maximum) is a maximal element but the converse is not
true. Analogue for minimum and minimal elements.

14. In a totally ordered set, a maximal (respectively, minimal) element is a maximum (re-
spectively, a minimum).

15. Any finite poset has a maximal element. How about the existence of minimal elements?
(A finite poset may not have a maximum! See Item 19.)

16. Any finite totally ordered set has a maximum. How about minimum?

17. Discuss the minimal and maximal elements in (1) P (R), (2) P (R)\{∅}, (3) P (R)\{R},
(4) P (R) \ {∅,R} all being ordered by inclusion.

18. Let X denote the set of {{0}, {x}, {y}, {z}, {x, y}, {x, z}, {y, z},R3 where {x} denotes
the x-axis, {x, y} denote the xy-plane etc. Define a partial order ≤ on X by inclusion.
Give a pictorial representation of this partial ordered set. (The picture is called the
Hasse diagram of the poset.) Discuss the maximum, minimum elements in X. If
Y := X \ {{0},R}, what are the maximum, minimum, maximal and minimal elements
(if they exist)?

19. Consider X := {2m3n : m,n ∈ Z+, 1 ≤ m+n ≤ 4} with the partial order as in Item 5c.
Find the maximum, minimum, maximal and minimal elements. Give a graphical rep-
resentation of this poset.

20. Let R ⊂ R × R be the relation that corresponds to the standard order ≤ on R. Draw
the picture of the subset R.

21. Discuss the minimal and maximal elements in (1) H1, the set of all nontrivial proper
subgroups, (2) H2, the set of all proper subgroups and H3, and (3) the set of all
subgroups of the group (Z,+).
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22. Are there partially ordered sets in which every maximal element is a minimal element
and vice-versa?

23. If X is a partially ordered set in which the maximum is also a minimum what can you
conclude about X?

24. Define the LUB and GLB of a subset in a poset. Find the LUB and GLB of mZ and
nZ in the partially ordered set H of all subgroups of Z.

25. Let X denote the set of all non-empty subsets of R which miss at least one integer,
ordered by inclusion. Then X has countably infinite maximal elements while it has
uncountably many minimal elements.

26. Let S denote the set of nontrivial proper vector subspaces V of Rn (that is, V 6= (0)
and V 6= Rn) where n ≥ 2. For V,W ∈ S, we define V ≤ W if V ⊆ W . Characterize
the maximal and the minimal elements of S.

27. Let V be a (not necessarily finite dimensional) vector space over R. We say that S ⊂ V
is linearly independent if every finite subset S is linearly independent. Let S be the
set of all linearly independent subsets of V ordered by inclusion. Let B be a maximal
element of S. Show that the linear span of B is V .

28. Let V be a nonzero (real) vector space. Let S denote the set of all linearly independent
subset of V ordered by inclusion. Then the maximal elements of S are nothing other
than the bases of V .

29. Let R be a commutative ring with identity 1. Let I be a maximal element in the set of
all proper ideals of R ordered by inclusion. Show that for any x /∈ I, there exist r ∈ R
and z ∈ I such that rx + z = 1.

30. Consider the set X := {(f, S)} where S is a subinterval of [0, 1] such that (1/2, 3/4) ⊂
S and f : S → R is continuous such that f(x) = 1/x for x ∈ [1/2, 3/4]. We say
(f, S) ≤ (g, T ) if S ⊆ T and g(x) = f(x) for x ∈ S. Write down an infinite set of
maximal elements of X. 3/4) by g(x) = 1/x for x ≥ 1/2 and g(x) = 1−2t

x−t . Then
limx→t+ g(x) =∞, g(1/2) = 2. Thus g is continuous but has no extension.

31. Intervals in a totally ordered set. Give a geometric and explicit description of the
intervals [(0, 0), (0, 1)] and [(0, 0), (1, 0)] and [(a, b), (c, d)] in R2 with dictionary order.

32. Zorn’s Lemma. Let X be a partially ordered set. Assume further that the partial
order is such that every chain in X has an upper bound. Then there exists a maximal
element in X.

33. The assumption on the partial order in Zorn’s lemma is important. Consider S :=
{St := (0, t) : 0 < t < 1} ordered by inclusion. The order is total and hence S is a
chain. It is easy to see that the chain has no upper bound in S and that S has no
maximal element.

34. Show that nay vector space over a field has a basis. Hint. Items 27, 28 and 32 are
relevant.
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35. Axiom of Choice. Let {Xi : i ∈ I} be a nonempty family of nonempty sets. Then
there exists a set A which has exactly one element from each Xi, i ∈ I.

This can be rephrased as follows. The cartesian product
∏

i∈I Xi is not empty!

36. Let (X,≤) be a poset. We say that the order ≤ is a well-ordering on X if it is (i) a
total order and (ii) every nonempty subset of X has a minimum.

37. Well-ordering Principle. On any set, there exists a well-ordering.

38. It can be proved that the axiom of choice, Zorn’s lemma and the well-ordering principle
are equivalent. Perhaps the most used of these is Zorn’s lemma followed by the axiom
of choice.

39. Zorn’s lemma is used in the following results (in a typical M.Sc. course):

(a) Existence of a basis for any vector space.

(b) Existence of a maximal ideal in a ring with 1.

(c) Existence of algebraic closures of fields.

(d) Tychonoff’s theorem which asserts that the product of a family of compact spaces
is compact in the product topology.

(e) Hahn-Banach extension theorem in functional analysis.

40. The axiom of choice is used in the construction of a non-measurable set in the theory
of Lebesgue measure.
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