Partial Order, Total Order and Well-ordering

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

- 1. Definition of a relation R between two sets X and Y as a subset of the product $X \times Y$. Definition of a relation on a set X is a relation between X and X. Given $(x, y) \in R$, we write xRy. Later we shall write $x \leq y$ in place of xRy or $(x, y) \in R$.
- 2. Given a relation R between X and Y, the inverse relation R^{-1} between Y and X is given by $R^{-1} := \{(y, x) \in Y \times X : (x, y) \in R\}.$
- 3. Definition when a relation is reflexive, symmetric, antisymmetric and transitive.
- 4. Definition of partial order, total order and equivalence. A set X with a partial order \leq (or the pair (X, \leq)) is called a partially ordered set (or a poset for brevity).
- 5. Typical examples.
 - (a) Standard \leq relation on \mathbb{Z} , \mathbb{Q} and \mathbb{R} .
 - (b) In P(X), $A \leq B$ iff $A \subseteq B$. This is a partial order which is not a total order. (Perhaps, the most important example!) We say that this order is defined by the inclusion.
 - (c) In \mathbb{N} , we define $a \leq b$ iff a divides b. This is a partial order which is not a total order.
 - (d) The relation $R := \{(x, x)\}$ is an equivalence as well as a partial order. This is nothing other than equality relation.
 - (e) If a relation R on X is a partial order, then so is R^{-1} .
 - (f) In \mathbb{R}^2 , we define $(x_1, y_1) \leq (x_2, y_2)$ iff either $x_1 < x_2$ (and no requirement on y_1 and y_2) or $x_1 = x_2$ and $y_1 \leq y_2$. This is a total order, called dictionary or lexicographic order.
 - (g) \mathbb{C} is a totally ordered set. Compare this with what you learnt in complex analysis. Most students have problem here.
- 6. Given relations R on X and S on Y, we have a relation T on $X \times Y$ by setting $(x_1, y_1)T(x_2, y_2)$ if x_1Rx_2 and if $x_1 = x_2$, then y_1Sy_2 . If we agree to denote all the relations by \leq , then the relation on $X \times Y$ is defined as follows:

 $(x_1, y_1) \leq (x_2, y_2)$ iff $x_1 \leq x_2$ and if $x_1 = x_2$ then $y_1 \leq y_2$.

This is known as lexicographic or dictionary relation on $X \times Y$. If the relations on X and Y are partial orders (respectively, total orders), the lexicographic relation is a partial order (respectively total order) on $X \times Y$.

- 7. Consider the standard total order \leq on \mathbb{R} . For $(x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$, define $(x_1, y_1) \leq (x_2, y_2)$ iff $x_1 \leq x_2$ and $y_1 \leq y_2$. Show that the new relation on \mathbb{R}^2 is a partial order which is not a total order. (Can you generalise this result?)
- 8. Restriction of a partial order to a subset. Chain = totally ordered set.
- 9. Consider the subset $A := \{2^n : n \in \mathbb{N}\}$ in the partially ordered set of Item 5c. Then A is a chain.
- 10. A chain need not be a countable set. For example, consider X = [0, 1] and P(X) with inclusion as the partial order. Then the family $\{[t, 1] : 0 < t \leq 1\}$ is a chain in P(X).
- 11. Definition of an upper bound, lower bound, l.u.b., and g.l.b. Examples in \mathbb{R} and $P(\mathbb{R})$.
- 12. Definition of minimum, maximum, minimal and maximal elements. Maximum and minimum are unique.
- 13. Any maximum (in fact, the maximum) is a maximal element but the converse is not true. Analogue for minimum and minimal elements.
- 14. In a totally ordered set, a maximal (respectively, minimal) element is a maximum (respectively, a minimum).
- 15. Any finite poset has a maximal element. How about the existence of minimal elements? (A finite poset may not have a maximum! See Item 19.)
- 16. Any finite totally ordered set has a maximum. How about minimum?
- 17. Discuss the minimal and maximal elements in (1) $P(\mathbb{R})$, (2) $P(\mathbb{R}) \setminus \{\emptyset\}$, (3) $P(\mathbb{R}) \setminus \{\emptyset, \mathbb{R}\}$ all being ordered by inclusion.
- 18. Let X denote the set of $\{\{0\}, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \mathbb{R}^3$ where $\{x\}$ denotes the x-axis, $\{x, y\}$ denote the xy-plane etc. Define a partial order \leq on X by inclusion. Give a pictorial representation of this partial ordered set. (The picture is called the Hasse diagram of the poset.) Discuss the maximum, minimum elements in X. If $Y := X \setminus \{\{0\}, \mathbb{R}\}$, what are the maximum, minimum, maximal and minimal elements (if they exist)?
- 19. Consider $X := \{2^m 3^n : m, n \in \mathbb{Z}_+, 1 \le m + n \le 4\}$ with the partial order as in Item 5c. Find the maximum, minimum, maximal and minimal elements. Give a graphical representation of this poset.
- 20. Let $R \subset \mathbb{R} \times \mathbb{R}$ be the relation that corresponds to the standard order \leq on \mathbb{R} . Draw the picture of the subset R.
- 21. Discuss the minimal and maximal elements in (1) \mathcal{H}_1 , the set of all nontrivial proper subgroups, (2) \mathcal{H}_2 , the set of all proper subgroups and \mathcal{H}_3 , and (3) the set of all subgroups of the group ($\mathbb{Z}, +$).

- 22. Are there partially ordered sets in which every maximal element is a minimal element and vice-versa?
- 23. If X is a partially ordered set in which the maximum is also a minimum what can you conclude about X?
- 24. Define the LUB and GLB of a subset in a poset. Find the LUB and GLB of $m\mathbb{Z}$ and $n\mathbb{Z}$ in the partially ordered set \mathcal{H} of all subgroups of \mathbb{Z} .
- 25. Let X denote the set of all non-empty subsets of \mathbb{R} which miss at least one integer, ordered by inclusion. Then X has countably infinite maximal elements while it has uncountably many minimal elements.
- 26. Let S denote the set of nontrivial proper vector subspaces V of \mathbb{R}^n (that is, $V \neq (0)$ and $V \neq \mathbb{R}^n$) where $n \geq 2$. For $V, W \in S$, we define $V \leq W$ if $V \subseteq W$. Characterize the maximal and the minimal elements of S.
- 27. Let V be a (not necessarily finite dimensional) vector space over \mathbb{R} . We say that $S \subset V$ is linearly independent if every finite subset S is linearly independent. Let S be the set of all linearly independent subsets of V ordered by inclusion. Let B be a maximal element of S. Show that the linear span of B is V.
- 28. Let V be a nonzero (real) vector space. Let S denote the set of all linearly independent subset of V ordered by inclusion. Then the maximal elements of S are nothing other than the bases of V.
- 29. Let R be a commutative ring with identity 1. Let I be a maximal element in the set of all proper ideals of R ordered by inclusion. Show that for any $x \notin I$, there exist $r \in R$ and $z \in I$ such that rx + z = 1.
- 30. Consider the set $X := \{(f, S)\}$ where S is a subinterval of [0, 1] such that $(1/2, 3/4) \subset S$ and $f: S \to \mathbb{R}$ is continuous such that f(x) = 1/x for $x \in [1/2, 3/4]$. We say $(f, S) \leq (g, T)$ if $S \subseteq T$ and g(x) = f(x) for $x \in S$. Write down an infinite set of maximal elements of X. 3/4) by g(x) = 1/x for $x \geq 1/2$ and $g(x) = \frac{1-2t}{x-t}$. Then $\lim_{x\to t_+} g(x) = \infty, g(1/2) = 2$. Thus g is continuous but has no extension.
- 31. Intervals in a totally ordered set. Give a geometric and explicit description of the intervals [(0,0), (0,1)] and [(0,0), (1,0)] and [(a,b), (c,d)] in \mathbb{R}^2 with dictionary order.
- 32. Zorn's Lemma. Let X be a partially ordered set. Assume further that the partial order is such that every chain in X has an upper bound. Then there exists a maximal element in X.
- 33. The assumption on the partial order in Zorn's lemma is important. Consider $S := \{S_t := (0,t) : 0 < t < 1\}$ ordered by inclusion. The order is total and hence S is a chain. It is easy to see that the chain has no upper bound in S and that S has no maximal element.
- 34. Show that nay vector space over a field has a basis. *Hint.* Items 27, 28 and 32 are relevant.

35. Axiom of Choice. Let $\{X_i : i \in I\}$ be a nonempty family of nonempty sets. Then there exists a set A which has exactly one element from each $X_i, i \in I$.

This can be rephrased as follows. The cartesian product $\prod_{i \in I} X_i$ is not empty!

- 36. Let (X, \leq) be a poset. We say that the order \leq is a well-ordering on X if it is (i) a total order and (ii) every nonempty subset of X has a minimum.
- 37. Well-ordering Principle. On any set, there exists a well-ordering.
- 38. It can be proved that the axiom of choice, Zorn's lemma and the well-ordering principle are equivalent. Perhaps the most used of these is Zorn's lemma followed by the axiom of choice.
- 39. Zorn's lemma is used in the following results (in a typical M.Sc. course):
 - (a) Existence of a basis for any vector space.
 - (b) Existence of a maximal ideal in a ring with 1.
 - (c) Existence of algebraic closures of fields.
 - (d) Tychonoff's theorem which asserts that the product of a family of compact spaces is compact in the product topology.
 - (e) Hahn-Banach extension theorem in functional analysis.
- 40. The axiom of choice is used in the construction of a non-measurable set in the theory of Lebesgue measure.