
Existence of Smooth Functions and Partition of Unity

S. Kumaresan
School of Math. and Stat.
University of Hyderabad

Hyderabad 500046
kumaresa@gmail.com

1 Smooth Functions with Compact Support

Definition 1. Let f : X → C be a function from a topological space X to C. Then support
of f in X is the set

Supp f := {x ∈ X : f(x) 6= 0}.

If X := U ⊂ Rn is an open set, then the support of f in U is denoted by SuppU (f) for more
emphasis.

Ex. 2. Let f : [a, b]→ R be continuous and C1 on (a, b). Assume that limx→a+ f
′(x) = l and

limx→b− f
′(x) = m exist. Show that f is C1 on [a, b].

Ex. 3. Let f : U ⊂ Rn → R be continuous on U and C1 on U \ {a} for a ∈ U . Assume that
`i := limx→aDif(x) exists for 1 ≤ i ≤ n. Prove that Dif(a) = `i and that f is C1 on U .

Ex. 4. Consider f : R→ R defined by

f(t) =

{
0 for t ≤ 0

exp(−1/t) for t > 0.

f is differentiable on Rn \ {0}.
(a) Observe that ex > xk

k! for k ∈ N.
(b) Prove that f(x) < k!xk for k ∈ N and hence conclude that f is continuous at x = 0.
(c) Prove by induction that f (k)(x) = pk(x

−1)f(x) for some polynomial of degree less than
or equal to k + 1 (for x 6= 0). Note that

|
[
f (k)(x)− f (k)(0)

]
x| =

∥∥f(x)x−1pk(x
−1)
∥∥

≤ n!xn−k.

Conclude that f (k+1)(0) exists and hence f is infinitely differentiable on all of R.

Ex. 5. Carry out a similar analysis to conclude that f : R→ R defined by

f(t) =

{
e−

1
t2 t > 0

0 t ≤ 0

is infinitely differentiable.
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Ex. 6. Let f be as in Ex. 5. Let ε > 0 be given. Define gε(t) := f(t)/(f(t) + f(ε − t)) for
t ∈ R. Then gε is differentiable, 0 ≤ gε ≤ 1, gε(t) = 0 iff t ≤ 0 and gε(t) = 1 iff t ≥ ε.

Ex. 7. For x ∈ Rn and ε > 0, there exists a smooth function f : Rn → [0,∞) such that
f−1((0,∞)) = B(x, ε).

Ex. 8. Let f, g be as in Ex. 6. For r > 0 and x ∈ Rn, define ϕ(x) := 1− gε(‖x‖ − r). Then
ϕ is smooth and has the following properties:

(i) 0 ≤ ϕ ≤ 1, (ii) ϕ(x) = 1 iff ‖x‖ ≤ r and ϕ(x) = 0 iff ‖x‖ ≥ r + ε.

Ex. 9. Let ψ(u) = u−keu for u > 0. Show that

ψ′(u) = (u− k)u−k−1eu

ψ′′(u) = [u2 − 2ku+ k(k + 1)]u−k−2eu.

Show that the expression in the brackets has a minimum when u = k and is positive at u = k.
Hence ψ′′(u) > 0 and for any u0

ψ(u) ≥ ψ(u0) + ψ′(u0)(u− u0).

If uo > k, then ψ′(u0) > 0 and the right hand side above tends to infinity as n→∞. Hence
conclude that ψ(u)→∞ as u→∞.

Ex. 10. Use the above exercise to prove that f as defined in Ex. 5 is smooth.

Ex. 11. Let 0 < a < b. Consider the functions fa : R→ R given by fa(t) = exp(−1/(t− a))
for t ≥ a and 0 otherwise. and gb : R → R given by gb(t) = exp(1/(t − b)) for t ≤ b and 0
otherwise. Then the product ϕ of these functions is a smooth function which is 0 outside the
interval [a, b]. Set η(x) := ϕ(‖x‖) for x ∈ Rn. List the properties of η.

Ex. 12. Let ϕ be as in Ex. 11. Define h on R as follows.

h(x) :=

(∫ b

x
ϕ(t) dt

)(∫ b

a
ϕ(t) dt

)−1
.

Then h is smooth with h(x) ≤ 1 for x ≤ a and h(x) = 0 if x ≥ b. Define ψ(x) := h(
∑

i x
2
i )

for x := (x1, . . . , xn) ∈ Rn, then ψ(x) = 1 for x ∈ B(0, a) and ψ(x) = 0 for ‖x‖ ≥ b.

Ex. 13. If K is a compact set in Rn and U is an open set containing K then there exists a
smooth function f on Rn which is 1 on K and 0 outside U (i.e., 0 on Rn \ U).

2 Partition of Unity

Lemma 14. Let U ⊂ Rn be open. There exist compact subsets Kj, j ∈ N such that ∪jKj = U
and such that

Kj ⊂ Interior of Kj+1 ⊂ Kj+1for all j ∈ N.
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Proof. Define
Kj := {x ∈ U : ‖x‖ ≤ j and d(x,Rn \ U) ≤ 1/j}.

Alternatively, let {Uj} be any countable cover of U such that U j is compact and Uj ⊂ U .
Let K1 = U1. Take K2 = U1∪ · · ·∪U r where r is the first integer such that K1 ⊂ U1 · · · ∪Ur.
If Km := U1 ∪ · · ·U s, then we take Km+1 := U1 ∪ · · · ∪Up where p is minimal integer so that
Km ⊂ U1 ∪ · · · ∪ Up.

Proposition 15. Let U ⊂ Rn be open. Let {Uα : α ∈ I} be an open cover of U . Then there
exist a sequence (xi) in U and a sequence (εi) of positive reals such that

(i) U = ∪∞i=1B(xi, εi),
(ii) For each i ∈ N, there exists an α ∈ I such that B(xi, 2εi) ⊂ Uα,
(iii) Each x ∈ U has an open neighbourhood W such that {i : W ∪ B(xi, 2εi) 6= ∅} is a

finite set.

Proof. Choose Km as in the last lemma. Let K0 = ∅ = K−1. For each m ≥ m, we define the
following sets:

Cm := Km \ IntKm−1, Wm := IntKm+1 \Km−2.

Clearly, Cm is compact, Wm is open, Cm ⊂Wm and U = ∪mCm.

For each x ∈ Cm, we can find ε(x) > 0 such that B(x, 2ε(x)) ⊂ Wm and such that there
exists an α such that B(x, 2ε(x)) ⊂ Uα. Since Cm is compact, by Heine-Borel theorem, there
exist a finite number of points, say, xm,j and positive constant εm,j , 1 ≤ j ≤ km, such that

(A) Cm ⊂ ∪kmj=1B(xm,j , εm,j
(B) Each B(xm,j , 2εm,j) ⊂ Wm and is also contained in at least one member Uα of the

original open cover.

To arrive at the result, we can reindex the countable families (xm,j) and (εm,j). We now
have

U = ∪mCm ⊂ ∪∞m=1 ∪kmj=1 B(xm,j , εm,j) ⊂ ∪mWm ⊂ U.

Thus (i) is established. (ii) follows from our choice of ε’s. To prove (iii), let x ∈ U . Choose m
such that x ∈Wm. Since Wm∩Wk = ∅ whenever k ≥ m+ 3, it follows that Wm can intersect
B(xk,j , 2εk,j) only when k ≤ m+ 2. This establishes (iii).

Theorem 16 (Existence of Smooth Partition of Unity). Let U ⊂ Rn be open. Let {Uα|α ∈ I}
be an open cover of U . Then there exist smooth functions fα : U → [0, 1] with the following
properties:

(i) Supp fα ⊂ Uα for each αinI.
(ii) Each x ∈ U has a neighbourhood W such that {α ∈ I : fα 6= 0 on W} is finite.
(iii) For each x ∈ U , we have

∑
α∈I fα(x) = 1.

Remark 17. The family {Supp fα} satisfying the condition (ii) of the theorem is said to be
locally finite. Note that the sum in (iii) is a finite sum so that it is a well-defined real valued
function. It is also smooth. (Why?)

Proof. Choose (xi), (εi) and α = αi as in Proposition 15. Let gi : Rn → [0,∞) be smooth
functions such that g−1i (0,∞) = B(xi, εi). Condition (iii) of the Proposition ensures that∑

i gi(x) is a finite sum on a neighbourhood of each point x ∈ U and hence it is a smooth
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function, say, g on U . From condition (i) of the Proposition, it follows that g(x) > 0 for each
x ∈ U .

Let hi(x) := gi(x)/g(x). Then hi are smooth, h−1i (0,∞) = B(xi, εi) and
∑

i hi(x) = 1
for all x ∈ U . Define fα :=

∑
hi where the sum is over only those i for which αi = α. It is

easy to see that fα are smooth. To show that fα’s are as required, let x ∈ Supp fα. Then by
Proposition 15, x has a neighbourhood W in U satisfying condition (iii) of the Proposition.
Then the restriction of fα to W is the sum of finitely many hi such that αi = α. There is at
least one such i such that x ∈ Supphi. We now observe that

Supphi = B[xi, εi] ⊂ B(xi, 2εi) ⊂ Uα.

Thus, x ∈ Uα. Condition (i) of the theorem follows. The other conditions are obvious.

Ex. 18. Let K ⊂ Rn be a closed set. A function f : K → R is said to be smooth iff for
each x, there exists an open set Ux and a smooth function fx : Ux → R such that f is the
restriction of fx to Ux ∩ K. Show that f : K → R is smooth iff there exists an open set U
and a smooth function g : U → R such that K ⊂ U and f is the restriction of g to K.

Lemma 19. Let K be a closed subset of U and U0 ⊂ U be open containing K. Let f : U → V
be continuous. Assume further that f is smooth on U0. Let ε : U → (0,∞) be given. Then
there exists a smooth g : U → V such that the following hold:
(i) g(x) = f(x) for x ∈ K.
(ii) ‖g(x)− f(x)‖ < ε(x) for x ∈ U .
(iii) the line segment [f(x), g(x)] ⊂ V for x ∈ U .

Proof. Let ε : U → (0,∞) be given. Let

ε′(x) = min{ε(x),
1

2
d(f(x),Rn \ V )}.

For p ∈ U \K, using the continuity of f at p, we can choose a neighborhood Up ⊆ U \K such
that

‖f(x)− f(p)‖ < ε′(p) for all x ∈ Up. (1)

Let U = U0 ∪ {∪Up}p/∈K . Then U is an open cover for U . Let g0 ∪ {gp}p∈U\K be a partition
of unity subordinate to the open cover U . This means that
(i) Supp g0 ⊆ U0 and Supp gp ⊆ Up.
(ii) Each x ∈ U has a neighborhood Wx on which only finitely many g’s do not vanish.

(iii) g0(x) +
∑

p∈U\K

gp(x) = 1, for x ∈ U . Define

g(x) := g0(x)f(x) +
∑

p∈U\K

gp(x)f(p). (2)

Note that for x ∈ K, gp(x) = 0 for all p ∈ U \K. By (iii) g0(x) = 1 and hence by Eqn. 2,
g(x) = f(x) on K.
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For x ∈ U ,

‖f(x)− g(x)‖ =

∥∥∥∥∥∥
∑

p∈U\K

gp(x)f(x)−
∑

p∈U\K

gp(x)f(p)

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∑

p∈U\K

gp(x)[f(x)− f(p)]

∥∥∥∥∥∥
≤ ‖f(x)− f(p)‖
< ε′(x) ( by Eqn. 1)

<
1

2
d(f(x),Rn \ V ).

Hence the line segment [f(x), g(x)] ⊂ V . This completes the proof.

Corollary 20. Let f : U → V be a continuous map. Then there exists a smooth map g : U →
V which is homotopic to f .
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