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Theorem 1 (Converse of Mean Value Property-I). Let u ∈ C2(Ω) satisfies the mean value
property:

u(x) =

∫
S(x,r)

u(y) dS(y)

for all B(x, r) ⊂ Ω, then u is harmonic.

Proof. If ∆u(x) > 0, say, for some x ∈ Ω, by continuity we can find an r > 0 such that
∆u > 0 on B(x, r). If we set ϕ(ρ) := 1

ωn

∫
|ξ|=1 u(x+ ρξ) dS(ξ), then ϕ′(r) = 0. But then

ϕ′(r) =
d

dr

∫
S(x,r)

u(y) dy =

∫
S(x,r)

∂u

∂ν
dS(y) =

∫
B(x,r)

∆u(y)dy > 0,

a contradiction.

Theorem 2 (Converse of Mean Value Property-II). Let u ∈ C(Ω) have the mean value
property: for all x ∈ Ω and for all r > 0 with B[x, r] ⊂ Ω we have

u(x) =
1

ωn

∫
|ξ|=1

u(x+ rξ) dS(ξ).

Then u ∈ C∞(Ω) and u is harmonic in Ω.

Proof. Let ϕ be a smooth radial cut-off function with support in the unit ball: u ∈ C∞c (B(0, 1))
with

∫
ϕ = 1 and ϕ(x) = ϕ(|x|). Let ε > 0. We set Ωε to be the set of points x ∈ Ω such

that d(x, ∂Ω) > ε. Let ϕε be defined as usual: ϕε(x) := ε−nϕ(x/ε). If x ∈ Ωε, the function
y 7→ ϕε(x− y) has support inside Ω and hence the convolution u ? ϕε makes sense. We have∫

u(x− y)ϕε(y) dy =

∫
u(x− y)ε−nϕ(y/ε) dy

=

∫
u(x− εy)ϕ(y) dy

=

∫ ∞
0

∫
|ξ|=1

u(x− εrξ)dS(ξ)ϕ(r)rn−1 dr

= ωnu(x)

∫ ∞
0

ϕ(r)rn−1 dr

= u(x)

∫
ϕ(y) dy = u(x).
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Thus we have u ? ϕε = u on Ωε. It is well-known that u ? ϕε is C∞ and hence u is so on Ωε.
Letting ε→ 0 we get the result.

To prove that u is harmonic, we shall apply Gauss-Green theorem.∫
B(x,r)

∆u =

∫
S(x,r)

∂

∂ν
udS

=
d

dr

∫
S(0,1)

u(x+ rξ)dS(ξ)

=
d

dr
u(x) = 0.

Corollary 3. If (uj) is a sequence of harmonic functions on Ω which converge uniformly on
compact subsets of Ω to a function u then u is harmonic.

Theorem 4 (Liouville). If u is a bounded harmonic function on Rn, then u is a constant.

Proof. Assume that |u(x)| ≤M on Rn. We shall use the mean value property in the following
form:

u(x) =
n

Rnωn

∫
B(x,R)

u(y) dy. (1)

For any x ∈ Rn and R > |x|, we have

|u(x)− u(0)| =
n

Rnωn
|
∫
B(x,R)

u(y) dy −
∫
B(0,R)

u(y) dy|

≤ n

Rnωn
M

[∫
|y|<R,|x−y|>R

dy +

∫
|y|>R,|x−y|<R

dy

]

≤ n

Rnωn
M

∫
R−|x|<|y|<R+|x|

dy

=
n

Rn
M

∫ R+|x|

R−|x|
rn−1 dr

=
M

Rn
[(R+ |x|)n − (R− |x|)n]

→ 0 as R→∞.

Theorem 5. Let u be a nonnegative harmonic function on Ω. Then for any connected
subdomain Ω′ ⊂ Ω with compact closure, there exists a constant C > 0 depending only on Ω′

such that
sup
Ω′

u ≤ C inf
Ω′
u.

In particular,
C−1u(y) ≤ u(x) ≤ Cu(y), for all points x, y ∈ Ω′.

2



Proof. Let y ∈ Ω and R > 0 be such that B(y, 4R) ⊂ Ω. Then for any two points x1, x2 ∈
B(y,R) we have by the mean value theorem, (see the proof of Thm. 4 (1)),

u(x1) =
1

Rnωn

∫
B(x1,R)

u(z) dz ≤ 1

Rnωn

∫
B(y,2R)

u(z) dz. (2)

u(x2) =
1

(3R)nωn

∫
B(x2,3R)

u(z) dz ≥ 1

(3R)nωn

∫
B(y,2R)

u(z) dz. (3)

From these two, we obtain
sup
B(y,R)

u ≤ 3n inf
B(y,R)

u. (4)

Choose x1, x2 ∈ Ω′ such that u(x1) = supΩ′ u(x) and u(x2) = infΩ′ u(x). Let γ be a continuous
path joining x1 and x2. Choose R so that 4R < d(γ, ∂Ω). By compactness, γ can be covered
by a finite number N (depending only on Ω′ and Ω) of balls with radius R. Applying the
estimate (4) in each of these balls and combining the resulting inequalities, we get

u(x1) ≤ 3nNu(x2).
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