Some Properties of Harmonic Functions

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Theorem 1 (Converse of Mean Value Property-I). Let $u \in C^2(\Omega)$ satisfies the mean value property:

$$
u(x) = \int_{S(x,r)} u(y) \, dS(y)
$$

for all $B(x, r) \subset \Omega$, then u is harmonic.

Proof. If $\Delta u(x) > 0$, say, for some $x \in \Omega$, by continuity we can find an $r > 0$ such that $\Delta u > 0$ on $B(x,r)$. If we set $\varphi(\rho) := \frac{1}{\omega_n} \int_{|\xi|=1} u(x+\rho\xi) dS(\xi)$, then $\varphi'(r) = 0$. But then

$$
\varphi'(r) = \frac{d}{dr} \int_{S(x,r)} u(y) dy = \int_{S(x,r)} \frac{\partial u}{\partial \nu} dS(y) = \int_{B(x,r)} \Delta u(y) dy > 0,
$$

 \Box

a contradiction.

Theorem 2 (Converse of Mean Value Property-II). Let $u \in C(\Omega)$ have the mean value property: for all $x \in \Omega$ and for all $r > 0$ with $B[x, r] \subset \Omega$ we have

$$
u(x) = \frac{1}{\omega_n} \int_{|\xi|=1} u(x+r\xi) dS(\xi).
$$

Then $u \in C^{\infty}(\Omega)$ and u is harmonic in Ω .

Proof. Let φ be a smooth radial cut-off function with support in the unit ball: $u \in C_c^{\infty}(B(0, 1))$ with $\int \varphi = 1$ and $\varphi(x) = \varphi(|x|)$. Let $\varepsilon > 0$. We set Ω_{ε} to be the set of points $x \in \Omega$ such that $d(x, \partial \Omega) > \varepsilon$. Let φ_{ε} be defined as usual: $\varphi_{\varepsilon}(x) := \varepsilon^{-n} \varphi(x/\varepsilon)$. If $x \in \Omega_{\varepsilon}$, the function $y \mapsto \varphi_{\varepsilon}(x - y)$ has support inside Ω and hence the convolution $u \star \varphi_{\varepsilon}$ makes sense. We have

$$
\int u(x - y)\varphi_{\varepsilon}(y) dy = \int u(x - y)\varepsilon^{-n}\varphi(y/\varepsilon) dy
$$

\n
$$
= \int u(x - \varepsilon y)\varphi(y) dy
$$

\n
$$
= \int_0^\infty \int_{|\xi|=1} u(x - \varepsilon r\xi) dS(\xi)\varphi(r)r^{n-1} dr
$$

\n
$$
= \omega_n u(x) \int_0^\infty \varphi(r)r^{n-1} dr
$$

\n
$$
= u(x) \int \varphi(y) dy = u(x).
$$

Thus we have $u \star \varphi_{\varepsilon} = u$ on Ω_{ε} . It is well-known that $u \star \varphi_{\varepsilon}$ is C^{∞} and hence u is so on Ω_{ε} . Letting $\varepsilon \to 0$ we get the result.

To prove that u is harmonic, we shall apply Gauss-Green theorem.

$$
\int_{B(x,r)} \Delta u = \int_{S(x,r)} \frac{\partial}{\partial \nu} u dS
$$
\n
$$
= \frac{d}{dr} \int_{S(0,1)} u(x+r\xi) dS(\xi)
$$
\n
$$
= \frac{d}{dr} u(x) = 0.
$$

Corollary 3. If (u_i) is a sequence of harmonic functions on Ω which converge uniformly on compact subsets of Ω to a function u then u is harmonic.

Theorem 4 (Liouville). If u is a bounded harmonic function on \mathbb{R}^n , then u is a constant.

Proof. Assume that $|u(x)| \leq M$ on \mathbb{R}^n . We shall use the mean value property in the following form:

$$
u(x) = \frac{n}{R^n \omega_n} \int_{B(x,R)} u(y) \, dy. \tag{1}
$$

For any $x \in R^n$ and $R > |x|$, we have

$$
|u(x) - u(0)| = \frac{n}{R^n \omega_n} |\int_{B(x,R)} u(y) dy - \int_{B(0,R)} u(y) dy|
$$

\n
$$
\leq \frac{n}{R^n \omega_n} M \left[\int_{|y| < R, |x-y| > R} dy + \int_{|y| > R, |x-y| < R} dy \right]
$$

\n
$$
\leq \frac{n}{R^n \omega_n} M \int_{R - |x| < |y| < R + |x|} dy
$$

\n
$$
= \frac{n}{R^n} M \int_{R - |x|}^{R + |x|} r^{n-1} dr
$$

\n
$$
= \frac{M}{R^n} [(R + |x|)^n - (R - |x|)^n]
$$

\n
$$
\to 0 \text{ as } R \to \infty.
$$

 \Box

Theorem 5. Let u be a nonnegative harmonic function on Ω . Then for any connected subdomain $\Omega' \subset \Omega$ with compact closure, there exists a constant $C > 0$ depending only on Ω' such that

$$
\sup_{\Omega'} u \le C \inf_{\Omega'} u.
$$

In particular,

$$
C^{-1}u(y) \le u(x) \le Cu(y), \text{ for all points } x, y \in \Omega'.
$$

Proof. Let $y \in \Omega$ and $R > 0$ be such that $B(y, 4R) \subset \Omega$. Then for any two points $x_1, x_2 \in$ $B(y, R)$ we have by the mean value theorem, (see the proof of Thm. 4 (1)),

$$
u(x_1) = \frac{1}{R^n \omega_n} \int_{B(x_1, R)} u(z) dz \le \frac{1}{R^n \omega_n} \int_{B(y, 2R)} u(z) dz.
$$
 (2)

$$
u(x_2) = \frac{1}{(3R)^n \omega_n} \int_{B(x_2, 3R)} u(z) dz \ge \frac{1}{(3R)^n \omega_n} \int_{B(y, 2R)} u(z) dz.
$$
 (3)

From these two, we obtain

$$
\sup_{B(y,R)} u \le 3^n \inf_{B(y,R)} u. \tag{4}
$$

Choose $x_1, x_2 \in \overline{\Omega'}$ such that $u(x_1) = \sup_{\Omega'} u(x)$ and $u(x_2) = \inf_{\Omega'} u(x)$. Let γ be a continuous path joining x_1 and x_2 . Choose R so that $4R < d(\gamma, \partial\Omega)$. By compactness, γ can be covered by a finite number N (depending only on Ω' and Ω) of balls with radius R. Applying the estimate (4) in each of these balls and combining the resulting inequalities, we get

$$
u(x_1) \le 3^{n} u(x_2).
$$

 \Box