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Introduction

In the first few sections, we shall look at several proofs of the local solvability of constant
coefficient linear PDE

P (D)u = f, for f ∈ L2(Ω). (1)

In the last section we shall give proofs for the existence of fundamental solutions for P (D),
i.e., existence of a distribution E such that P (D)E = δ, the Dirac distribution.

Notataions. We use the standard notation of PDE.

Let Ω denote an open set in Rn. Let C∞0 (Ω) denote the space of smooth (C∞) functions
with compact support in Ω. For α ∈ Zn+, let |α| = α1 + · · · + αn and xα := xα1

1 · · ·xαnn for
x ∈ Rn. Let

Dα :=
∂α1+···+αn

∂xα1
1 · · · ∂x

αn
n
≡ ∂α

∂xα
.

Let P (D) :=
∑

α aα
∂α

∂xα =
∑

α aαD
α.

The formal adjoint of P (D) is given by

P ∗(D) =
∑

(−1)αaαD
α.

It is called the formal adjoint since by integration by parts we have

〈P (D)f, g〉 = 〈f, P ∗(D)g〉 for f, g ∈ C∞0 (Ω).

Here the inner product is defined by 〈f, g〉 =
∫

Ω fg dx. The norms are with respect to this
inner product.

1 Local Solvability—Proof 1

Let P (D) denote a nonzero linear partial differential operator with constant coefficients, of
order m.
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Let us start with a simple case of Hörmander’s inequality. Let n = 1 and Ω = (0, 1) and
P (D) = d/dx. We wish to show that there exists C > 0 such that ‖ϕ′‖ ≥ C ‖ϕ‖ for all
ϕ ∈ C∞0 (0, 1).

The key trick is to observe the algebraic identity:〈
(xϕ)′, ϕ

〉
=
〈
xϕ′, ϕ

〉
+ 〈ϕ,ϕ〉 .

Further, it follows by integration by parts,〈
(xϕ)′, ϕ

〉
= −

〈
xϕ, ϕ′

〉
.

Hence we have
〈ϕ,ϕ〉 = −

〈
xϕ′, ϕ

〉
−
〈
xϕ, ϕ′

〉
.

We apply Cauchy-Schwarz inequality and use the fact |x| < 1 to get

‖ϕ‖2 ≤ 2 ‖ϕ‖
∥∥ϕ′∥∥ ,

from which it follows that ‖ϕ′‖ ≥ 1
2 ‖ϕ‖.

Theorem 1 (Hörmander’s Inequality). For every bounded open set Ω in Rn, there exists a
constant C > 0 such that for every ϕ ∈ C∞0 (Ω),we have

‖P (D)ϕ‖ ≥ C ‖ϕ‖ . (2)

We may take C = |P |mKm,Ω where

|P |m = max{|aα|; |α| = m}

and Km,Ω depends only on m and the diameter of Ω.

Proof. Given a differential operator P (D) of order m, we define Pj(D) by the formula

P (D)(xjϕ) = xjP (D)ϕ+ Pj(D)ϕ. (3)

Note that the operator Pj(D) is zero iff P (D) does not involve any differentiation w.r.t. xj .
Order of Pj(D) is strictly less than m, provided that it is non-zero.

Let A := supΩ |x|. By induction we shall show that

‖Pj(D)ϕ‖ ≤ 2mA ‖P (D)ϕ‖ . (4)

Before proceeding to a proof of (4), we make two observations: (i) The definition of Pj(D)
along with (4) yields

‖P (D)(xjϕ)‖ ≤ (2m+ 1)A ‖P (D)ϕ‖ .

(ii) The second one is a well-known property of normal operators:

‖P (D)ϕ‖2 = 〈P (D)ϕ, P (D)ϕ〉
= 〈ϕ, P ∗(D)P (D)ϕ〉
= 〈ϕ, P (D)P ∗(D)ϕ〉
= 〈P ∗(D)ϕ, P ∗(D)ϕ〉
= ‖P ∗(D)ϕ‖2 .
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We now prove (4). It is trivial for m = 0. Let us assume that (4) holds true for all
differential operators od order at most m − 1. Let P (D) be a differential operator of order
m. We compute 〈P (D)(xjϕ), Pj(D)ϕ〉 in two different ways. From the defintion of Pj(D) we
have

〈P (D)(xjϕ), Pj(D)ϕ〉 = 〈xjP (D)ϕ, Pj(D)ϕ〉+ 〈Pj(D)ϕ, Pj(D)ϕ〉 . (5)

By integration by parts and the commutativity of P ∗(D) and P (D), we obtain

〈P (D)(xjϕ), Pj(D)ϕ〉 =
〈
P ∗j (D)(xjϕ), P ∗(D)ϕ

〉
. (6)

From (5) and (6) we find

‖Pj(D)ϕ‖2 =
〈
P ∗j (D)(xjϕ), P ∗(D)ϕ

〉
− 〈xjP (D)ϕ, Pj(D)ϕ〉 . (7)

By the above two observations and by the induction hypothesis, we get∥∥P ∗j (D)(xjϕ)
∥∥ ≤ (2m− 1)A ‖Pj(D)ϕ‖ . (8)

By Cauchy-Schwarz,

| 〈xjP (D)ϕ, Pj(D)ϕ〉 | ≤ A ‖P (D)ϕ‖ ‖Pj(D)ϕ‖ . (9)

Using (9) and (8) in (7), we get (4).

If P (D) is of order m ≥ 1, there exists j such that Pj(D) is of order m− 1. Observe that
|Pj |m−1 ≥ |P |m. The theorem follows then immediately from induction.

Corollary 2. If Ω is a bounded open set in Rn, then for any g ∈ L2(Ω), there exists a weak
solution u ∈ L2(Ω) such that P (D)u = g.

Proof. If P (D)u = g, then for all ϕ ∈ C∞0 (Ω), we have 〈g, ϕ〉 = 〈u, P ∗(D)ϕ〉.

Let H0 := {ψ ∈ C∞0 (Ω) : ψ = P ∗(D)ϕ for some ϕ ∈ C∞0 (Ω)}. Hörmander’s inequality
implies that the map ψ 7→ 〈g, ϕ〉 is well-defined (proof?), antilinear and continuous on E w.r.t.
the L2-norm. Hence it extends to a continuous linear map on the closure E of E in L2(Ω).
By Riesz representation theorem. there exists u ∈ E ⊂ L2(Ω) such that 〈g, ϕ〉 = 〈u, P ∗(D)ϕ〉
for all ϕ ∈ C∞0 (Ω).

2 Local Solvability—Proof 2

For any α ∈ Rn, solving P (D)u = f on B(0, R) is equivalent to solving

P (D + α)v = g, where v = e−iα·xu and g = e−iα·xf. (10)

To solve (10) on B(0, R), we can use a cut-off function to assume that g is supported in
B(0, 3R/2). This reduces the problem to one on Tn. The following result then implies the
solvability of (1) on B(0, R).

Theorem 3. For almost all α ∈ A := {(α1, . . . , αn) : 0 ≤ αj ≤ 1}, the map P (D +
α) : D′(Tn)→ D′(Tn) and P (D + α : C∞(Tn)→ C∞(Tn) are isomorphisms.
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Recall that the distributions on Tn are characterized by the growth of their Fourier coef-
ficients: For, k ∈ Zn, if (ak) is the Fourier coefficient of a distribution u on Tn, then there
exist constants C and N such that

|ak| ≤ C|k|N for k ∈ Zn.

Similarly, smooth functions on Tn are characterized by the decay of their Fourier coefficients,
namely, they vanish must faster than any polynomial in k.

Therefore it suffices to establish the following

Theorem 4. Let P (ξ) be a polynomial of degree mon Rn. For almost all α ∈ A, there exist
constants C and N such that

|P (k + α)−1| ≤ C|k|N for all k ∈ Zn. (11)

Reference

J-P. Rosay, A Very Elementary Proof of the Malgrange-Ehrenpreis Theorem, AMM Vol. 98,
pp. 518-523, 1991.

4


