Proofs of Malgrange-Ehrenpreis Theorem

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Introduction

In the first few sections, we shall look at several proofs of the local solvability of constant coefficient linear PDE

$$
P(D)u = f, \quad \text{for } f \in L^2(\Omega). \tag{1}
$$

In the last section we shall give proofs for the existence of fundamental solutions for $P(D)$, i.e., existence of a distribution E such that $P(D)E = \delta$, the Dirac distribution.

Notataions. We use the standard notation of PDE.

Let Ω denote an open set in \mathbb{R}^n . Let $C_0^{\infty}(\Omega)$ denote the space of smooth (C^{∞}) functions with compact support in Ω . For $\alpha \in \mathbb{Z}_{+}^{n}$, let $|\alpha| = \alpha_1 + \cdots + \alpha_n$ and $x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ for $x \in \mathbb{R}^n$. Let

$$
D^{\alpha} := \frac{\partial^{\alpha_1 + \dots + \alpha_n}}{\partial x_1^{\alpha_1} \dots \partial x_n^{\alpha_n}} \equiv \frac{\partial^{\alpha}}{\partial x^{\alpha}}.
$$

Let $P(D) := \sum_{\alpha} a_{\alpha} \frac{\partial^{\alpha}}{\partial x^{\alpha}} = \sum_{\alpha} a_{\alpha} D^{\alpha}$.

The *formal adjoint* of $P(D)$ is given by

$$
P^*(D) = \sum (-1)^{\alpha} \overline{a_{\alpha}} D^{\alpha}.
$$

It is called the formal adjoint since by integration by parts we have

$$
\langle P(D)f, g \rangle = \langle f, P^*(D)g \rangle \quad \text{ for } f, g \in C_0^{\infty}(\Omega).
$$

Here the inner product is defined by $\langle f, g \rangle = \int_{\Omega} f \overline{g} \, dx$. The norms are with respect to this inner product.

1 Local Solvability—Proof 1

Let $P(D)$ denote a nonzero linear partial differential operator with constant coefficients, of order m.

Let us start with a simple case of Hörmander's inequality. Let $n = 1$ and $\Omega = (0, 1)$ and $P(D) = d/dx$. We wish to show that there exists $C > 0$ such that $\|\varphi'\| \geq C \|\varphi\|$ for all $\varphi \in C_0^{\infty}(0,1).$

The key trick is to observe the algebraic identity:

$$
\langle (x\varphi)', \varphi \rangle = \langle x\varphi', \varphi \rangle + \langle \varphi, \varphi \rangle.
$$

Further, it follows by integration by parts,

$$
\left\langle (x\varphi)',\varphi \right\rangle = -\left\langle x\varphi,\varphi' \right\rangle.
$$

Hence we have

$$
\langle \varphi, \varphi \rangle = - \left\langle x \varphi', \varphi \right\rangle - \left\langle x \varphi, \varphi' \right\rangle.
$$

We apply Cauchy-Schwarz inequality and use the fact $|x| < 1$ to get

 $\|\varphi\|^2 \leq 2 \|\varphi\| \|\varphi'\|$,

from which it follows that $\|\varphi'\| \geq \frac{1}{2} \|\varphi\|$.

Theorem 1 (Hörmander's Inequality). For every bounded open set Ω in \mathbb{R}^n , there exists a constant $C > 0$ such that for every $\varphi \in C_0^{\infty}(\Omega)$, we have

$$
||P(D)\varphi|| \ge C ||\varphi||. \tag{2}
$$

We may take $C = |P|_m K_{m,\Omega}$ where

$$
|P|_m = \max\{|a_\alpha|; |\alpha| = m\}
$$

and $K_{m,\Omega}$ depends only on m and the diameter of Ω .

Proof. Given a differential operator $P(D)$ of order m, we define $P_i(D)$ by the formula

$$
P(D)(x_j \varphi) = x_j P(D)\varphi + P_j(D)\varphi.
$$
\n(3)

Note that the operator $P_i(D)$ is zero iff $P(D)$ does not involve any differentiation w.r.t. x_j . Order of $P_i(D)$ is strictly less than m, provided that it is non-zero.

Let $A := \sup_{\Omega} |x|$. By induction we shall show that

$$
||P_j(D)\varphi|| \le 2mA ||P(D)\varphi||.
$$
\n(4)

Before proceeding to a proof of (4), we make two observations: (i) The definition of $P_j(D)$ along with (4) yields

$$
|| P(D)(x_j \varphi) || \le (2m+1)A || P(D)\varphi ||.
$$

(ii) The second one is a well-known property of normal operators:

$$
||P(D)\varphi||^2 = \langle P(D)\varphi, P(D)\varphi \rangle
$$

= $\langle \varphi, P^*(D)P(D)\varphi \rangle$
= $\langle \varphi, P(D)P^*(D)\varphi \rangle$
= $\langle P^*(D)\varphi, P^*(D)\varphi \rangle$
= $||P^*(D)\varphi||^2$.

We now prove (4). It is trivial for $m = 0$. Let us assume that (4) holds true for all differential operators od order at most $m-1$. Let $P(D)$ be a differential operator of order m. We compute $\langle P(D)(x_i\varphi), P_i(D)\varphi \rangle$ in two different ways. From the defintion of $P_i(D)$ we have

$$
\langle P(D)(x_j \varphi), P_j(D)\varphi \rangle = \langle x_j P(D)\varphi, P_j(D)\varphi \rangle + \langle P_j(D)\varphi, P_j(D)\varphi \rangle. \tag{5}
$$

By integration by parts and the commutativity of $P^*(D)$ and $P(D)$, we obtain

$$
\langle P(D)(x_j \varphi), P_j(D)\varphi \rangle = \langle P_j^*(D)(x_j \varphi), P^*(D)\varphi \rangle. \tag{6}
$$

From (5) and (6) we find

$$
||P_j(D)\varphi||^2 = \langle P_j^*(D)(x_j\varphi), P^*(D)\varphi \rangle - \langle x_j P(D)\varphi, P_j(D)\varphi \rangle. \tag{7}
$$

By the above two observations and by the induction hypothesis, we get

$$
||P_j^*(D)(x_j \varphi)|| \le (2m-1)A ||P_j(D)\varphi||.
$$
 (8)

By Cauchy-Schwarz,

$$
|\langle x_j P(D)\varphi, P_j(D)\varphi \rangle| \le A \| P(D)\varphi \| \| P_j(D)\varphi \|.
$$
\n(9)

Using (9) and (8) in (7) , we get (4) .

If $P(D)$ is of order $m \geq 1$, there exists j such that $P_i(D)$ is of order $m-1$. Observe that $|P_j|_{m-1} \geq |P|_m$. The theorem follows then immediately from induction.

Corollary 2. If Ω is a bounded open set in \mathbb{R}^n , then for any $g \in L^2(\Omega)$, there exists a weak solution $u \in L^2(\Omega)$ such that $P(D)u = g$.

Proof. If $P(D)u = g$, then for all $\varphi \in C_0^{\infty}(\Omega)$, we have $\langle g, \varphi \rangle = \langle u, P^*(D)\varphi \rangle$.

Let $H_0 := \{ \psi \in C_0^{\infty}(\Omega) : \psi = P^*(D) \varphi \text{ for some } \varphi \in C_0^{\infty}(\Omega) \}.$ Hörmander's inequality implies that the map $\psi \mapsto \langle g, \varphi \rangle$ is well-defined (proof?), antilinear and continuous on E w.r.t. the L²-norm. Hence it extends to a continuous linear map on the closure \overline{E} of E in $L^2(\Omega)$. By Riesz representation theorem. there exists $u \in \overline{E} \subset L^2(\Omega)$ such that $\langle g, \varphi \rangle = \langle u, P^*(D)\varphi \rangle$ for all $\varphi \in C_0^{\infty}(\Omega)$. \Box

2 Local Solvability—Proof 2

For any $\alpha \in \mathbb{R}^n$, solving $P(D)u = f$ on $B(0, R)$ is equivalent to solving

$$
P(D + \alpha)v = g, \text{ where } v = e^{-i\alpha \cdot x}u \text{ and } g = e^{-i\alpha \cdot x}f. \tag{10}
$$

To solve (10) on $B(0, R)$, we can use a cut-off function to assume that g is supported in $B(0,3R/2)$. This reduces the problem to one on \mathbb{T}^n . The following result then implies the solvability of (1) on $B(0, R)$.

Theorem 3. For almost all $\alpha \in A := \{(\alpha_1, \ldots, \alpha_n) : 0 \leq \alpha_j \leq 1\}$, the map $P(D +$ α): $\mathcal{D}'(\mathbb{T}_n) \to \mathcal{D}'(\mathbb{T}_n)$ and $P(D + \alpha: C^{\infty}(\mathbb{T}_n) \to C^{\infty}(\mathbb{T}_n)$ are isomorphisms.

Recall that the distributions on \mathbb{T}_n are characterized by the growth of their Fourier coefficients: For, $k \in \mathbb{Z}^n$, if (a_k) is the Fourier coefficient of a distribution u on \mathbb{T}_n , then there exist constants C and N such that

$$
|a_k| \le C|k|^N \quad \text{for } k \in \mathbb{Z}^n.
$$

Similarly, smooth functions on \mathbb{T}_n are characterized by the decay of their Fourier coefficients, namely, they vanish must faster than any polynomial in k.

Therefore it suffices to establish the following

Theorem 4. Let $P(\xi)$ be a polynomial of degree mon \mathbb{R}^n . For almost all $\alpha \in A$, there exist constants C and N such that

$$
|P(k+\alpha)^{-1}| \le C|k|^N \quad \text{for all } k \in \mathbb{Z}^n. \tag{11}
$$

Reference

J-P. Rosay, A Very Elementary Proof of the Malgrange-Ehrenpreis Theorem, AMM Vol. 98, pp. 518-523, 1991.