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Consider the quasi-linear equation

n∑
j=1

aj(x, u)∂ju = b(x, u). (1)

If u is a function of x, the graph of u is the hypersurface in Rn+1 given by the parameterization

(x1, . . . , xn) 7→ (x, u(x)).

The tangent space to the graph of u is spanned by (ej , ∂ju) so that any normal to the
hypersurface is a scalar multiple of (∂1u, . . . , ∂nu,−1). Hence the equation (1) just says that
the vector field

A(x, y) := (a1(x, y), . . . , an(x, y), b(x, y))

is tangent to the graph of u. This suggests us that we can reconstruct the graph of u by
flowing along the integral curves of A. These curves are called the characteristic curves of
the PDE.

Given a hypersurface S ⊂ Rn and a function h on S, the initial value (or the Cauchy)
problem is to find a solution u of (1) such that u = h on S. In geometric language, this means
that the graph of the solution u must contain the hypersurface of the graph of h on S. In
general, there is a geometric constraint on the hypersurface S.

To understand this, let us consider the PDE ∂1u = 0 on R2 with the initial condition
u(x, 0) = h(x), that is, S = {y = 0} and u = h on S. Then a necessary condition is that
∂1h = 0 or h is a constant on S.

The geometric condition is that for x ∈ S, the vector A(x) := (a1(x, h(x), . . . , an(x, h(x))
should not be tangent to S at x. Assume that S has a parameterization ϕ : Rn−1 → Rn

given by (s1, . . . , sn−1) 7→ ϕ(s). Then the geometric condition can be phrased as the analytic
condition

det


∂ϕ1

∂s1
. . . ∂ϕ1

∂sn−1
a1(ϕ(s), h(ϕ(s)))

...
...

...
∂ϕn

∂s1
. . . ∂ϕn

∂sn−1
an(ϕ(s), h(ϕ(s)))

 6= 0. (2)
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Theorem 1. Let S be a hypersurface and the functions aj , b be real valued C1-functions.
Suppose that the vector

A(x) := (a1(x, h(x), . . . , an(x, h(x))

is not tangent to S at x for any x ∈ S. Then there exists a unique solution u of the initial
value problem defined on a neighbourhood of S.

Proof. Since the graph of u must be the union of integral curves of

A(x, y) = (a1(x, y), . . . , an(x, y), b(x, y))

passing through the points of S∗ := {(x, h(x)) : x ∈ S}, the uniqueness follows.

Any hypersurface can be covered by open charts, that is, open sets which admit parametriza-
tion, say, s 7→ ϕ(s). If we solve the problem on each of these, by uniqueness, they agree on
the intersection of their domains and hence we get a solution on all of S. So, we assume that
S admits a single parametrization, s 7→ ϕ(s).

For each s ∈ Rn−1, consider the initial value problem

∂xj
∂t

(s, t) = aj(x, y) xj(s, 0) = ϕj(s), 1 ≤ j ≤ n

∂y

∂t
(s, t) = b(x, y) y(s, 0) = h(ϕ(s)).

This is a system of ODE in t with parameter s. By the fundamental theorem of ODE,
there is a unique solution (x, y) defined for small values of |t|. This solution is C1 in the
variables (x, y).

Since the hypersurface satisfies the non-characteristic condition (2), we can appeal to the
inverse function theorem to conclude that the map (s, t) 7→ x(s, t) is a C1-diffeomorphism.
Hence we have a C1-inverse of this map so that s, t are C1-functions of x. We set u(x) :=
y(s(x), t(x)). By the initial value condition of the system of ODE, it is obvious that u = h
on S. We now show that u satisfies the PDE:
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This completes the proof.
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Ex. 2. Solve the following initial value problems by the method of characteristics.

Equation Initial Value Solution

(a) ut + aux = 0, a ∈ R u(x, 0) = h(x) u(x, t) = h(x− at)

(b) xux + uy = y u(x, 0) = x2 u(x, y) = y2/2 + x2e−2y

(c) ux + 2uy = u2 u(x, 0) = h(x) u(x, y) = h(x−y/2)
1−(y/2)h(x−y/2)

(d) ux + uy = 1 u(x, 0) = f(x) u(x, y) = y + f(x− y)

(e) xux + yuy = u + 1 u(x, x2) = x2 u(x, y) = y + (x2/y)− 1

(f) xux + yuy + uz = 3u u = ϕ(x, y) on z = 0 u(x, y, z) = ϕ(xe−z, ye−2z)e3z

(g) ux + uy = u u = cosx on y = 0 u(x, y) = ey cos(x− y).
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