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Introduction

We fix up a basic amount of notation to make our introduction intelligible.

We let Dk := 1
i
∂
∂xk

= −i ∂
∂xk

. For α := (α1, . . . , αn) ∈ Zn+, we let

Dα := Dα1
1 · · ·D

αn
n =

(−i)|α|∂|α|

∂xα1
1 · · · ∂x

αn
n

where |α| := α1 + · · ·+ αn.

A partial differential operator is an expression of the form P (D) :=
∑
|α|≤m aαD

α where
aα are functions. It is said to be with constant coefficients if aα ∈ C. Our main concern here
will be with this class of operators.

A distribution E is said to be a fundamental solution of P (D) if P (D)E = δ, the Dirac
distribution. A celebrated theorem of Malgrange-Ehrenpreis asserts the existence of “tem-
pered’ fundamental solutions for this class of operators. The interest in fundamental solutions
lies in the fact that the knowledge of their existence allows us to solve the equations of the
type P (D)u = f where f is the given distribution with compact support. We need only
take u := E ? f , the convolution of f with E! In particular, it asserts the local solvability
of equation of the form P (D)u = f in (distribution sense). They are also important for an
entirely different reason. There was a time when mathematical community believed that any
“reasonable” partial differential equation (say, with smooth coefficients) will have some kind
of a solution. H. Levy sprang a surprise by producing a partial differential equation which
admitted no solution, not even in the distribution sense! You can now fathom the relief of
sigh heaved by the mathematical community when Malgrange-Ehrenpreis result appeared on
the horizon!

If u is a distribution and ϕ is a test function, we shall use the standard pairing notation:

(u, ϕ) := u(ϕ)

This should not be confused with “inner product” or any such thing, if u happens to be a
function!

The aims of these notes are (i) to exhibit fundamental solutions of some of the classical
differential operators, (ii) to prove the local solvability of constant differential operators and
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(iii) to outline a short proof of Malgrange-Ehrenpreis Theorem which asserts the existence of
fundamental solutions for such operators. While they serve the purpose of giving very explicit
and concrete fundamental solutions of operators of mathematical physics, such as Laplace,
Heat and Wave , they also provide a good introduction to some of the ubiquitous tricks of
hard-analysis in general, and PDE in particular.

In the penultimate section, we shall prove the local solvability of constant coefficient
partial differential operators. More precisely, we shall prove that the equation P (D)u = f in
a bounded domain Ω of Rn has an L2 solution. In the last section, we shall outline a very
short proof of Malgrange-Ehrenpreis theorem.

1 Preliminaries — Integration-by-parts

Let Ω be a bounded domain in Rn with smooth boundary S ≡ ∂Ω. Let F ∈ C1(Ω,Rn) and
F ∈ C(Ω,Rn). Recall that the divergence of the vector field F is defined by

divF ≡ ∇ · F :=
∑
j

∂jFj where Fj is the j-th component of F .

We let ν = (ν1, . . . , νn) denote the unique outgoing unit normal on S. If S is locally given by
ϕ−10 for a smooth function with ∇ϕ(p) 6= for p ∈ S, then we take ν(p) = ∇ϕ(p). We let dS
denote the surface measure (or area element) of S. For instance, if S is locally given as the
graph of a function (x1, . . . , xn−1)→ ϕ(x1, . . . , xn−1), then

dS = (1 + ϕ2
x1 + · · ·+ ϕ2

xn−1
)1/2 dx1 · · · dxn−1.

We recall the divergence theorem.

Theorem 1. With the above notation we have∫
Ω

divFdx =

∫
S
F · ν dS. (1)

We deduce from this a lot of corollaries which will be useful later.

Theorem 2. Let f ∈ C1(Ω) ∩ C(Ω). Then∫
Ω
fxi dx =

∫
S
fνidS. (2)

Proof. Take F = (0, . . . , 0, f, 0, . . . , 0) with f at the i-th place in Eq. 1

Ex. 3. Let u be the distribution defined by the characteristic function χΩ of Ω. Compute
∂u
∂xj

. Answer: This is precisely (2)!

Theorem 4 (Integration-by-parts). Let f, g ∈ C1(Ω) ∩ C(Ω). Then∫
Ω
fxig dx = −

∫
Ω
fgxi dx+

∫
S
fgνi dS. (3)

If fg = 0 on S (in particular if one of them has compact support in Ω), we have∫
Ω
fxig dx = −

∫
Ω
fgxi dx (4)
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Proof. Apply Eq. 2 to fg.

Corollary 5 (Green’s Identities). Let u, v ∈ C2(Ω) ∩ C1(Ω). Then
(i) Gauss Law: ∫

Ω
∆u =

∫
S

∂u

∂ν
dS. (5)

(ii) First Green’s Identity:∫
Ω
∇u · ∇v dx = −

∫
Ω
u∆v dx+

∫
S

∂v

∂ν
u dS. (6)

(iii) Second Green’s Identity:∫
Ω

(u∆v − v∆u) dx =

∫
S

(
u
∂v

∂ν
− v∂u

∂ν

)
dS. (7)

Proof. Using Eq. 3 with uxi in place of u and v = 1 we see that∫
Ω
uxixi dx =

∫
S
uxiνi dS.

Summing over i yields (i).

To prove (ii), invoke Eq. 3 with f = u and g = vxi .

Interchanging u and v in Eq. 6 and subtracting will result in (iii).

We recall the polar coordinates on Rn: For x ∈ Rn, x 6= 0, we have the polar coordinates
x = rξ, where r = ‖x‖ and ξ := ‖x‖−1 x ∈ S(0, 1) in the unit sphere. With respect to this
decomposition, we have the volume element

dx1 · · · dxn = rn−1drdS(ξ)

where dS is the surface measure on the unit sphere. In particular, for any f ∈ L1(Rn), we
have ∫

Rn

f(x) dx =

∫ ∞
0

∫
‖ξ‖=1

f(rξ)rn−1 dr dS(ξ).

Notation: In the sequel, ωn denotes the surface measure (or area) of the unit sphere on Rn.

We use this to answer the following question: When is the function x 7→ |x|λ locally
integrable in a neighbourhood of 0 in Rn? To answer this, we first of all observe that the
function x 7→ |x|λ is integrable in, say, (0, R) iff∫ R

0
xλ dx = lim

ε→0

∫ R

ε
xλ dx = [

Rλ+1

λ+ 1
− ελ+1

λ+ 1
]→ a finite limit,

that is, iff λ > −1. To answer the question in Rn, we compute∫
|x|≤R

|x|λdx =

∫ R

0

∫
|ξ|=1

rλrn−1 dr dS(ξ) = ωn

∫ R

0
rλ+n−1 dr.

From the one variable discussion, we get the following:
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Proposition 6. The function rλ is locally integrable near the origin in Rn iff λ > −n.

The following exercise is often needed.

Ex. 7. If u is any continuous function in Rn, we let

Mu(x, r) :=
1

ωn

∫
|y|=1

u(x+ ry) dS(y)

denote the mean value of u at x over the sphere {|x − z| = r}. Then Mu(x, r) → u(x) as
r → 0. Hint: Note that u(x) := 1

ωn

∫
|u|=1 u(x)dS(y) so that

|Mu(x, r)− u(x)| = | 1

ωn

∫
|y|=1

(u(x+ ry)− u(x)) |.

Use the continuity of u.

2 Fundamental Solution of Ordinary Differential Operator

Ex. 8. Let f ∈ C∞(R) and let H be he Heaviside function

H(x) =

{
1 x > 0

0 x ≤ 0.

Then x 7→ fH(x) is locally integrable and hence defines a distribution. Show that (fH)′ =
f(0)δ +Hf ′.

Ex. 9 (Fundamental Solution of Linear Ordinary D.O.). Let

Lu := u(m) + am−1(t)u(m−1) + · · ·+ a1(t)u′ + a0(t)u

be an m-th order ordinary differential operator. Let Z be the solution of the Homogeneous
DE LZ = 0 with the initial conditions

Z(0) = Z ′(0) = · · · = Z(m−2)(0) = 0, and Z(m−1)(0) = 1.

Then E(t) := Z(t)H(t) is a fundamental solution of L. In particular,

Lemma 10. H(t)e−at and H(t) sin at
a are fundamental solutions of d

dt +a and d2

dt2
+a2 respec-

tively.

3 Fundamental Solution of the Cauchy-Riemann Operator

Let ∂
∂z := 1

2( ∂
∂x + i ∂∂y ) be the Cauchy-Riemann operator. This is called so for the following

reason. If f = u + iv : C → C is a function, then ∂
∂zf = 0 iff u and v satisfy the Cauchy-

Riemann equations.
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Let Ω be an open set with smooth boundary given by the curve γ : s 7→ (x(s), y(s)),
parametrized by its arc-length. Let f ∈ C1(Ω). Let F = (f, if). Then divF = 2∂f∂z . Also,
the unit normal of the boundary γ = ∂Ω is given by (−y′, x′). Applying the divergence
theorem to F , we obtain∫

Ω

∂f

∂z
dxdy =

1

2

∫
γ
(−fy′ + ifx′) ds =

i

2

∫
γ
(f dx+ if dy) =

i

2

∫
γ
f dz. (8)

Let u ∈ C1(Ω) and z0 ∈ Ω. For sufficiently small ε > 0, let Ωε := Ω \ B[z0, ε]. Note
that ∂

∂z ( 1
z−z0 ) = 0 in Ωε. We wish to apply (8) to the function f = u/(z − z0) in Ωε. Before

proceeding, let us observe that on the part of the boundary of Ωε given by {|z − z0| = ε} the
unit normal going outward, i.e. the one that keeps the domain to its left, is given by (y′,−x′).
This explains the negative sign of the first term on the right side of (10) below.∫

Ωε

∂

∂z
(
u(z)

z − z0
) dx dy =

∫
Ωε

∂u

∂z
(

1

z − z0
) dx dy (9)

=
−i
2

∫
|z−z0|=ε

u(z)

z − z0
dz +

i

2

∫
∂Ω

u(z)

z − z0
dz. (10)

We compute the integral over the circle. We have z = z0 + εeiθ for z on S(z0, ε). Using
this we get

− i
2

∫
|z−z0|=ε

u(z)

z − z0
dz

= − i
2

∫ 2π

0
u(z0 + εeiθ)i dθ

=
1

2
2π

(
1

2π

∫ 2π

0
u(z0 + εeiθ) dθ

)
→ πu(z0) as ε→ 0, (11)

by Ex. 7.

Equating the right sides of (9) and (10), letting ε→ 0 and using (11) we get∫
Ω

∂u

∂z

1

z − z0
dxdy = πu(z0) +

i

2

∫
∂Ω

u(z)

z − z0
dz. (12)

If we now assume that u ∈ C1
c (Ω), the second term on the right side of (12) is zero and

so, we get

u(z0) =
1

π

∫
Ω

∂u

∂z

1

z − z0
dxdy. (13)

In particular, it follows that 1
πz is a fundamental solution of the Cauchy-Riemann operator.

4 Fundamental Solution of Laplace Operator

Definition 11. The function

Φ(x) :=

{
1

2π log(|x|) n = 2
1

(2−n)ωn
|x|2−n n ≥ 3
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defined for nonzero x ∈ Rn is known as the fundamental solution of the Laplace operator
∆ :=

∑n
j=1

∂2

∂x2j
.

To get an idea how Φ was arrived at, we seek a radial solution of ∆u = 0, that is, a solution
u such that u(x) = u(|x|) for x ∈ Rn. Employing the standard notation r := (

∑
j x

2
j )

1/2, we
arrive at the following after easy computations where u is a function of r alone:

∂u

∂xj
=

∂u

∂r

∂r

∂xj
=
xj
r
ur

∂2u

∂x2
j

= urr
x2
j

r2
+ ur

(
1

r
−
x2
j

r3

)
.

Summing over j in the last equation we arrive at

∆u = urr +
n− 1

r
ur for a radial function u.

Letting v = ur we obtain the ODE vr + n−1
r v = 0. We solve for v and then for u to arrive at

u(r) = A log r +B or u(r) = Ar2−n +B according as n = 2 or n > 2.

Theorem 12. For v ∈ C∞c (Rn), we have∫
Rn

Φ(x)∆(v) dx = v(0). (14)

Proof. We deal with the case when n ≥ 3. The case when n = 2 is very similarly dealt with.

Let Ωε := B(0, R) \ B[0, ε] where support of u is contained in B(0, R). Using polar
coordinates, one easily shows that Φ is integrable in any bounded neighbourhood of 0. (See
Proposition 6.) Hence, it follows that∫

Ωε

Φ∆v dx→
∫

Ω
Φ∆v dx as ε→ 0.

Since Φ is harmonic in Ωε, by Eq. 7 we have∫
Ωε

Φ∆v dx =

∫
|x|=ε

(
Φ
∂v

∂ν
− v∂Φ

∂ν

)
dS. (15)

The outward unit normal on |x| = ε is ν = −x
ε .

We look at the first term on the right side of Eq. 15. On |x| = ε, we have Φx = Φ(ε) so
that by Gauss Law (Eq. 5), we have∫

|x|=ε
Φ
∂v

∂ν
dS = −Φ(ε)

∫
|x|<ε

∆v dx. (16)

The right side in absolute value is at most

Φ(ε)ωnε
n max

Rn
|∆v| = Constant× ε2−nεn
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which goes to 0 as ε→ 0.

We now evaluate the second term on the right side of Eq. 15. On |x| = ε, it is easily
checked by a trivial computation that

∂Φ

∂ν
(|x|) = ∇Φ · ν = ∇Φ · −x

ε
= −∂Φ

∂r
(ε).

Using this, we obtain

∂Φ

∂ν
(|x|) = −∂Φ

∂r
(ε) = (n− 2)

1

(2− n)ωn
ε1−n, if n ≥ 3.

Thus we compute∫
|x|=ε

v
∂Φ

∂ν
dS = − 1

εn−1ωn

∫
|x|=ε

v dS = −Mv(0, ε)→ −v(0), as ε→ 0, (17)

by Ex. 7.

5 Fundamental Solution of the Heat Operator

Let

E(x, t) :=
H(t)

(2a
√
πt)n

exp(− |x|
2

4a2t
).

We claim that E is a fundamental solution of the Heat operator ∂
∂t − a

2∆.

We indicate a heuristic reasoning for this choice of E. Recall that the Fourier transform
of a rapidly decreasing function f (or more generally for f ∈ L1(Rn)) is defined by Fxf(ξ) ≡
f̂(ξ) :=

∫
Rn f(x)e−ix·ξ dx and the inverse Fourier transform (under suitable assumptions on

f) is given by

F−1
ξ (x) =

1

(2π)n

∫
Rn

f(ξ)eix·ξ dξ.

A special case worth mentioning is the Fourier transform of f(x) = e−t|x|
2

for t > 0:∫
Rn

e−t|x|
2
e−ix·ξ dx = (

π

t
)n/2e−|ξ|

2/4t.

It is well-known that the Fourier transform is an isomorphism on the Schwarz space S of
rapidly decreasing functions and hence the Fourier transform of a tempered distribution u is
defined by

(Fu, ϕ) := (u,Fϕ), ϕ ∈ S.

However, if the distribution has compact support, then its Fourier transform is given by
Fu(x) = (2π)−n/2(u, eixy).

To find a candidate for the solution of ∂E
∂t − a2∆E = δt=0δx=0, we take the Fourier

transform in the x-variable alone. Letting Ẽ(ξ, t) stand for FxE(ξ, t), we obtain an ODE

d

dt
Ẽ(ξ, t) + a2|ξ|2Ẽ = δt=0.
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Using Lemma 10, we see that
Ẽ(ξ, t) = H(t)e−a

2|ξ|2t.

By taking the inverse Fourier transform F−1
ξ Ẽ(ξ, t), we get E as above.

The function E is locally integrable in Rn+1 since E = 0 for t ≤ 0 and for t > 0 we have∫
Rn

E(x, t) dx =
1

(2a
√
πt)n

∫
Rn

exp(− |x|
2

4a2t
) dx =

n∏
j=1

1√
π

∫ ∞
−∞

e−ξ
2
dξ = 1. (18)

For t > 0 and x ∈ Rn, E(x, t) is smooth. We therefore compute

∂E

∂t
=

(
|x|2

4a2t2
− n

2t

)
E (19)

∂E

∂xj
= − xj

2a2t
E (20)

∂2E

∂x2
j

=

(
x2
j

4a2t2
− 1

2a2t

)
E. (21)

It follows from (19) and (21 that E(x, t) satisfies the heat equation for t > 0:

∂

∂t
E − a2∆E = 0. (22)

Let ϕ ∈ C∞c (Rn+1). We now compute:

(
∂E

∂t
− a2∆E,ϕ) = −(E,

∂ϕ

∂t
)− (E, a2∆ϕ)

= −
∫
Rn

∫ ∞
0

E(x, t)

(
∂ϕ

∂t
+ a2∆ϕ

)
dxdt

= − lim
ε→0

∫
Rn

∫ ∞
ε

E(x, t)

(
∂ϕ

∂t
+ a2∆ϕ

)
dxdt

= lim
ε→0

[∫
Rn

E(x, ε)ϕ(x, ε) dx

+

∫ ∞
ε

∫
Rn

(
∂E

∂t
− a2∆E

)
ϕdxdt

]
(by integration by parts)

= lim
ε→0

∫
Rn

E(x, ε)ϕ(x, ε) dx. (23)

To obtain the last equality, we used (22). We change the variables in (23). Put y = x
2a
√
ε
.

Then the integral on the right side of (23) becomes∫
Rn

π−n/2 exp(−|y|2)ϕ(2a
√
ε, ε) dy.

In this integral, the function e−|y|
2

is in L1(Rn) and ϕ is bounded on Rn so that we can apply
the dominated convergence theorem to conclude that∫

Rn

π−n/2 exp(−|y|2)ϕ(2a
√
ε, ε) dy → π−n/2

∫
Rn

exp(−|y|2)ϕ(0, 0) dy = ϕ(0, 0).
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6 Fundamental Solution of Wave Operator

6.1 One Dimensional Wave Equation

We show that E(x, t) := 1
2aH(at− |x|) is a fundamental solution of the one dimensional wave

operator. The function E is locally integrable in R2 and vanishes outside the future cone
{(x, t) : |x| ≤ at}. Let ϕ ∈ C∞c (R2). We compute

(�E,ϕ) = (E,�ϕ) =

∫
E(x, t)�ϕ(x, t) dxdt

=

∫ ∞
−∞

∫ ∞
|x|
a

∂2ϕ

∂t2
dtdx− 2

a

∫ ∞
0

∫ at

−at

∂2ϕ

∂x2
dxdt

= − 1

2a

∫ ∞
−∞

∂ϕ

∂t
(
|x|
a

) dx− a

2

∫ ∞
0

∫ at

−at

[
∂ϕ

∂x
(at, t)− ∂ϕ

∂x
(−at, t)

]
dt

= − 1

2a

∫ ∞
0

∂ϕ

∂t
(x,
|x|
a

) dx− a

2

∫ ∞
0

∫ at

−at

∂ϕ

∂x
(at, t)

− 1

2a

∫ ∞
0

∂ϕ

∂t
(−x, |x|

a
) dx− a

2

∫ ∞
0

∫ at

−at

∂ϕ

∂x
(−at, t) dt

= −1

2

∫ ∞
0

[
∂ϕ

∂t
(at, t) + a

∂ϕ

∂x
(at, t)

]
dt

− 1

2

∫ ∞
0

[
∂ϕ

∂t
(−at, t)− a∂ϕ

∂x
(−at, t)

]
dt

= −1

2

∫ ∞
0

dϕ

dt
(at, t) dt− 1

2

∫ ∞
0

dϕ

dt
(−at, t) dt

=
1

2
(ϕ(0, 0) + ϕ(0, 0)) = (δ, ϕ).

6.2 Three Dimensional Wave Equation via Partial Fourier Transform

Recall that the Fourier transform is an isomorphism on the Schwarz space S of rapidly
decreasing functions and hence the Fourier transform of a tempered distribution u is defined
by

(Fu, ϕ) := (u,Fϕ), ϕ ∈ S.

However, if the distribution has compact support, then its Fourier transform is given by
Fu(x) = (u, eixy).

We use this fact to compute the Fourier transform of the Dirac measure δSR
of the sphere

with centre at the origin and radius R in R3. In terms of polar coordinates, the inner product
is given by 〈x, y〉 = x · y = rρ cos θ and the surface measure of SR is given by

dS = R2 sin θ dθ dϕ.

In the computations below, since y is fixed, we may assume that y is nonzero and the paramet-
ric representation of the sphere is got as the surface of revolution got by revolving a half-circle
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in a plane of which the y/|y|- is the x-axis. Under this assumption, we have

FδSR
= (δSR

, e−ixy) = R2

∫ 2π

0

∫ π

0
e−iRρ cos θ sin θ dθ dϕ = 4πR

sinRρ

ρ
. (24)

We wish to find a fundamental solution of the wave operator using the Fourier transform
techniques.

�E = δ(x, t) where � :=
∂2

∂t2
− a2∆.

Here ∆ is the Laplace operator in Rn.

We take the Fourier transform of the above equation in the x-variable alone. We write
Fx for the Fourier transform in the x-variable. We let Ẽ(ξ, t) := Fx(E(x, t)). We have

∂2Ẽ(ξ, t)

∂t2
+ a2|ξ|2Ẽ(ξ, t) = 1(ξ) · δ(t), (25)

in an obvious notation. Using Lemma 10, we see that

Ẽ(ξ, t) := H(t)
sin a|ξ|t
a|ξ|

is a solution of (25). It follows that

E(x, t) := F−1
ξ [Ẽ(ξ, t)] = H(t)F−1

ξ

(
sin a|ξ|t
a|ξ|

)
is a fundamental solution of the wave operator.

Assume n = 3. Using (24, we compute the above inverse Fourier transform and obtain

E(x, t) =
H(t)

4πa2t
δSR

where R = at

as a fundamental solution of the wave operator in R3. That is,

(E,ϕ) =
1

4πa2

∫ ∞
0

1

t

(∫
Sat

ϕ(x, t)dS(x)

)
dt, ϕ ∈ C∞c (R4).

7 L2-Local Solvability on Bounded Domains

For f, g ∈ C1(Ω) with fg = 0 on ∂Ω, (in particular, if one of them has compact support in
Ω) we have ∫

Ω
f
∂g

∂xk
dx = −

∫
Ω
g
∂f

∂xk
dx. (26)

Ex. 13. We let Dk := 1
i
∂
∂xk

= −i ∂
∂xk

. Then Eq. 4 becomes∫
Ω
uDkv dx =

∫
Ω
Dkuv dx i.e. 〈u,Dkv〉 = 〈Dku, v〉 . (27)
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Ex. 14. For α := (α1, . . . , αn) ∈ Zn+, we let

Dα := Dα1
1 · · ·D

αn
n =

(−i)|α|∂|α|

∂xα1
1 · · · ∂x

αn
n

where |α| := α1 + · · ·+ αn.

Ex. 15. Let A :=
∑
|α|≤m aα(x)Dα with aα ∈ Cm(Ω) and ϕ ∈ Cmc (Ω). Let

A∗ϕ :=
∑
|α|≤m

Dα(aα(x))ϕ.

Then we have ∫
Ω
Auϕdx =

∫
Ω
uA∗ϕdx i.e. 〈Au,ϕ〉 = 〈u,A∗ϕ〉 . (28)

That is, A∗ is the formal adjoint of A w.r.t. the L2-inner product.

Ex. 16. If u ∈ C(Ω) is such that
∫

Ω uϕ = 0 for all ϕ ∈ C∞c (Ω), then u = 0.

Ex. 17. Let Ω be a bounded domain in Rn. Let A be a differential operator as in Ex. 15.
We want to solve Au = f , f a function defined on Ω. Assuming the existence of a solution,
we derive a necessary condition, called an “a priori inequality”.

Assume that u ∈ Cm(Ω) so that Au ∈ C(Ω). Then Au = f and Ex. 15 implies that

〈f, ϕ〉 = 〈Au,ϕ〉 = 〈u,A∗ϕ〉 for ϕ ∈ C∞c (Ω).

Using Schwarz inequality we arrive at the a priori inequality (also known as Hörmander’s
inequality: In order that Au = f has a solution in Ω we must have

| 〈f, ϕ〉 | ≤ ‖u‖ ‖A∗ϕ‖ = C ‖A∗ϕ‖ , ϕ ∈ C∞c (Ω). (29)

Ex. 18. If A has constant coefficients, the above a priori condition is also sufficient provided
that we interpret the notion of a solution of the equation Au = f in the weak sense. We say
that u ∈ L2(Ω) is a weak solution of Au = f if 〈u,A∗ϕ〉 = 〈f, ϕ〉 holds for all ϕ ∈ C∞c (Ω).

Note that, in view of Ex. 16, in case u ∈ Cm(Ω), (m is the ‘degree’ of A), is a weak
solution of Au = f , then it is, in fact, a classical solution.

The rest of the notes leads to a proof of sufficiency of Eq. 29 and that Eq. 29 holds for A
with constant coefficients.

Ex. 19. Assume that Eq. 29 is true. Then Au = f has a weak solution. For, let

V := {A∗ϕ : ϕ ∈ C∞c (Ω)}.

Define F : V → C by setting F (v) := 〈ϕ, f〉, if v = A∗ϕ. Then F is well-defined. It is a
continuous linear functional on V and hence on V ⊂ L2(Ω). Hence there exists F̃ : L2(Ω)→ C
with

∥∥∥F̃ ∥∥∥ = ‖F ‖ by Hahn-Banach theorem (which is trivial for Hilbert spaces). By Riesz

representation theorem, we can find u ∈ L2(Ω) such that F̃ (v) = 〈v, u〉 for v ∈ L2(Ω) with

‖u‖ =
∥∥∥F̃ ∥∥∥ = ‖F ‖. This u is a weak solution as required.
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Thus it remains to prove the a-priori inequality for a differential operator A with constant
coefficients: A =

∑
aαD

α, aα ∈ C.

We look at a special case when n = 1 and A = d
dt . Let ϕ ∈ C∞c (a, b). We want to prove

that
‖ϕ‖ ≤ C

∥∥ϕ′∥∥ . (30)

Ex. 20. This yields a proof of Eq. 30. Write

ϕ(x) =

∫ x

a
ϕ′(t) dt

and apply Schwartz inequality on the RHS:

|ϕ(x)| ≤ (x− a)1/2
∥∥ϕ′∥∥

L2(a,x)
≤ (b− a)1/2

∥∥ϕ′∥∥
L2(a,b)

.

It follows that ∫ b

a
‖ϕ(x)‖2 dx ≤

∫ b

a
(b− a)

∥∥ϕ′∥∥2
dx = (b− a)2

∥∥ϕ′∥∥2
.

Thus Eq. 30 is established with C = (b− a).

Ex. 21. We employ Fourier series to offer a second proof of Eq. 30. Without loss of generality,
assume that ϕ ∈ C1[0, π] with ϕ(0) = 0. We extend ϕ as an odd function ψ on [−π, π].
Then the Fourier (sine) series of ψ converges uniformly and absolutely to ψ so that we can
differentiate it term by term to conclude that

ψ′(t) =
∞∑
n=1

nψ̂(n) cosnt.

Observe that

‖ψ‖2 =

∞∑
n=1

|ψ̂(n)|2 and
∥∥ψ′∥∥2

= 4

∞∑
n=1

n2|ψ̂(n)|2

This yields Eq. 30 with C = 2 for a = 0 and b = π.

We now return to the general case. Let P (D) denote a nonzero linear partial differential
operator with constant coefficients, of order m.

Let us start with a simple case of Hörmander’s inequality. Let n = 1 and Ω = (0, 1) and
P (D) = d/dx. We wish to show that there exists C > 0 such that ‖ϕ′‖ ≥ C ‖ϕ‖ for all
ϕ ∈ C∞0 (0, 1).

The key trick is to observe the algebraic identity:〈
(xϕ)′, ϕ

〉
=
〈
xϕ′, ϕ

〉
+ 〈ϕ,ϕ〉 .

Further, it follows by integration by parts,〈
(xϕ)′, ϕ

〉
= −

〈
xϕ, ϕ′

〉
.
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Hence we have
〈ϕ,ϕ〉 = −

〈
xϕ′, ϕ

〉
−
〈
xϕ, ϕ′

〉
.

We apply Cauchy-Schwarz inequality and use the fact |x| < 1 to get

‖ϕ‖2 ≤ 2 ‖ϕ‖
∥∥ϕ′∥∥ ,

from which it follows that ‖ϕ′‖ ≥ 1
2 ‖ϕ‖.

Theorem 22 (Hörmander’s Inequality). For every bounded open set Ω in Rn, there exists a
constant C > 0 such that for every ϕ ∈ C∞0 (Ω),we have

‖P (D)ϕ‖ ≥ C ‖ϕ‖ . (31)

We may take C = |P |mKm,Ω where

|P |m = max{|aα|; |α| = m}

and Km,Ω depends only on m and the diameter of Ω.

Proof. Given a differential operator P (D) of order m, we define Pj(D) by the formula

P (D)(xjϕ) = xjP (D)ϕ+ Pj(D)ϕ. (32)

Note that the operator Pj(D) is zero iff P (D) does not involve any differentiation w.r.t. xj .
Order of Pj(D) is strictly less than m, provided that it is non-zero.

Let A := supΩ |x|. By induction we shall show that

‖Pj(D)ϕ‖ ≤ 2mA ‖P (D)ϕ‖ . (33)

Before proceeding to a proof of (33), we make two observations: (i) The definition of Pj(D)
along with (33) yields

‖P (D)(xjϕ)‖ ≤ (2m+ 1)A ‖P (D)ϕ‖ .

(ii) The second one is a well-known property of normal operators:

‖P (D)ϕ‖2 = 〈P (D)ϕ, P (D)ϕ〉
= 〈ϕ, P ∗(D)P (D)ϕ〉
= 〈ϕ, P (D)P ∗(D)ϕ〉
= 〈P ∗(D)ϕ, P ∗(D)ϕ〉
= ‖P ∗(D)ϕ‖2 .

We now prove (33). It is trivial for m = 0. Let us assume that (33) holds true for all
differential operators of order at most m − 1. Let P (D) be a differential operator of order
m. We compute 〈P (D)(xjϕ), Pj(D)ϕ〉 in two different ways. From the definition of Pj(D)
we have

〈P (D)(xjϕ), Pj(D)ϕ〉 = 〈xjP (D)ϕ, Pj(D)ϕ〉+ 〈Pj(D)ϕ, Pj(D)ϕ〉 . (34)

By integration by parts and the commutativity of P ∗(D) and P (D), we obtain

〈P (D)(xjϕ), Pj(D)ϕ〉 =
〈
P ∗j (D)(xjϕ), P ∗(D)ϕ

〉
. (35)
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From (34) and (35) we find

‖Pj(D)ϕ‖2 =
〈
P ∗j (D)(xjϕ), P ∗(D)ϕ

〉
− 〈xjP (D)ϕ, Pj(D)ϕ〉 . (36)

By the above two observations and by the induction hypothesis, we get∥∥P ∗j (D)(xjϕ)
∥∥ ≤ (2m− 1)A ‖Pj(D)ϕ‖ . (37)

By Cauchy-Schwarz,

| 〈xjP (D)ϕ, Pj(D)ϕ〉 | ≤ A ‖P (D)ϕ‖ ‖Pj(D)ϕ‖ . (38)

Using (38) and (37) in (36), we get (33).

If P (D) is of order m ≥ 1, there exists j such that Pj(D) is of order m− 1. Observe that
|Pj |m−1 ≥ |P |m. The theorem follows then immediately by induction.

8 Malgrange-Ehrenpreis Theorem

Theorem 23. Let P (D) be a constant coefficient partial differential operator in Rn of degree
m. Let η ∈ Rn be such that the top degree term Pm(η) 6= 0. Then the distribution Edefined
by

E :=
1

Pm(η)

∫
T1

λmeληxF−1

(
P (iξ + λη)

P (iξ + λη)

)
dλ

2πiλ

is a fundamental solution of P (D). Furthermore, E/ cosh(ηx) is tempered.

Proof. Recall that the zero set of a nonzero polynomial function on Rn is of (Lebesgue)
measure 0. This entails

P (iξ + λη)

P (iξ + λη)
∈ L∞(Rnξ ) for any fixed λ ∈ C.

Lebesgue’s dominated convergence theorem shows that the map

T1 −→ S ′(Rnξ ) : λ 7→ P (iξ + λη)

P (iξ + λη)

is continuous. Since a continuous function with values in D′(Rn) can be integrated over
any compact set, we infer that E is well-defined. It is easily verified that the distribution
E/ cosh(ηx) is tempered.

We now compute P (D)E:

P (D)E =
1

Pm(η)

∫
T1

λmP (D)

[
eληxF−1

(
P (iξ + λη)

P (iξ + λη)

)]
dλ

2πiλ

=
1

Pm(η)

∫
T1

λmeληx

[
P (D + λη)F−1

(
P (iξ + λη)

P (iξ + λη)

)]
dλ

2πiλ

=
1

Pm(η)

∫
T1

λmeληxF−1
(
P (iξ + λη)

) dλ

2πiλ

=
1

Pm(η)

∫
T1

λmeληxP (D + λη)δ
dλ

2πiλ
.
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By Taylors’ theorem,

P (D + λη)δ = λmPm(η)δ +

m−1∑
k=0

λkQk(D)δ,

where Qk are certain polynomials. By the residue theorem, the integrals over the terms with
factors λk, 0 ≤ k ≤ m− 1 vanish. The integral over the leading term yields δ.
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