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1 Integration by Parts Formula

Recall the integration by parts formula.

Let Ω be a bounded domain in Rn with smooth boundary S ≡ ∂Ω. Let F ∈ C1(Ω,Rn)
and F ∈ C(Ω,Rn). Recall that the divergence of the vector field F is defined by

divF ≡ ∇ · F :=
∑
j

∂jFj where Fj is the j-th component of F .

We let ν = (ν1, . . . , νn) denote the unique outgoing unit normal on S. If S is locally given by
ϕ−10 for a smooth function with ∇ϕ(p) 6= for p ∈ S, then we take ν(p) = ∇ϕ(p). We let dS
denote the surface measure (or area element) of S. For instance, if S is locally given as the
graph of a function (x1, . . . , xn−1)→ ϕ(x1, . . . , xn−1), then

dS = (1 + ϕ2
x1 + · · ·+ ϕ2

xn−1
)1/2 dx1 · · · dxn−1.

We recall the divergence theorem.

Theorem 1. With the above notation we have∫
Ω

divFdx =

∫
S
F · ν dS. (1)

We deduce from this a couple of corollaries which will be useful later.

Theorem 2. Let f ∈ C1(Ω) ∩ C(Ω). Then∫
Ω
fxi dx =

∫
S
fνidS. (2)

Proof. Take F = (0, . . . , 0, f, 0, . . . , 0) with f at the i-th place in Eq. 1

Theorem 3 (Integration-by-parts). Let f, g ∈ C1(Ω) ∩ C(Ω). Then∫
Ω
fxig dx = −

∫
Ω
fgxi dx+

∫
S
fgνi dS. (3)
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If fg = 0 on S (in particular if one of them has compact support in Ω), we have∫
Ω
fxig dx = −

∫
Ω
fgxi dx. (4)

Proof. Apply Eq. 2 to fg.

Ex. 4. We let Dk := 1
i
∂
∂xk

= −i ∂
∂xk

. Then Eq. 4 becomes∫
Ω
uDkv dx =

∫
Ω
Dkuv dx i.e. 〈u,Dkv〉 = 〈Dku, v〉 . (5)

Ex. 5. For α := (α1, . . . , αn) ∈ Zn+, we let

Dα := Dα1
1 · · ·D

αn
n =

(−i)|α|∂|α|

∂xα1
1 · · · ∂x

αn
n

where |α| := α1 + · · ·+ αn.

Ex. 6. Let A :=
∑
|α|≤m aα(x)Dα with aα ∈ Cm(Ω) and ϕ ∈ Cmc (Ω). Let

A∗ϕ :=
∑
|α|≤m

Dα(aα(x))ϕ.

Then we have ∫
Ω
Auϕdx =

∫
Ω
uA∗ϕdx i.e. 〈Au,ϕ〉 = 〈u,A∗ϕ〉 . (6)

That is, A∗ is the formal adjoint of A w.r.t. the L2-inner product.

Ex. 7. If u ∈ C(Ω) is such that
∫

Ω uϕ = 0 for all ϕ ∈ C∞c (Ω), then u = 0.

2 L2-Local Solvability on Bounded Domains

Ex. 8. Let Ω be a bounded domain in Rn. Let A be a differential operator as in Ex. 6. We
want to solve Au = f , f a function defined on Ω. Assuming the existence of a solution, we
derive a necessary condition, called an “a priori inequality”.

Assume that u ∈ Cm(Ω) so that Au ∈ C(Ω). Then Au = f and Ex. 6 implies that

〈f, ϕ〉 = 〈Au,ϕ〉 = 〈u,A∗ϕ〉 for ϕ ∈ C∞c (Ω).

Using Schwarz inequality we arrive at the a priori inequality (also known as Hörmander’s
inequality: In order that Au = f has a solution in Ω we must have

| 〈f, ϕ〉 | ≤ ‖u‖ ‖A∗ϕ‖ = C ‖A∗ϕ‖ , ϕ ∈ C∞c (Ω). (7)

Ex. 9. If A has constant coefficients, the above a priori condition is also sufficient provided
that we interpret the notion of a solution of the equation Au = f in the weak sense. We say
that u ∈ L2(Ω) is a weak solution of Au = f if 〈u,A∗ϕ〉 = 〈f, ϕ〉 holds for all ϕ ∈ C∞c (Ω).

Note that, in view of Ex. 7, in case u ∈ Cm(Ω), (m is the ‘degree’ of A), is a weak solution
of Au = f , then it is, in fact, a classical solution.
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The rest of the notes leads to a proof of sufficiency of Eq. 7 and that Eq. 7 holds for A
with constant coefficients.

Ex. 10. Assume that Eq. 7 is true. Then Au = f has a weak solution. For, let

V := {A∗ϕ : ϕ ∈ C∞c (Ω)}.

Define F : V → C by setting F (v) := 〈ϕ, f〉, if v = A∗ϕ. Then F is well-defined. It is a
continuous linear functional on V and hence on V ⊂ L2(Ω). Hence there exists F̃ : L2(Ω)→ C
with

∥∥∥F̃ ∥∥∥ = ‖F ‖ by Hahn-Banach theorem (which is trivial for Hilbert spaces). By Riesz

representation theorem, we can find u ∈ L2(Ω) such that F̃ (v) = 〈v, u〉 for v ∈ L2(Ω) with

‖u‖ =
∥∥∥F̃ ∥∥∥ = ‖F ‖. This u is a weak solution as required.

Thus it remains to prove the a-priori inequality for a differential operator A with constant
coefficients: A =

∑
aαD

α, aα ∈ C.

We look at a special case when n = 1 and A = d
dt . Let ϕ ∈ C∞c (a, b). We want to prove

that
‖ϕ‖ ≤ C

∥∥ϕ′∥∥ . (8)

Ex. 11. This yields a proof of Eq. 8. Write

ϕ(x) =

∫ x

a
ϕ′(t) dt

and apply Schwartz inequality on the RHS:

|ϕ(x)| ≤ (x− a)1/2
∥∥ϕ′∥∥

L2(a,x)
≤ (b− a)1/2

∥∥ϕ′∥∥
L2(a,b)

.

It follows that ∫ b

a
‖ϕ(x)‖2 dx ≤

∫ b

a
(b− a)

∥∥ϕ′∥∥2
dx = (b− a)2

∥∥ϕ′∥∥2
.

Thus Eq. 8 is established with C = (b− a).

Ex. 12. We employ Fourier series to offer a second proof of Eq. 8. Without loss of generality,
assume that ϕ ∈ C1[0, π] with ϕ(0) = 0. We extend ϕ as an odd function ψ on [−π, π].
Then the Fourier (sine) series of ψ converges uniformly and absolutely to ψ so that we can
differentiate it term by term to conclude that

ψ′(t) =
∞∑
n=1

nψ̂(n) cosnt.

Observe that

‖ψ‖2 =

∞∑
n=1

|ψ̂(n)|2 and
∥∥ψ′∥∥2

= 4

∞∑
n=1

n2|ψ̂(n)|2

This yields Eq. 8 with C = 2 for a = 0 and b = π.
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We now return to the general case. Let P (D) denote a nonzero linear partial differential
operator with constant coefficients, of order m.

Let us start with a simple case of Hörmander’s inequality. Let n = 1 and Ω = (0, 1) and
P (D) = d/dx. We wish to show that there exists C > 0 such that ‖ϕ′‖ ≥ C ‖ϕ‖ for all
ϕ ∈ C∞0 (0, 1).

The key trick is to observe the algebraic identity:〈
(xϕ)′, ϕ

〉
=
〈
xϕ′, ϕ

〉
+ 〈ϕ,ϕ〉 .

Further, it follows by integration by parts,〈
(xϕ)′, ϕ

〉
= −

〈
xϕ, ϕ′

〉
.

Hence we have
〈ϕ,ϕ〉 = −

〈
xϕ′, ϕ

〉
−
〈
xϕ, ϕ′

〉
.

We apply Cauchy-Schwarz inequality and use the fact |x| < 1 to get

‖ϕ‖2 ≤ 2 ‖ϕ‖
∥∥ϕ′∥∥ ,

from which it follows that ‖ϕ′‖ ≥ 1
2 ‖ϕ‖.

Theorem 13 (Hörmander’s Inequality). For every bounded open set Ω in Rn, there exists a
constant C > 0 such that for every ϕ ∈ C∞0 (Ω),we have

‖P (D)ϕ‖ ≥ C ‖ϕ‖ . (9)

We may take C = |P |mKm,Ω where

|P |m = max{|aα|; |α| = m}

and Km,Ω depends only on m and the diameter of Ω.

Proof. Given a differential operator P (D) of order m, we define Pj(D) by the formula

P (D)(xjϕ) = xjP (D)ϕ+ Pj(D)ϕ. (10)

Note that the operator Pj(D) is zero iff P (D) does not involve any differentiation w.r.t. xj .
Order of Pj(D) is strictly less than m, provided that it is non-zero.

Let A := supΩ |x|. By induction we shall show that

‖Pj(D)ϕ‖ ≤ 2mA ‖P (D)ϕ‖ . (11)

Before proceeding to a proof of (11), we make two observations: (i) The definition of Pj(D)
along with (11) yields

‖P (D)(xjϕ)‖ ≤ (2m+ 1)A ‖P (D)ϕ‖ .
(ii) The second one is a well-known property of normal operators:

‖P (D)ϕ‖2 = 〈P (D)ϕ, P (D)ϕ〉
= 〈ϕ, P ∗(D)P (D)ϕ〉
= 〈ϕ, P (D)P ∗(D)ϕ〉
= 〈P ∗(D)ϕ, P ∗(D)ϕ〉
= ‖P ∗(D)ϕ‖2 .
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We now prove (11). It is trivial for m = 0. Let us assume that (11) holds true for all
differential operators of order at most m − 1. Let P (D) be a differential operator of order
m. We compute 〈P (D)(xjϕ), Pj(D)ϕ〉 in two different ways. From the definition of Pj(D)
we have

〈P (D)(xjϕ), Pj(D)ϕ〉 = 〈xjP (D)ϕ, Pj(D)ϕ〉+ 〈Pj(D)ϕ, Pj(D)ϕ〉 . (12)

By integration by parts and the commutativity of P ∗(D) and P (D), we obtain

〈P (D)(xjϕ), Pj(D)ϕ〉 =
〈
P ∗j (D)(xjϕ), P ∗(D)ϕ

〉
. (13)

From (12) and (13) we find

‖Pj(D)ϕ‖2 =
〈
P ∗j (D)(xjϕ), P ∗(D)ϕ

〉
− 〈xjP (D)ϕ, Pj(D)ϕ〉 . (14)

By the above two observations and by the induction hypothesis, we get∥∥P ∗j (D)(xjϕ)
∥∥ ≤ (2m− 1)A ‖Pj(D)ϕ‖ . (15)

By Cauchy-Schwarz,

| 〈xjP (D)ϕ, Pj(D)ϕ〉 | ≤ A ‖P (D)ϕ‖ ‖Pj(D)ϕ‖ . (16)

Using (16) and (15) in (14), we get (11).

If P (D) is of order m ≥ 1, there exists j such that Pj(D) is of order m− 1. Observe that
|Pj |m−1 ≥ |P |m. The theorem follows then immediately by induction.

3 Malgrange-Ehrenpreis Theorem

Theorem 14. Let P (D) be a constant coefficient partial differential operator in Rn of degree
m. Let η ∈ Rn be such that the top degree term Pm(η) 6= 0. Then the distribution Edefined
by

E :=
1

Pm(η)

∫
T1

λmeληxF−1

(
P (iξ + λη)

P (iξ + λη)

)
∂λ

2πλ

is a fundamental solution of P (D). Furthermore, E/ cosh(ηx) is tempered.

Proof. Recall that the zero set of a nonzero polynomial function on Rn is of (Lebesgue)
measure 0. This entails

P (iξ + λη)

P (iξ + λη)
∈ L∞(Rnξ ) for any fixed λ ∈ C.

Lebesgue’s dominated convergence theorem shows that the map

T1 −→ S ′(Rnξ ) : λ 7→ P (iξ + λη)

P (iξ + λη)

is continuous. Since a continuous function with values in D′(Rn) can be integrated over
any compact set, we infer that E is well-defined. It is easily verified that the distribution
E/ cosh(ηx) is tempered.
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We now compute P (D)E:

P (D)E =
1

Pm(η)

∫
T1

λmP (D)

[
eληxF−1

(
P (iξ + λη)

P (iξ + λη)

)]
dλ

2πλ

=
1

Pm(η)

∫
T1

λmeληx

[
P (D + λη)F−1

(
P (iξ + λη)

P (iξ + λη)

)]
dλ

2πλ

=
1

Pm(η)

∫
T1

λmeληxF−1
(
P (iξ + λη)

) dλ

2πλ

=
1

Pm(η)

∫
T1

λmeληxP (D + λη)δ
dλ

2πλ
.

By Taylors’ theorem,

P (D + λη)δ = λmPm(η)δ +
m−1∑
k=0

λkQk(D)δ,

where Qk are certain polynomials. By the residue theorem, the integrals over the terms with
factors λk, 0 ≤ k ≤ m− 1 vanish. The integral over the leading term yields δ.
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