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1 Integration by Parts Formula

Recall the integration by parts formula.

Let €2 be a bounded domain in R" with smooth boundary S = 9. Let F € CHQ,R")
and F € C(2,R™). Recall that the divergence of the vector field F' is defined by

divF =V . F .= Z 0; F} where Fj is the j-th component of F'.
We let v = (vq,...,1,) denote the unique outgoing unit normal on S. If S is locally given by
©~10 for a smooth function with Vi(p) # for p € S, then we take v(p) = Vo(p). We let dS

denote the surface measure (or area element) of S. For instance, if S is locally given as the
graph of a function (z1,...,2,-1) = @(21,...,2Zp—1), then

dS = (1+ 2 +--+¢2 )dwy- - doy 1.
We recall the divergence theorem.

Theorem 1. With the above notation we have

/dide:r:/F-de. (1)
Q S

We deduce from this a couple of corollaries which will be useful later.

Theorem 2. Let f € CL(Q)NC(Q). Then

/Q o dz = /S fuidsS. (2)

Proof. Take F = (0,...,0, f,0,...,0) with f at the i-th place in Eq. 1 O

Theorem 3 (Integration-by-parts). Let f,g € C*(Q2) N C(Q). Then
|tz == [ foodr+ [ fanas. 3)
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If fg =0 on S (in particular if one of them has compact support in Q), we have

| tgda=— [ o d (4)

Proof. Apply Eq. 2 to fg. O

Ex. 4. We let Dy, := la%k = —ia%k. Then Eq. 4 becomes

/uDkv dx = / Dywvdz ie. (u, Dyv) = (Dyu,v). (5)
Q Q
Ex. 5. For a := (ai,...,a,) € ZT, we let
(—i)lelglal
D* =D pon = T
1 " Ozt - - dxp
where |a| == a3 + -+ + ay,.
Ex. 6. Let A:=3",, ,, aa(z)D with aq € C™(Q) and ¢ € C™(Q). Let
Api= " D¥aa(z))p:
laj<m
Then we have
/ Avupdr = / uA*odr ie. (Au,@) = (u, A%p). (6)
Q Q
That is, A* is the formal adjoint of A w.r.t. the L?-inner product.
Ex. 7. If u € C(Q) is such that [, u® = 0 for all p € C°(Q), then u = 0.

2 L?-Local Solvability on Bounded Domains

Ex. 8. Let Q be a bounded domain in R™. Let A be a differential operator as in Ex. 6. We
want to solve Au = f, f a function defined on . Assuming the existence of a solution, we
derive a necessary condition, called an “a priori inequality”.

Assume that u € C™(2) so that Au € C(€2). Then Au = f and Ex. 6 implies that

(fs0) = (Au, ) = (u, A%p) for p € CZ°(Q).

Using Schwarz inequality we arrive at the a priori inequality (also known as Hérmander’s
inequality: In order that Au = f has a solution in 2 we must have

(Lol <lulllAll = CllA%|, ¢ € CF(Q). (7)

Ex. 9. If A has constant coefficients, the above a priori condition is also sufficient provided
that we interpret the notion of a solution of the equation Au = f in the weak sense. We say
that u € L?(Q) is a weak solution of Au = f if (u, A*p) = (f, ¢) holds for all ¢ € C°(Q).

Note that, in view of Ex. 7, in case u € C™ (), (m is the ‘degree’ of A), is a weak solution
of Au = f, then it is, in fact, a classical solution.



The rest of the notes leads to a proof of sufficiency of Eq. 7 and that Eq. 7 holds for A
with constant coefficients.

Ex. 10. Assume that Eq. 7 is true. Then Au = f has a weak solution. For, let
Vi={A%p:peC(Q)}.

Define F': V' — C by setting F(v) := (g, f), if v = A*p. Then F is well-defined. It is a
continuous linear functional on V and hence on V' C L?(€2). Hence there exists F': L?(Q) — C

with H F H = || F'|| by Hahn-Banach theorem (which is trivial for Hilbert spaces). By Riesz
representation theorem, we can find v € L*() such that F(v) = (v,u) for v € L?*(R2) with

lul = HFH = || F'||. This u is a weak solution as required.

Thus it remains to prove the a-priori inequality for a differential operator A with constant
coefficients: A =" a,D®, a, € C.

We look at a special case when n =1 and A = %. Let ¢ € C2°(a,b). We want to prove
that

lell <Cl¢']- (8)
Ex. 11. This yields a proof of Eq. 8. Write

and apply Schwartz inequality on the RHS:

@) < (@ =) 1€ | 2y < 0= 9| 2oy

It follows that

’ 2 ’ (2 2 /112
[ e dr< [(0-a)|lo|f o= -2

Thus Eq. 8 is established with C' = (b — a).

Ex. 12. We employ Fourier series to offer a second proof of Eq. 8. Without loss of generality,
assume that ¢ € C10,7] with ©(0) = 0. We extend ¢ as an odd function ¢ on [—m,7].
Then the Fourier (sine) series of ¢ converges uniformly and absolutely to 1 so that we can
differentiate it term by term to conclude that

= Z ni(n) cosnt.
n=1

Observe that
[k er and ||¢'||” 4Zn2\w

This yields Eq. 8 with C' =2 for a =0 and b = =.



We now return to the general case. Let P(D) denote a nonzero linear partial differential
operator with constant coefficients, of order m.

Let us start with a simple case of Hormander’s inequality. Let n =1 and Q = (0,1) and
P(D) = d/dx. We wish to show that there exists C' > 0 such that ||¢'[| > C | ¢|| for all
p € C§°(0,1).

The key trick is to observe the algebraic identity:

((xp), ) = (z¢', ) + {0, 0) -

Further, it follows by integration by parts,
((ze) ) = = (zp, ¢').

Hence we have

(0, 0) = — (29’ ) — (zp, ).
We apply Cauchy-Schwarz inequality and use the fact |z| < 1 to get

2
lell < 2llell¢ ]

from which it follows that ||¢'|| > £ [ ¢].

Theorem 13 (Hérmander’s Inequality). For every bounded open set 2 in R™, there exists a
constant C' > 0 such that for every ¢ € C5°(2),we have

[P(D)ell = Cllell- 9)
We may take C = |P|p Ky, 0 where
| Plm = max{|aqa|; [af = m}

and K, o depends only on m and the diameter of Q.

Proof. Given a differential operator P(D) of order m, we define P;(D) by the formula
P(D)(zjp) = x;P(D)p + Pj(D)p- (10)
Note that the operator P;(D) is zero iff P(D) does not involve any differentiation w.r.t. z;.
Order of P;(D) is strictly less than m, provided that it is non-zero.
Let A :=supg |z|. By induction we shall show that
IP;(D)e| < 2mA| P(D)el|. (11)

Before proceeding to a proof of (11), we make two observations: (i) The definition of P;(D)
along with (11) yields
IP(D)(zjp)|| < (2m+ DA P(D)e]l.

(ii) The second one is a well-known property of normal operators:

IP(D)e|” = (P(D)p, P(D)yp)
@, P*(D)P(D)p)
@, P(D)P*(D)p)
P*(D)p, P*(D)p)
= | P*(D)e|?.
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We now prove (11). It is trivial for m = 0. Let us assume that (11) holds true for all
differential operators of order at most m — 1. Let P(D) be a differential operator of order
m. We compute (P(D)(z;¢), Pj(D)y) in two different ways. From the definition of P;(D)
we have

(P(D)(zj%), Pj(D)p) = (z;P(D)p, Pi(D)g) + (Pj(D)p, P;(D)¢p) . (12)
By integration by parts and the commutativity of P*(D) and P(D), we obtain
(P(D)(zj), Pj(D)yp) = (P} (D)(z;p), P*(D)p) . (13)
From (12) and (13) we find
IP;(D)¢||* = (P (D) (), P*(D)g) — (; P(D)p, P;(D)g) . (14)

By the above two observations and by the induction hypothesis, we get
| P} (D) (zj) || < (2m = DA Py(D)ell. (15)
By Cauchy-Schwarz,
| (2 P(D)g, Py (D)) | < Al P(D)e |l | Pi(D)ll - (16)
Using (16) and (15) in (14), we get (11).

If P(D) is of order m > 1, there exists j such that P;(D) is of order m — 1. Observe that
| Pjlm—1 > |P|m. The theorem follows then immediately by induction. O

3 Malgrange-Ehrenpreis Theorem

Theorem 14. Let P(D) be a constant coefficient partial differential operator in R™ of degree
m. Let n € R™ be such that the top degree term Pp,(n) # 0. Then the distribution Edefined

by
N # m _Anx ——1 P(Z€ + )‘77) 2
E= Pn(n) /Tl AT (P(iéJr)\n)) 2T

is a fundamental solution of P(D). Furthermore, E/cosh(nx) is tempered.

Proof. Recall that the zero set of a nonzero polynomial function on R™ is of (Lebesgue)
measure 0. This entails

P(i€ + \n)
—= e L°(RY) f fixed A € C.
P+ ) € ( 5) or any fixe S

Lebesgue’s dominated convergence theorem shows that the map

P(i& + An)

1 / ny .
T _>S<R5)‘)\'_>P(i§+>\n)

is continuous. Since a continuous function with values in D/(R™) can be integrated over
any compact set, we infer that F is well-defined. It is easily verified that the distribution
E/ cosh(nx) is tempered.



We now compute P(D)E:

1 [ PGEF )\ | dA
P(D)E = A P(D) |eM*FL
(D) Pn(n) /m (D) |e (P(i{—i—)\n) 27\
1 1 [ P&+ An) d\
= AT | P(D 4 An)F ! :
Pn(1) /qu (D An) (P(z§+ ) ) | 2ea
1 — .\ dA
— )\m Anz ——1 P(i A\ e
s o (P £
1 - d\
= AP (D + Ai)d——.
Pr(n /IFl ‘ D+ ) 27
By Taylors’ theorem,
L m—li
P(D + A8 = NP (n)d + > MQi(D)o,
k=0

where ), are certain polynomials. By the residue theorem, the integrals over the terms with
factors A*, 0 < k < m — 1 vanish. The integral over the leading term yields 4. O



