Local Solvability of Constant Coefficient Differential Operators

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

1 Integration by Parts Formula

Recall the integration by parts formula.

Let Ω be a bounded domain in \mathbb{R}^n with smooth boundary $S \equiv \partial \Omega$. Let $F \in C^1(\Omega, \mathbb{R}^n)$ and $F \in C(\overline{\Omega}, \mathbb{R}^n)$. Recall that the divergence of the vector field F is defined by

$$
\operatorname{div} F \equiv \nabla \cdot F := \sum_j \partial_j F_j \qquad \text{where } F_j \text{ is the } j\text{-th component of } F.
$$

We let $\nu = (\nu_1, \dots, \nu_n)$ denote the unique outgoing unit normal on S. If S is locally given by φ^{-1} 0 for a smooth function with $\nabla \varphi(p) \neq$ for $p \in S$, then we take $\nu(p) = \nabla \varphi(p)$. We let dS denote the surface measure (or area element) of S . For instance, if S is locally given as the graph of a function $(x_1, \ldots, x_{n-1}) \rightarrow \varphi(x_1, \ldots, x_{n-1}),$ then

$$
dS = (1 + \varphi_{x_1}^2 + \dots + \varphi_{x_{n-1}}^2)^{1/2} dx_1 \cdots dx_{n-1}.
$$

We recall the divergence theorem.

Theorem 1. With the above notation we have

$$
\int_{\Omega} \operatorname{div} F dx = \int_{S} F \cdot \nu \, dS. \tag{1}
$$

We deduce from this a couple of corollaries which will be useful later.

Theorem 2. Let $f \in C^1(\Omega) \cap C(\overline{\Omega})$. Then

$$
\int_{\Omega} f_{x_i} dx = \int_{S} f \nu_i dS. \tag{2}
$$

Proof. Take $F = (0, \ldots, 0, f, 0, \ldots, 0)$ with f at the *i*-th place in Eq. 1 \Box

Theorem 3 (Integration-by-parts). Let $f, g \in C^1(\Omega) \cap C(\overline{\Omega})$. Then

$$
\int_{\Omega} f_{x_i} g \, dx = -\int_{\Omega} f g_{x_i} \, dx + \int_{S} f g \nu_i \, dS. \tag{3}
$$

If $fg = 0$ on S (in particular if one of them has compact support in Ω), we have

$$
\int_{\Omega} f_{x_i} g \, dx = - \int_{\Omega} f g_{x_i} \, dx. \tag{4}
$$

Proof. Apply Eq. 2 to fg .

Ex. 4. We let $D_k := \frac{1}{i}$ ∂ $\frac{\partial}{\partial x_k} = -i \frac{\partial}{\partial x}$ $\frac{\partial}{\partial x_k}$. Then Eq. 4 becomes

$$
\int_{\Omega} u \overline{D_k v} \, dx = \int_{\Omega} D_k u \overline{v} \, dx \quad \text{i.e.} \ \langle u, D_k v \rangle = \langle D_k u, v \rangle. \tag{5}
$$

Ex. 5. For $\alpha := (\alpha_1, \ldots, \alpha_n) \in \mathbb{Z}_+^n$, we let

$$
D^{\alpha} := D_1^{\alpha_1} \cdots D_n^{\alpha_n} = \frac{(-i)^{|\alpha|} \partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}}
$$

where $|\alpha| := \alpha_1 + \cdots + \alpha_n$.

Ex. 6. Let $A := \sum_{|\alpha| \leq m} a_{\alpha}(x) D^{\alpha}$ with $a_{\alpha} \in C^m(\overline{\Omega})$ and $\varphi \in C_c^m(\Omega)$. Let

$$
A^*\varphi:=\sum_{|\alpha|\leq m}D^\alpha(\overline{a_\alpha(x)})\varphi.
$$

Then we have

$$
\int_{\Omega} Au \overline{\varphi} \, dx = \int_{\Omega} u \overline{A^* \varphi} \, dx \quad \text{i.e.} \ \langle Au, \varphi \rangle = \langle u, A^* \varphi \rangle \, . \tag{6}
$$

That is, A^* is the formal adjoint of A w.r.t. the L^2 -inner product.

Ex. 7. If $u \in C(\Omega)$ is such that $\int_{\Omega} u \overline{\varphi} = 0$ for all $\varphi \in C_c^{\infty}(\Omega)$, then $u = 0$.

2 L^2 -Local Solvability on Bounded Domains

Ex. 8. Let Ω be a bounded domain in \mathbb{R}^n . Let A be a differential operator as in Ex. 6. We want to solve $Au = f$, f a function defined on Ω . Assuming the existence of a solution, we derive a necessary condition, called an "a priori inequality".

Assume that $u \in C^m(\overline{\Omega})$ so that $Au \in C(\overline{\Omega})$. Then $Au = f$ and Ex. 6 implies that

$$
\langle f, \varphi \rangle = \langle Au, \varphi \rangle = \langle u, A^* \varphi \rangle
$$
 for $\varphi \in C_c^{\infty}(\Omega)$.

Using Schwarz inequality we arrive at the *a priori inequality* (also known as Hörmander's inequality: In order that $Au = f$ has a solution in Ω we must have

$$
|\langle f, \varphi \rangle| \le ||u|| ||A^* \varphi|| = C ||A^* \varphi||, \quad \varphi \in C_c^{\infty}(\Omega). \tag{7}
$$

Ex. 9. If A has constant coefficients, the above a priori condition is also sufficient *provided* that we interpret the notion of a solution of the equation $Au = f$ in the weak sense. We say that $u \in L^2(\Omega)$ is a weak solution of $Au = f$ if $\langle u, A^*\varphi \rangle = \langle f, \varphi \rangle$ holds for all $\varphi \in C_c^{\infty}(\Omega)$.

Note that, in view of Ex. 7, in case $u \in C^m(\Omega)$, $(m$ is the 'degree' of A), is a weak solution of $Au = f$, then it is, in fact, a classical solution.

 \Box

The rest of the notes leads to a proof of sufficiency of Eq. 7 and that Eq. 7 holds for A with constant coefficients.

Ex. 10. Assume that Eq. 7 is true. Then $Au = f$ has a weak solution. For, let

$$
V := \{ A^* \varphi : \varphi \in C_c^{\infty}(\Omega) \}.
$$

Define $F: V \to \mathbb{C}$ by setting $F(v) := \langle \varphi, f \rangle$, if $v = A^*\varphi$. Then F is well-defined. It is a continuous linear functional on V and hence on $\overline{V} \subset L^2(\Omega)$. Hence there exists $\tilde{F}: L^2(\Omega) \to \mathbb{C}$ with $\left\| \tilde{F} \right\| = \| F \|$ by Hahn-Banach theorem (which is trivial for Hilbert spaces). By Riesz $\mathbf{||}$ representation theorem, we can find $u \in L^2(\Omega)$ such that $\tilde{F}(v) = \langle v, u \rangle$ for $v \in L^2(\Omega)$ with $||u|| = \left||$ $\tilde{F}\Big\| = \|F\|$. This u is a weak solution as required.

Thus it remains to prove the a-priori inequality for a differential operator A with constant coefficients: $A = \sum a_{\alpha} D^{\alpha}, a_{\alpha} \in \mathbb{C}$.

We look at a special case when $n = 1$ and $A = \frac{d}{dt}$. Let $\varphi \in C_c^{\infty}(a, b)$. We want to prove that

$$
\|\varphi\| \le C \|\varphi'\|.\tag{8}
$$

Ex. 11. This yields a proof of Eq. 8. Write

$$
\varphi(x) = \int_a^x \varphi'(t) \, dt
$$

and apply Schwartz inequality on the RHS:

$$
|\varphi(x)| \le (x-a)^{1/2} ||\varphi'||_{L^2(a,x)} \le (b-a)^{1/2} ||\varphi'||_{L^2(a,b)}.
$$

It follows that

$$
\int_a^b \|\varphi(x)\|^2 \ dx \le \int_a^b (b-a) \|\varphi'\|^2 \ dx = (b-a)^2 \|\varphi'\|^2.
$$

Thus Eq. 8 is established with $C = (b - a)$.

Ex. 12. We employ Fourier series to offer a second proof of Eq. 8. Without loss of generality, assume that $\varphi \in C^1[0,\pi]$ with $\varphi(0) = 0$. We extend φ as an odd function ψ on $[-\pi,\pi]$. Then the Fourier (sine) series of ψ converges uniformly and absolutely to ψ so that we can differentiate it term by term to conclude that

$$
\psi'(t) = \sum_{n=1}^{\infty} n\hat{\psi}(n) \cos nt.
$$

Observe that

$$
\|\psi\|^2 = \sum_{n=1}^{\infty} |\hat{\psi}(n)|^2 \text{ and } \|\psi'\|^2 = 4 \sum_{n=1}^{\infty} n^2 |\hat{\psi}(n)|^2
$$

This yields Eq. 8 with $C = 2$ for $a = 0$ and $b = \pi$.

We now return to the general case. Let $P(D)$ denote a nonzero linear partial differential operator with constant coefficients, of order m.

Let us start with a simple case of Hörmander's inequality. Let $n = 1$ and $\Omega = (0, 1)$ and $P(D) = d/dx$. We wish to show that there exists $C > 0$ such that $\|\varphi'\| \geq C \|\varphi\|$ for all $\varphi \in C_0^{\infty}(0,1).$

The key trick is to observe the algebraic identity:

$$
\left\langle (x\varphi)',\varphi\right\rangle =\left\langle x\varphi',\varphi\right\rangle +\left\langle \varphi,\varphi\right\rangle .
$$

Further, it follows by integration by parts,

$$
\langle (x\varphi)',\varphi\rangle = -\langle x\varphi,\varphi'\rangle.
$$

Hence we have

$$
\langle \varphi, \varphi \rangle = - \left\langle x \varphi', \varphi \right\rangle - \left\langle x \varphi, \varphi' \right\rangle.
$$

We apply Cauchy-Schwarz inequality and use the fact $|x| < 1$ to get

$$
\|\varphi\|^2 \leq 2 \|\varphi\| \left\|\varphi'\right\|,
$$

from which it follows that $\|\varphi'\| \geq \frac{1}{2} \|\varphi\|$.

Theorem 13 (Hörmander's Inequality). For every bounded open set Ω in \mathbb{R}^n , there exists a constant $C > 0$ such that for every $\varphi \in C_0^{\infty}(\Omega)$, we have

$$
||P(D)\varphi|| \ge C ||\varphi||. \tag{9}
$$

We may take $C = |P|_m K_{m,\Omega}$ where

$$
|P|_m = \max\{|a_\alpha|; |\alpha| = m\}
$$

and $K_{m,\Omega}$ depends only on m and the diameter of Ω .

Proof. Given a differential operator $P(D)$ of order m, we define $P_i(D)$ by the formula

$$
P(D)(x_j \varphi) = x_j P(D)\varphi + P_j(D)\varphi.
$$
\n(10)

Note that the operator $P_i(D)$ is zero iff $P(D)$ does not involve any differentiation w.r.t. x_i . Order of $P_i(D)$ is strictly less than m, provided that it is non-zero.

Let $A := \sup_{\Omega} |x|$. By induction we shall show that

$$
||P_j(D)\varphi|| \le 2mA ||P(D)\varphi||. \tag{11}
$$

Before proceeding to a proof of (11), we make two observations: (i) The definition of $P_i(D)$ along with (11) yields

$$
|| P(D)(x_j \varphi) || \le (2m+1)A || P(D)\varphi ||.
$$

(ii) The second one is a well-known property of normal operators:

$$
||P(D)\varphi||^2 = \langle P(D)\varphi, P(D)\varphi \rangle
$$

= $\langle \varphi, P^*(D)P(D)\varphi \rangle$
= $\langle \varphi, P(D)P^*(D)\varphi \rangle$
= $\langle P^*(D)\varphi, P^*(D)\varphi \rangle$
= $||P^*(D)\varphi||^2$.

We now prove (11). It is trivial for $m = 0$. Let us assume that (11) holds true for all differential operators of order at most $m-1$. Let $P(D)$ be a differential operator of order m. We compute $\langle P(D)(x_j\varphi), P_j(D)\varphi \rangle$ in two different ways. From the definition of $P_j(D)$ we have

$$
\langle P(D)(x_j \varphi), P_j(D)\varphi \rangle = \langle x_j P(D)\varphi, P_j(D)\varphi \rangle + \langle P_j(D)\varphi, P_j(D)\varphi \rangle. \tag{12}
$$

By integration by parts and the commutativity of $P^*(D)$ and $P(D)$, we obtain

$$
\langle P(D)(x_j \varphi), P_j(D)\varphi \rangle = \langle P_j^*(D)(x_j \varphi), P^*(D)\varphi \rangle. \tag{13}
$$

From (12) and (13) we find

$$
||P_j(D)\varphi||^2 = \langle P_j^*(D)(x_j\varphi), P^*(D)\varphi \rangle - \langle x_j P(D)\varphi, P_j(D)\varphi \rangle. \tag{14}
$$

By the above two observations and by the induction hypothesis, we get

$$
||P_j^*(D)(x_j \varphi)|| \le (2m-1)A ||P_j(D)\varphi||.
$$
 (15)

By Cauchy-Schwarz,

$$
|\langle x_j P(D)\varphi, P_j(D)\varphi \rangle| \le A \| P(D)\varphi \| \| P_j(D)\varphi \|.
$$
\n(16)

Using (16) and (15) in (14) , we get (11) .

If $P(D)$ is of order $m \geq 1$, there exists j such that $P_i(D)$ is of order $m-1$. Observe that $|P_j|_{m-1} \geq |P|_m$. The theorem follows then immediately by induction. \Box

3 Malgrange-Ehrenpreis Theorem

Theorem 14. Let $P(D)$ be a constant coefficient partial differential operator in \mathbb{R}^n of degree m. Let $\eta \in \mathbb{R}^n$ be such that the top degree term $P_m(\eta) \neq 0$. Then the distribution Edefined by

$$
E := \frac{1}{\overline{P_m(\eta)}} \int_{\mathbb{T}^1} \lambda^m e^{\lambda \eta x} \mathcal{F}^{-1} \left(\frac{\overline{P(i\xi + \lambda \eta)}}{P(i\xi + \lambda \eta)} \right) \frac{\partial \lambda}{2\pi \lambda}
$$

is a fundamental solution of $P(D)$. Furthermore, $E/\cosh(\eta x)$ is tempered.

Proof. Recall that the zero set of a nonzero polynomial function on \mathbb{R}^n is of (Lebesgue) measure 0. This entails

$$
\frac{\overline{P(i\xi + \lambda \eta)}}{P(i\xi + \lambda \eta)} \in L^{\infty}(\mathbb{R}_{\xi}^{n})
$$
 for any fixed $\lambda \in \mathbb{C}$.

Lebesgue's dominated convergence theorem shows that the map

$$
\mathbb{T}^{1} \longrightarrow \mathcal{S}'(\mathbb{R}_{\xi}^{n}) : \lambda \mapsto \frac{\overline{P(i\xi + \lambda\eta)}}{P(i\xi + \lambda\eta)}
$$

is continuous. Since a continuous function with values in $\mathcal{D}'(\mathbb{R}^n)$ can be integrated over any compact set, we infer that E is well-defined. It is easily verified that the distribution $E/\cosh(\eta x)$ is tempered.

We now compute $P(D)E$:

$$
P(D)E = \frac{1}{\overline{P_m(\eta)}} \int_{\mathbb{T}^1} \lambda^m P(D) \left[e^{\lambda \eta x} \mathcal{F}^{-1} \left(\frac{\overline{P(i\xi + \lambda \eta)}}{P(i\xi + \lambda \eta)} \right) \right] \frac{d\lambda}{2\pi\lambda}
$$

\n
$$
= \frac{1}{\overline{P_m(\eta)}} \int_{\mathbb{T}^1} \lambda^m e^{\lambda \eta x} \left[P(D + \lambda \eta) \mathcal{F}^{-1} \left(\frac{\overline{P(i\xi + \lambda \eta)}}{P(i\xi + \lambda \eta)} \right) \right] \frac{d\lambda}{2\pi\lambda}
$$

\n
$$
= \frac{1}{\overline{P_m(\eta)}} \int_{\mathbb{T}^1} \lambda^m e^{\lambda \eta x} \mathcal{F}^{-1} \left(\overline{P(i\xi + \lambda \eta)} \right) \frac{d\lambda}{2\pi\lambda}
$$

\n
$$
= \frac{1}{\overline{P_m(\eta)}} \int_{\mathbb{T}^1} \lambda^m e^{\lambda \eta x} \overline{P(D + \lambda \eta)} \delta \frac{d\lambda}{2\pi\lambda}.
$$

By Taylors' theorem,

$$
\overline{P(D+\lambda\eta)}\delta = \overline{\lambda^m P_m(\eta)}\delta + \sum_{k=0}^{m-1} \overline{\lambda^k} Q_k(D)\delta,
$$

where Q_k are certain polynomials. By the residue theorem, the integrals over the terms with factors λ^k , $0 \le k \le m-1$ vanish. The integral over the leading term yields δ .