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1 Integration-by-parts

Let Ω be a bounded domain in Rn with smooth boundary S ≡ ∂Ω. Let F ∈ C1(Ω,Rn) and
F ∈ C(Ω,Rn). Recall that the divergence of the vector field F is defined by

divF ≡ ∇ · F :=
∑
j

∂jFj where Fj is the j-th component of F .

We let ν = (ν1, . . . , νn) denote the unique outgoing unit normal on S. If S is locally given by
ϕ−10 for a smooth function with ∇ϕ(p) 6= for p ∈ S, then we take ν(p) = ∇ϕ(p). We let dS
denote the surface measure (or area element) of S. For instance, if S is locally given as the
graph of a function (x1, . . . , xn−1)→ ϕ(x1, . . . , xn−1), then

dS = (1 + ϕ2
x1 + · · ·+ ϕ2

xn−1
)1/2 dx1 · · · dxn−1.

We recall the divergence theorem.

Theorem 1. With the above notation we have∫
Ω

divFdx =

∫
S
F · ν dS. (1)

We deduce from this a lot of corollaries which will be useful later.

Theorem 2. Let f ∈ C1(Ω) ∩ C(Ω). Then∫
Ω
fxi dx =

∫
S
fνidS. (2)

Proof. Take F = (0, . . . , 0, f, 0, . . . , 0) with f at the i-th place in Eq. 1

Theorem 3 (Integration-by-parts). Let f, g ∈ C1(Ω) ∩ C(Ω). Then∫
Ω
fxig dx = −

∫
Ω
fgxi dx+

∫
S
fgνi dS. (3)

Proof. Apply Eq. 2 to fg.
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Corollary 4 (Green’s Identities). Let u, v ∈ C2(Ω) ∩ C1(Ω). Then
(i) Gauss Law: ∫

Ω
∆u =

∫
S

∂u

∂ν
dS. (4)

(ii) First Green’s Identity:∫
Ω
∇u · ∇v dx = −

∫
Ω
u∆v dx+

∫
S

∂v

∂ν
u dS. (5)

(iii) Second Green’s Identity:∫
Ω

(u∆v − v∆u) dx =

∫
S

(
u
∂v

∂ν
− v∂u

∂ν

)
dS. (6)

Proof. Using Eq. 3 with uxi in place of u and v = 1 we see that∫
Ω
uxixi dx =

∫
S
uxiνi dS.

Summing over i yields (i).

Invoke Eq. 3 with vxi in place of v.

Interchanging u and v in Eq. 5 and subtracting will result in (iii).

2 Poisson’s Equation in Rn

Let f ∈ Cc(Rn). Our aim in this section is to solve the so-called Poisson’s equation.

−∆u = f. (7)

First of all we look for radial solutions of ∆u = 0. It is (already/easily) seen that if u is
radial, i.e. u(x) = u(|x|) = u(r) where r := (

∑
j x

2
j )

1/2, then

∆u =
∂2u

∂r2
+
n− 1

r

∂u

∂r
= urr +

n− 1

r
ur.

If we let v := ur, then the above equation reduces to an ODE

v′ =
1− n
r

v

which readily admits solution: v(r) = Constant
rn−1 . Consequently, if r 6= 0, we have

u(r) =

{
b log r + c n = 2
b

rn−2 + c n ≥ 3,

where b and c are constants. This discussion motivates the following
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Definition 5. The function

Φ(x) :=

{
1

2π log(|x|) n = 2
1

(2−n)ωn
r2−n n ≥ 3

defined for nonzero x ∈ Rn is known as the fundamental solution of the Laplace equation
∆u = 0. Here ωn is the surface measure of the unit sphere in Rn.

The choice of constants will become clear in Section 4.(See especially the proof of Theo-
rem 11). It will also explain why Φ is called a fundamental solution of ∆.

Ex. 6. Show the following:

|∇Φ(x)| ≤ C

‖x‖n−1 , (x 6= 0) (8)

and

|D2Φ(x)| ≤ C

‖x‖n
, (x 6= 0) (9)

for some C > 0. Here D2 stands for the Hessian matrix of second order derivatives.

Remark 7. The function Φ(x) is harmonic for x 6= 0 so that if we shift the origin to y, the
function x 7→ Φ(x− y) is harmonic for x 6= y. If f is any function then x 7→ Φ(x− y)f(y) is
harmonic for any y and so is any finite linear combination for a finite set of y’s.

This suggests the “convolution”

u(x) =

∫
Rn

Φ(x− y)f(y) dy, (10)

may solve the Laplace equation ∆u = 0.

Because of the estimate Eq. 9, we cannot justify the differentiation under the integral sign
in the equation below:

∆u(x) =

∫
Rn

∆xΦ(x− y)f(y) dy = 0.

In fact, this is wrong! See the next theorem.

Theorem 8 (Solution of Poisson’s equation). Let f ∈ Cc(Rn) and let u be defined as in
Eq. 10. Then u ∈ C2(Rn) and ∆u = f .

Proof. Note that, by a change of variables y 7→ x− y, we have

u(x) =

∫
Rn

Φ(x− y)f(y) dy =

∫
Rn

Φ(y)f(x− y) dy.

We use the second representation to compute the partial derivatives of u:

u(x+ tei)− u(x)

t
=

∫
Rn

Φ(y)

[
f(x− y + tei)− f(x− y)

t

]
dy.
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Since f is C2 and compactly supported, the partial derivatives ∂f
∂xi

are uniformly continuous
on Rn so that

f(x− y + tei)− f(x− y)

t
→ ∂f

∂xi
(y − x) uniformly on Rn

as t→ 0. Thus it follows that

∂u

∂xi
=

∫
Rn

Φ(y)
∂f

∂xi
(x− y) dy (1 ≤ i ≤ n).

One similarly shows that

∂2u

∂xi∂xj
=

∫
Rn

Φ(y)
∂2f

∂xi∂xj
(x− y) dy (1 ≤ i, j ≤ n).

Thus u is C2. Also, since f is compactly supported, it follows that u, ∇u and ∇2u are
bounded.

To compute ∆u we use the most useful trick of integration theory. The trick is to split
the integral into parts: one part where the integrand is well-behaved and the other where the
integrand has bad behaviour. If one is lucky, the set where the integrand is badly behaved
will have small measure (volume). See the estimate of the first term Iε below. In our context
the problem is the behaviour of Φ near the origin. Hence we proceed as follows. Let ε > 0 be
given. Then

∆u(x) =

∫
B(0,ε)

Φ(y)∆xf(x− y) dy +

∫
Rn\B(0,ε)

Φ(y)∆xf(x− y) dy = Iε + Jε. (11)

We estimate Iε as follows:

|Iε| ≤ C
∥∥D2f

∥∥
∞

∫
B(0,ε)

|Φ(y)| dy ≤

{
Cε2| log ε| n = 2

Cε2 n ≥ 3.
(12)

To estimate Jε we apply the integration by parts (following the dictum “If you have
nothing else to do then integrate by parts!”).

Jε =

∫
Rn\B(0,ε)

Φ(y)∆yf(x− y) dy

= −
∫
Rn\B(0,ε)

∇Φ(y)∇yf(x− y) dy +

∫
∂B(0,ε)

Φ(y)
∂f

∂ν
(x− y)dS(y)

= J1ε + J2ε. (13)

A point to be noted here is that ν is the unit normal pointing outward to the domain Rn \
B(0, ε) so that it is the unit normal along S(0, ε) pointing inward B(0, ε). That is, ν(y) = −y

ε
along S(0, ε).

The second term of Eq. 13 is easily estimated:

|J2ε| ≤ ‖∇Φ‖∞
∫
S(0,ε)

|Φ(y)|dS(y) ≤

{
Cε| log ε| n = 2

Cε n ≥ 3.
(14)
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We again resort to integration by parts to deal with the first term J1ε of Eq. 13.

J1ε =

∫
Rn\B(0,ε)

∆Φ(y)f(x− y) dy −
∫
S(0,ε)

∂Φ

∂ν
(y)f(x− y) dS(y)

= −
∫
S(0,ε)

∂Φ

∂ν
(y)f(x− y) dS(y).

We compute ∇Φ(y) = y
ωn|y|n for y 6= 0. We already observed that ν(y) = −y

ε along S(0, ε).

As a result, we find that
∂Φ

∂ν
(y) = ν · ∇Φ(y) = − 1

ωnεn−1

on S(0, ε). Thus,

J1ε =
1

ωnεn−1

∫
S(0,ε)

f(x− y) dS(y) = Mf (x, ε)→ f(x) (15)

as ε→ 0. From Eq. 11—Eq. 15, we get what we wanted.

3 An Integral Representation

We have already seen that solutions of the Laplace equation ∆u = 0 which are of the form
u(x) = u(|x− ξ|) which depend on the distance from the point ξ are given by

u(x) =

{
log(r), n = 2

1
(2−n)ωnrn−2 , n ≥ 3

where r = |x− ξ|. (16)

Each of these functions have a singularity at ξ the nature of the singularity depending on the
dimension n. We introduce the Newtonian potential

K(x, ξ) =

{
1

2π log(r) n = 2
1

(2−n)ωnrn−2 n ≥ 3
r = |x− ξ|. (17)

The aim of this section is to obtain an integral representation of a solution of the boundary
value problem for the Poisson’s equation

∆u(x) = f(x) on Ω & u(x) = g(x) on ∂Ω. (18)

The starting point here is the second Green’s identity Eq. 6. We shall apply it to a smooth
function u and choose v = K(x, ξ) for ξ ∈ Ω. Because of the singularity at ξ, we cannot apply
the identity directly to the domain Ω. We scoop out a small closed ball around ξ from Ω. Let
Ωε := Ω \B[ξ, ε]. In Ωε, K(x, ξ) is harmonic in x so that ∆K(·, ξ) = 0 in Ωε. The boundary
of Ωε is ∂Ω ∪ S(ξ, ε). The outward unit normal on S(ξ, ε) is given by −x−ξ

ε . Green’s second
identity now yields

−
∫

Ωε

∆u(x)K(x, ξ) dx =

∫
S

(
u(x)

∂K(x, ξ)

∂ν
−K(x, ξ)

∂u(x)

∂ν

)
dS(x)

−
∫
S(ξ,ε)

(
u(x)(− 1

ωnεn−1
− 1

(n− 2)ωnεn−2

∂u(x)

∂ν

)
dS(x).

(19)
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We consider the behaviour of each term as ε→ 0.

The first integral (over S(ξ, ε)) of the second term is the spherical means of u over the
sphere S(ξ, ε) which by the continuity of u goes to u(ξ) as ε→ 0.

We now deal with the second integral over S(ξ, ε). Using Gauss Law Eq. 4, we estimate

|
∫
S(ξ,ε)

∂u(x)

∂ν
dS(x)| = |

∫
B(ξ,ε)

∆u(x) dx| ≤ (
ωnε

n

n
) max
B(ξ,ε)

|∆u(x)| (20)

From this it follows that

lim
ε→0

1

εn−2

∫
S(ξ,ε)

∂u(x)

∂ν
dS(x) = 0. (21)

We have thus shown that the right side of Eq. 19 converges as ε → 0 and therefore the
left side dose converge. We have obtained the integral representation formula, Eq. 22 of the
following theorem.

Theorem 9. Let u ∈ C2(Ω) ∩ C1(Ω) and ξ ∈ Ω. The we have

u(ξ) =

∫
∂Ω

(
K(x, ξ)

∂u(x)

∂ν
− u(x)

∂K(x, ξ)

∂ν

)
dS(x)−

∫
Ω

∆u(x)K(x, ξ) dx. (22)

Remark 10. This representation expresses the value of a function u as in the theorem at a
point ξ ∈ Ω in terms of ∆u in Ω and both of u and ∂u

∂ν on the boundary ∂Ω. The required
knowledge of the normal derivative of u on the boundary is the major defect of this formula.
However, this formula is the stepping stone to the final solution of the Dirichlet problem for
the Poisson equation.

4 Why Fundamental Solution?

Let δ denote the Dirac measure on Rn: δ(E) =

{
1 0 ∈ E
0 0 /∈ E

. We say that a locally integrable

function E is a fundamental solution of a constant coefficient differential operator P (D) if
P (D)E = δ in the distribution sense:

∫
Rn EP (−D)ϕ = ϕ(0) for all ϕ ∈ C∞c (Ω).

Theorem 11. For v ∈ C∞c (Rn), we have∫
Rn

Φ(x)∆(v) dx = v(0). (23)

Proof. Let Ωε := B(0, R) \ B[0, ε] where support of u is contained in B(0, T ). Using polar
coordinates, one easily shows that Φ is integrable in any bounded neighbourhood of 0. Hence,
it follows that ∫

Ωε

Φ∆v dx→
∫

Ω
Φ∆v dx as ε→ 0.
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Since Φ is harmonic in Ωε, by Eq. 6 we have∫
|??|ve

Φ∆v dx =

∫
|x|=ε

(
Φ
∂v

∂ν
− v∂Φ

∂ν

)
dS. (24)

The outward unit normal on |x| = ε is ν = −x
ε .

We look at the first term on the right side of Eq. 24. On |x| = ε, we have Φx = Φ(ε) so
that by Gauss Law (Eq. 4), we have∫

|x|=ε
Φ
∂v

∂ν
dS = −Φ(ε)

∫
|x|<ε

∆v dx. (25)

The right side is absolute value is at most Φ(ε)ωnε
n max|x|≤ε |∆v| which goes to 0 as ε→ 0.

We now evaluate the second term on the right side of Eq. 24. On |x| = ε, we have

∂Φ

∂ν
(|x|) = −∂Φ

∂r
(ε) = (n− 2)Cε1−n, if n ≥ 3.

Thus we compute∫
|x|=ε

v
∂Φ

∂ν
dS = Cε1−n

∫
|x|=1

v dS = CωnMv(0, ε)→ v(0), (26)

by the continuity of v.
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