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1 Fundamental Solution of the Heat Operator

Definition 1. The function

! _ =
E(x,t) = {(2a\/ﬁ)n exp(—y=) fort>0

0 fort <0

is a fundamental solution of the Heat operator % — a?A.

Recall that this means that for each ¢ € C°(R™ x R), we have

E(x,t) (—(Zf - Agp) (xz,t) = ¢(0,0).

Rn+1

The function E is locally integrable in R"*! since E = 0 for ¢t < 0 and for ¢t > 0 we have

E(z,t)d ! / ( W)d f[ ! /OO e =1
Z, xXr = eXpl———F— Xr = —— e = ].
R" (2a/7t)" Jgn DU a2t P VT o
For ¢t > 0 and x € R", E(x,t) is smooth. We therefore compute

OF 2

9B _ (=" _n)\p

ot 4a2t2 2t

OE _

ox;  2a%t

2
OB _ (1)
o’ 4a?t?  2a%t

It follows from (2) and (4 that E(x,t) satisfies the heat equation for ¢ > 0:

9 2
5 F—a?AE=0.

(1)



Let ¢ € C°(R™"1). We now compute:

OF
(a - a2AE7§0) = (E

)~ (B.0a)

= // E(z <+a2Ag0) dxdt

o . dp 2
= —;1_{1% . E(w,t) <6t+a A<p> dxdt

e—0

/ / ( — a2AE> apdmdt]

(by integration by parts)

= hm{ E(z,e)p(x,€) da

= lim E(z,e)p(x,e)dx. (6)
e—0 Rn
To obtain the last equality, we used (5). We change the variables in (6). Put y = \[ Then

the integral on the right side of (6) becomes
| 7 el p(2avE <) dy

In this integral, the function e~ ¥/” is in L'(R™) and ¢ is bounded on R™ so that we can apply
the dominated convergence theorem to conclude that

/ 72 exp(—ly[2)p(2av/E, €) dy — 7 / exp(—[y[2)(0,0) dy = (0,0).
R™ Rn

2 Maximum Principle for Bounded Domains

Let Q be a bounded domain. Let Qp = Q x (0,7, for T' € R;.. Then the parabolic boundary
OpSr of Qr is defined by
OpQdr := 007 \ (2 x {T}).

Theorem 2 (Maximum principle for bounded domains). Letu € C*Y(Qr)NC(Q07). Assume
that uy — Au <0 in Qr. Then

supu = sup u. (7)
Qr BpShr

Proof. Let € > 0 be arbitrary but fixed. Consider the function

v(x,t) = u(x,t) — et, (z,t) € Qp_..

It satisfies
—Av<—e<0 in QTg' (8)



Since v is continuous in Qp_., it achieves its maximum at some (xq,t9) € Q.. If (z0,t0) ¢
0pQ7_¢, by elementary calculus, (vy — Av)(zo,t9) > 0, contradicting (8). Therefore conclude
that (x0,t9) € 0pQ7.. For each € € (0, 1), we have

u(z,t) < 2T + sup wu, for (z,t) € Qp_..

BpS2r
O
Ex. 3. Let u € C*'(Qr) N C(Q07). Assume that u; — Au > 0 in Q7. Then
infu= inf u (9)
Corollary 4. Let u € C?1(Qr) N C(Q07). Assume that uy — Au =0 in Qp. Then
HUHOO,QT = ||U’Hoo,8pQT' (10)

Remark 5. Theorem 2 is a weak maximum principle since it does not exclude the possibility
of u attaining its supremum at some other points in Q7. For example, u could be identically
constant in 7. A strong maximum principle will assert that this is the only other possibility.

Corollary 6 (Uniquenss for bounded domains). There exists at most one solution of the
boundary value problem u € C*1(Qr) x C(Qr) with uy — Au = f in Qp for f € C(Q) and
u =g on 0,Qr for g € C(0,7).

Proof. If both u and v are solutions, then w = u — v is a solution of wy — Aw =0 and w =0
on 0p€dr. Hence w = 0 by Theorem 2. O

Remark 7. A boundary value problem for the heat equation with data prescribed on the
whole boundary 07 is in general not well-posed. For example, consider the domain R =
(0,1) x (0,1) and a function ¢ € C'(OR) which takes an absolute maximum on the open line
segment {0 < x < 1} x {t = 1}, then the problem u; — Au = 0 with the boundary condition
u = @ on OR cannot have a solution for it would violate Theorem 2.

3 Maximum Principle on R"

Let Q7 := R™ x (0,7). A point of Qr is denoted by (z,t). By C*!(Qr), we mean the
collection of functions on Qp that are C? in the x € R™variable and C! in the t variable.

Theorem 8 (Maximum Principle for R" x (0, T)). Let u € C*Y(Qr)NC(Qr). Let ug—Au <0
in Qr and u(z,0) = g(x) with g € C(R™) N L>®(R™). Assume that u satisfies the following
growth condition: There exist constants C,a,r € (0,00) such that

u(z,t) < CeaHxHZ, for (z,t) € Qr and |x| > 7. (11)

Then supg,,. u < SUPgn -



Proof. Assume that T is so small that 4aT < 1. Let U := B(0,p) x (0,7). Consider the

function
< |z|2/4(T—1)

(T — )72

One easily checks that v; — Av < 0 in U. We can therefore apply the maximum principle for
bounded domains. Let 9,U denote the parabolic boundary of U. We have

Vi=u—

v(z,0) < supu(z,0)=supg(x) (12)
R" R"

V(T 1) |z=p < Ceap2—5(47rT)_”/2ep2/4T.

Since o < 47T, it follows that
v<0 on|z]=np. (13)

Since ¢ is arbitrary, the result follows from (12) and (13) provided that 4aT < 1.

If 4aT > 1, subdivide the strip in the t-variable into finitely many strips of width less
than 1/4« . O

Theorem 9 (Uniqueness for the Cauchy problem). Let g € C(R") and f € C(R" x [0,T)).
Then there exists at most one solution u € CHL(R™ x (0,T) N C(R™ x [0,T) of the Cauchy
problem

u—Au = f inR"x(0,7)
u = g onR"x{t=0}

satisfying the growth estimate |u(z,t)| < Ae® for all x with |x| > r some constants C, o, 7.

Proof. If u and v both are solutions of the Cauchy problem, apply the last theorem to the
function w = +(u — v). O

4 Example of Non-uniqueness

Proposition 10. There exist nonidentically zero solutions of the Cauchy problem us—Au = 0
in R x (0,00) and u(x,0) = 0.

Proof. For z € C, let

eV #0
#(2) = {0, Z=0.
Define . o
u(:n,t) _ {Z?LO:O (i—ngo(t) (:;n)“ t>0 (14)
0 t=0.



We proceed formally.

> n 2n
. x
lim u(z, 1) = ;0 7?0 Gy = (15)
a2u e n x2n
- = = p(t)2n(2n — 1
D2 vt dt”(p( J2n(2n )(Zn)!
B 00 di (t) 22(n=1)
~ a7 R - 1)
> dn+1 x2n
= —(t 16
P e RACN oY (16)
ou
These calculations are rigorous in view of the following lemma. O

Lemma 11. The series in (14 - 16) are uniformly convergent on compact subsets of R x R..

Proof. The function z — ¢(z) is holomorphic in C\ {0}.We identify the t-axis with the real
axis of the complex plane. If ¢ > 0 is fixed, the circle v(0) := ¢ + %ew does not meet the
origin. By Cauchy integral formula we have

dr n! ©(2)

—op(t) = — | ——L—dz.

i ? ) = o A (- — 1 ?
It follows from this that

dr nl 2, [T e
P o< Gy [ ey,
dtn@()l_%(t)/o ¢

For z on v, we have 2% = t2(1 + 1¢)2. So,

z - -
1+ JeP

From this, we get R(272) > (2t)~2, and hence

dr 2 2
T < nl)e

Fix x € R and R > 0. Then for all x with |z| < R, using the Stirling’s inequality

2m ()2
(2(n))! =L

the series in (14) is seen to be majorized, term by term, by the uniformly convergent series

_ 2o, 1 n(RZ)n _ 2 p2
e 1/4t Z(g) - —e 1/4¢ 6R /t.
n=0



5 Backward Uniqueness

Theorem 12 (Backward Uniqueness). Assume that u and v are solutions of the Cauchy
problem for the heat equation in Up = U x (0,T) with the same boundary condition u =v =0
on OU x [0,T]. If u(z,T) = v(z,T) for x € U, then u=v on Ur.

Proof. Write w = u = v. Let
E(t) ::/wQ(w,t) dz, te]0,T].
U

By hypothesis E(T') = 0 and we may assume that E(t) > 0 for 0 < ¢ < T. We compute the
first derivative of E.

E'(t) = 2/watdx

= 2/wAwdx
U

= —2/ |Vw|*dz < 0. (18)
U

Furthermore, we compute the second derivative of E.

E'(t) = —4/Uszkkatd:c

k=1

= 4/Awwtd9§
U

2
_ 4 /U (Aw)? daz. (19)

Now since w = 0 on U,

/|Vw|2dw = —/wAwdx
U U

(o) (fpsora) "
Thus (18) and (19) imply

(E'(t))? = 4</U|Dw\2dx)2
< ([ (1 froora)

= Et)E"(t).

IN

That is,
E"()E(t) > (E'(t))*. (20)



Let f(t) := log E(t). Then f”(t) > 0 by (20) and hence is convex on the interval (0,7).
Consequently, if A\,t € (0,1), we have

F) = fF((A =20+ At) < (1= X)f(0) + Af(2).

It follows that
E(X) < E(0)' M E®),t € (0,T),

and so,
E(\T) < E(0)'AE(T)™.

Since E(T') = 0, this entails in E(t) = 0 for t € (0,T), a contradiction to our assumption. [

6 Nonhomogeneous Equation — Duhamel’s Principle

Theorem 13 (Duhamel). Let g € C(R™) N L>®(R™). Let f be a function on R™ x [0,T] such
that f is C*>' and f;, 0;f and 0;0yf exist, are continuous and bounded on R™ x [0,T]. Define

u(z,t) = K(x —y,t)g(y) dy—i—/t K(x —y,t —s)f(y,s)dyds. (21)
R 0 Jrn

Then u is bounded, u € C*1(R"x[0,T]) and is a solution of the initial value problem u;—Au =
f and u(z,0) = g(z) forx e R" and 0 <t <T.

Proof. We shall only sketch the main step. It suffices to show that the second term of (21) is
a solution of u; — Au = f. We compute

t t
o[ [ Ka-vi-9rwsaas = [ [ LK@= y0- 95 dyas
ot Jo Jrn o Jgn Ot

lim K(x—y,t—s)f(y,s)dyds

s—t Rn

— /t AK(x —y,t —s)f(y,s)dyds+ f(z,1)
0 JR”

~ A (/Ot RnK(m—y,t—s)f(y,s)dyds)
+ f(z,t).



