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Let C be the Cantor set of middle thirds:

C := {x ∈ R : x =
∑
k

ak/3
k, where ak is either 0 or 2}.

The theorem of the title says that any compact metric space is a continuous image of the
Cantor set.

We let IN denote the product of countably infinite product of the unit interval [0, 1].

Lemma 1. If (X, d) is a compact metric space, then X is homeomorphic to a (necessarily
closed) subset of IN.

Proof. We may and do assume that the metric on X is bounded by 1. (Justify this.) Since
X is a compact metric space, there exists a countable dense subset, say {xn : n ∈ N}. We
define F : X → IN by setting

F (x) := (d(x, x1), d(x, x2), . . . , d(x, xn), . . .).

The coordinate functions πn ◦ F : X → [0, 1] are continuous. By the universal mapping
property of the product topology, the function F is continuous. We claim that F is one-
one. Suppose that x, y ∈ X are such that F (x) = F (y). Since {xn} is dense in X, there
exists a sequence (xnk

) such that xnk
→ x as k → ∞. Hence d(xnk

, x) → 0 as k → ∞.
Since F (x) = F (y), it follows that d(x, xn) = d(y, xn) for all n. In particular, d(y, xnk

) =
d(x, xnk

) → 0. Since the limit of a sequence in a metric space is unique, we deduce that
x = y. This establishes our claim. Since X is compact and I∞ is Hausdorff, it follows that
F : X → F (X) is a homeomorphism.

Lemma 2. The unit interval [0, 1] is the continuous image of the Cantor set.

Proof. Easy. Consider the map g : C → [0, 1] given by g(
∑

k ak/3
k) =

∑
k ak/2

k+1.

Lemma 3. The Cantor set C is homeomorphic to
∏

N{0, 2}, the countable product of the two
point space {0, 2} with discrete topology.
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Proof. Consider h(
∑

k ak/3
k) = (a1, a2, . . .).

Lemma 4. The Cantor set is homeomorphic to the countable product of Cantor sets.

Proof. Observe that N can be written as a countable union of (infinitely) countable subsets.
It therefore follows that

∏∞
1 {0, 1} is homeomorphic to the countable product of spaces each of

which is a countable product of two point spaces. The result follows from the last lemma.

Lemma 5. The Hilbert cube I∞ is the continuus image of the cantor set.

Proof. In view of Lemma 4, we may assume that any x ∈ C is of the form (x1, x2, . . .), xi ∈ C.
We define G(x) = (g(x1), . . . , g(xn), . . .), where g is as in the proof of Lemma 2.

Lemma 6. If K is a closed subset of the Cantor set C, then K is the continuous image of
the Cantor set.

Proof. Let the middle-two-thirds set C ′ be the set of real numbers of the form
∑

k bk/6
k where

bk is either 0 or 5. The obvious, as seen in Lemma 3, it is homeomorphic to
∏∞

1 {0, 1}. Hence
the cantor set C and the middle-two-thirds set C ′ are homeomorphic.

The set C ′ has the property that if x, y ∈ C ′, then thier mid point (x+ y)/2 does not lie
in C ′. Now assume that K ′ is a closed subset of C ′. If x′ ∈ C,, then there exists a unique
point kx ∈ K ′ such that d(x′, kx) = d(x′,K ′). The function k : C ′ → K” given by k(x) = kx
is a continuous, onto retraction.

We can now complete the proof of the theorem. Let us assume that the given compact
metric space X is a subset of IN. Let F be a continuous function from the Cantor set C onto
IN. Then F 1(X) is a closed subset of C and it is mapped by F onto X.
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