Maximum Principle Heat Equation

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

1 Maximum Principle for Bounded Domains

Let Ω be a bounded domain. Let $\Omega_T = \Omega \times (0,T)$, for $T \in \mathbb{R}_+$. Then the parabolic boundary $\partial_p \Omega_T$ of Ω_T is defined by

$$
\partial_p \Omega_T := \partial \Omega_T \setminus (\Omega \times \{T\}).
$$

Theorem 1 (Maximum principle for bounded domains). Let $u \in C^{2,1}(\Omega_T) \cap C(\overline{\Omega}0_T)$. Assume that $u_t - \Delta u \leq 0$ in Ω_T . Then

$$
\sup_{\Omega_T} u = \sup_{\partial_p \Omega_T} u. \tag{1}
$$

Proof. Let $\varepsilon > 0$ be arbitrary but fixed. Consider the function

$$
v(x,t) := u(x,t) - \varepsilon t, \qquad (x,t) \in \overline{\Omega}_{T-\varepsilon}.
$$

It satisfies

$$
v_t - \Delta v \le -\varepsilon < 0 \qquad \text{in } \Omega_{T_{\varepsilon}}.\tag{2}
$$

Since v is continuous in $\overline{\Omega}_{T-\varepsilon}$, it achieves its maximum at some $(x_0, t_0) \in \overline{\Omega}_{T_{\varepsilon}}$. If $(x_0, t_0) \notin$ $\partial_p\Omega_{T-\varepsilon}$, by elementary calculus, $(v_t - \Delta v)(x_0, t_0) \geq 0$, contradicting (2). Therefore conclude that $(x_0, t_0) \in \partial_p \Omega_{T_{\varepsilon}}$. For each $\varepsilon \in (0, 1)$, we have

$$
u(x,t) \leq 2\varepsilon T + \sup_{\partial_p \Omega_T} u
$$
, for $(x,t) \in \overline{\Omega}_{T-\varepsilon}$.

Ex. 2. Let $u \in C^{2,1}(\Omega_T) \cap C(\overline{\Omega}0_T)$. Assume that $u_t - \Delta u \geq 0$ in Ω_T . Then

$$
\inf_{\Omega_T} u = \inf_{\partial_p \Omega_T} u. \tag{3}
$$

Corollary 3. Let $u \in C^{2,1}(\Omega_T) \cap C(\overline{\Omega}0_T)$. Assume that $u_t - \Delta u = 0$ in Ω_T . Then

$$
||u||_{\infty,\Omega_T} = ||u||_{\infty,\partial_p\Omega_T}.
$$
\n(4)

Remark 4. Theorem 1 is a weak maximum principle since it does not exclude the possibility of u attaining its supremum at some other points in $\overline{\Omega}_T$. For example, u could be identically constant in Ω_T . A strong maximum principle will assert that this is the only other possibility. Corollary 5 (Uniquenss for bounded domains). There exists at most one solution of the boundary value problem $u \in C^{2,1}(\Omega_T) \times C(\overline{\Omega}_T)$ with $u_t - \Delta u = f$ in Ω_T for $f \in C(\Omega)$ and $u = g$ on $\partial_p \Omega_T$ for $g \in C(\partial_p \Omega_T)$.

Proof. If both u and v are solutions, then $w = u - v$ is a solution of $w_t - \Delta w = 0$ and $w = 0$ on $\partial_p \Omega_T$. Hence $w \equiv 0$ by Theorem 1. \Box

Remark 6. A boundary value problem for the heat equation with data prescribed on the whole boundary $\partial\Omega_T$ is in general not well-posed. For example, consider the domain $R =$ $(0, 1) \times (0, 1)$ and a function $\varphi \in C(\partial R)$ which takes an absolute maximum on the open line segment ${0 < x < 1} \times {t = 1}$, then the problem $u_t - \Delta u = 0$ with the boundary condition $u = \varphi$ on ∂R cannot have a solution for it would violate Theorem 1.

2 Maximum Principle on \mathbb{R}^n

Let $\Omega_T := \mathbb{R}^n \times (0,T)$. A point of Ω_T is denoted by (x,t) . By $C^{2,1}(\Omega_T)$, we mean the collection of functions on Ω_T that are C^2 in the $x \in \mathbb{R}^n$ -variable and C^1 in the t variable.

Theorem 7 (Maximum Principle for $\mathbb{R}^n \times (0,T)$). Let $u \in C^{2,1}(\Omega_T) \cap C(\overline{\Omega}_T)$. Let $u_t - \Delta u \leq 0$ in Ω_T and $u(x,0) = g(x)$ with $g \in C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$. Assume that u satisfies the following growth condition: There exist constants $C, \alpha, r \in (0, \infty)$ such that

$$
u(x,t) \le Ce^{\alpha ||x||^2}, \qquad \text{for } (x,t) \in \Omega_T \text{ and } |x| > r. \tag{5}
$$

Then $\sup_{\Omega_T} u \leq \sup_{\mathbb{R}^n} g$.

Proof. Assume that T is so small that $4\alpha T < 1$. Let $U := B(0, \rho) \times (0, T)$. Consider the function

$$
v := u - \frac{\varepsilon}{[4\pi(T-t)]^{n/2}} e^{|x|^2/4(T-t)}
$$

One easily checks that $v_t - \Delta v \leq 0$ in U. We can therefore apply the maximum principle for bounded domains. Let $\partial_p U$ denote the parabolic boundary of U. We have

$$
v(x, 0) \leq \sup_{\mathbb{R}^n} u(x, 0) = \sup_{\mathbb{R}^n} g(x)
$$

$$
v(x, t)_{|x| = \rho} \leq C e^{\alpha \rho^2} - \varepsilon (4\pi T)^{-n/2} e^{\rho^2/4T}.
$$
 (6)

Since $\alpha < 4T$, it follows that

$$
v \le 0 \quad \text{on } |x| = \rho. \tag{7}
$$

.

Since ε is arbitrary, the result follows from (6) and (7) provided that $4\alpha T < 1$.

If $4\alpha T \geq 1$, subdivide the strip in the t-variable into finitely many strips of width less than $1/4\alpha$. \Box **Theorem 8** (Uniqueness for the Cauchy problem). Let $g \in C(\mathbb{R}^n)$ and $f \in C(\mathbb{R}^n \times [0, T))$. Then there exists at most one solution $u \in C^{2,1}(\mathbb{R}^n \times (0,T) \cap C(\mathbb{R}^n \times (0,T))$ of the Cauchy problem

$$
u_t - \Delta u = f \quad in \ \mathbb{R}^n \times (0, T)
$$

$$
u = g \quad on \ \mathbb{R}^n \times \{t = 0\}
$$

satisfying the growth estimate $|u(x,t)| \leq Ae^{\alpha |x|^2}$ for all x with $|x| > r$ some constants C, α, r .

Proof. If u and v both are solutions of the Cauchy problem, apply the last theorem to the function $w = \pm (u - v)$. \Box

3 Example of Non-uniqueness

Proposition 9. There exist nonidentically zero solutions of the Cauchy problem $u_t - \Delta u = 0$ in $\mathbb{R} \times (0, \infty)$ and $u(x, 0) = 0$.

Proof. For $z \in \mathbb{C}$, let

$$
\varphi(z) := \begin{cases} e^{-1/z^2}, & z \neq 0 \\ 0, & z = 0. \end{cases}
$$

Define

$$
u(x,t) = \begin{cases} \sum_{n=0}^{\infty} \frac{d^n}{dt^n} \varphi(t) \frac{x^{2n}}{(2n)!}, & t > 0\\ 0 & t = 0. \end{cases}
$$
 (8)

We proceed formally.

$$
\lim_{t \to 0} u(x, t) = \sum_{n=0}^{\infty} \frac{d^n}{dt^n} \varphi(0) \frac{x^{2n}}{(2n)!} = 0
$$
\n
$$
\frac{\partial^2 u}{\partial x^2} = \sum_{n=0}^{\infty} \frac{d^n}{dt^n} \varphi(t) 2n(2n-1) \frac{x^{2n}}{(2n)!}
$$
\n
$$
= \sum_{n=1}^{\infty} \frac{d^n}{dt^n} \varphi(t) \frac{x^{2(n-1)}}{(2(n-1))!}
$$
\n
$$
= \sum_{n=0}^{\infty} \frac{d^{n+1}}{dt^{n+1}} \varphi(t) \frac{x^{2n}}{(2n)!}
$$
\n(10)\n
$$
\frac{\partial u}{\partial t}
$$
\n(11)

$$
= \frac{\partial u}{\partial t}.\tag{11}
$$

 \Box

These calculations are rigorous in view of the following lemma.

Lemma 10. The series in $(8 - 10)$ are uniformly convergent on compact subsets of $\mathbb{R} \times \mathbb{R}_+$.

Proof. The function $z \mapsto \varphi(z)$ is holomorphic in $\mathbb{C} \setminus \{0\}$. We identify the t-axis with the real axis of the complex plane. If $t > 0$ is fixed, the circle $\gamma(\theta) := t + \frac{t}{2}$ $\frac{t}{2}e^{i\theta}$ does not meet the origin. By Cauchy integral formula we have

$$
\frac{d^n}{dt^n}\varphi(t) = \frac{n!}{2\pi i} \int_{\gamma} \frac{\varphi(z)}{(z-t)^{n+1}} dz.
$$

It follows from this that

$$
\left|\frac{d^n}{dt^n}\varphi(t)\right| \le \frac{n!}{2\pi} \left(\frac{2}{t}\right)^n \int_0^{2\pi} e^{-\Re(z^{-2})} d\theta.
$$

For z on γ , we have $z^2 = t^2(1 + \frac{1}{2}e^{i\theta})^2$. So,

$$
z^{-2} = t^{-2} \frac{(1 + \frac{1}{4}e^{-2i\theta} + e^{-i\theta})}{|(1 + \frac{1}{2}e^{i\theta})^2|^2}.
$$

From this, we get $\Re(z-2) \ge (2t)^{-2}$, and hence

$$
|\frac{d^n}{dt^n}\varphi(t)| \le n! (\frac{2}{t})^n e^{-1/4t^2}.
$$

Fix $x \in \mathbb{R}$ and $R > 0$. Then for all x with $|x| < R$, using the Stirling's inequality

$$
\frac{2^n (n!)^2}{(2n)!} \le 1,
$$

the series in (8) is seen to be majorized, term by term, by the uniformly convergent series

$$
e^{-1/4t^2} \sum_{n=0}^{\infty} \left(\frac{1}{t}\right)^n \frac{(R^2)^n}{n!} = e^{-1/4t^2} e^{R^2/t}.
$$

 \Box

4 Backward Uniqueness

Theorem 11 (Backward Uniqueness). Assume that u and v are solutions of the Cauchy problem for the heat equation in $U_T = U \times (0,T)$ with the same boundary condition $u = v = 0$ on $\partial U \times [0, T]$. If $u(x,T) = v(x,T)$ for $x \in U$, then $u = v$ on U_T .

Proof. Write $w = u = v$. Let

$$
E(t) := \int_U w^2(x, t) \, dx, \quad t \in [0, T].
$$

By hypothesis $E(T) = 0$ and we may assume that $E(t) > 0$ for $0 \le t < T$. We compute the first derivative of E.

$$
E'(t) = 2 \int_U w w_t dx
$$

=
$$
2 \int_U w \Delta w dx
$$

=
$$
-2 \int_U |\nabla w|^2 dx \le 0.
$$
 (12)

Furthermore, we compute the second derivative of E.

$$
E''(t) = -4 \int_U \sum_{k=1}^n w_{x_k} w_{x_k t} dx
$$

=
$$
4 \int_U \Delta w w_t dx
$$

=
$$
4 \int_U (\Delta w)^2 dx.
$$
 (13)

Now since $w = 0$ on ∂U ,

$$
\int_U |\nabla w|^2 dx = -\int_U w \Delta w dx
$$

$$
\leq \left(\int_U w^2 dx \right)^{1/2} \left(\int_U \Delta w^2 dx \right)^{1/2}.
$$

Thus (12) and (13) imply

$$
(E'(t))^2 = 4\left(\int_U |Dw|^2 dx\right)^2
$$

\n
$$
\leq \left(\int_U w^2 dx\right) \left(4\int_U (\Delta w)^2 dx\right)^{1/2}
$$

\n
$$
= E(t)E''(t).
$$

That is,

$$
E''(t)E(t) \ge (E'(t))^2.
$$
\n(14)

Let $f(t) := \log E(t)$. Then $f''(t) \ge 0$ by (14 and hence is convex on the interval $(0, T)$. Consequently, if $\lambda, t \in (0, 1)$, we have

$$
f(\lambda t) = f((1 - \lambda)0 + \lambda t) \le (1 - \lambda)f(0) + \lambda f(t).
$$

It follows that

$$
E(\lambda t) \le E(0)^{1-\lambda} E(t)^{\lambda}, t \in (0, T),
$$

and so,

$$
E(\lambda T) \le E(0)^{1-\lambda} E(T)^{\lambda}.
$$

Since $E(T) = 0$, this entails in $E(t) = 0$ for $t \in (0, T)$, a contradiction to our assumption. \Box

5 Nonhomogeneous Equation — Duhamel's Principle

Theorem 12 (Duhamel). Let $g \in C(\mathbb{R}^n) \cap L^{\infty}(\mathbb{R}^n)$. Let f be a function on $\mathbb{R}^n \times [0,T]$ such that f is $C^{2,1}$ and f_t , $\partial_j f$ and $\partial_j \partial_k f$ exist, are continuous and bounded on $\mathbb{R}^n \times [0,T]$. Define

$$
u(x,t) := \int_{\mathbb{R}^n} K(x - y, t) g(y) \, dy + \int_0^t \int_{\mathbb{R}^n} K(x - y, t - s) f(y, s) \, dy \, ds. \tag{15}
$$

Then u is bounded, $u \in C^{2,1}(\mathbb{R}^n \times [0,T])$ and is a solution of the initial value problem $u_t-\Delta u =$ f and $u(x, 0) = g(x)$ for $x \in \mathbb{R}^n$ and $0 \le t \le T$.

Proof. We shall only sketch the main step. It suffices to show that the second term of (15) is a solution of $u_t - \Delta u = f$. We compute

$$
\frac{\partial}{\partial t} \int_0^t \int_{\mathbb{R}^n} K(x - y, t - s) f(y, s) \, dy \, ds = \int_0^t \int_{\mathbb{R}^n} \frac{\partial}{\partial t} K(x - y, t - s) f(y, s) \, dy \, ds
$$
\n
$$
\lim_{s \to t} \int_{\mathbb{R}^n} K(x - y, t - s) f(y, s) \, dy \, ds
$$
\n
$$
= \int_0^t \int_{\mathbb{R}^n} \Delta K(x - y, t - s) f(y, s) \, dy \, ds + f(x, t)
$$
\n
$$
= \Delta \left(\int_0^t \int_{\mathbb{R}^n} K(x - y, t - s) f(y, s) \, dy \, ds \right)
$$
\n
$$
+ f(x, t).
$$

