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1 Maximum Principle for Bounded Domains

Let Q be a bounded domain. Let Qp = Q x (0,T), for T' € R4. Then the parabolic boundary
O0pSr of Qr is defined by
8pQT = 8QT \ (Q X {T})

Theorem 1 (Maximum principle for bounded domains). Letu € C*(Qr)NC(Q0r). Assume
that uy — Auw < 0 in Qp. Then

Ssupu = sup u. (1)
Qr BpQr

Proof. Let € > 0 be arbitrary but fixed. Consider the function

v(z,t) :=u(x,t) — et (x,t) € Qr_c.

It satisfies
v —Av < — <0 in Qr.. (2)

Since v is continuous in Qp_., it achieves its maximum at some (x¢,t9) € Q.. If (zo,t0) ¢
OpSdr_¢, by elementary calculus, (v; — Av)(zg,t9) > 0, contradicting (2). Therefore conclude
that (zo,t0) € 9pQz.. For each € € (0,1), we have

u(z,t) < 2eT + sup u, for (z,t) € Qp_..

3,
O
Ex. 2. Let u € C*1(Q7) N C(Q07). Assume that uy — Au > 0 in Qp. Then
ngfu = airslsz u. (3)
Corollary 3. Let u € C*Y(Qr) N C(Q07). Assume that ug — Au =0 in Q. Then
[l = lttllos.0,07 - (4)

Remark 4. Theorem 1 is a weak maximum principle since it does not exclude the possibility
of u attaining its supremum at some other points in Q7. For example, u could be identically
constant in 7. A strong maximum principle will assert that this is the only other possibility.



Corollary 5 (Uniquenss for bounded dom&ins). There exists at most one solution of the
boundary value problem u € C*Y(Qr) x C(Qr) with uy — Au = f in Qp for f € C() and
u=g on 0,Qr for g € C(0,r).

Proof. If both u and v are solutions, then w = u — v is a solution of w; — Aw =0 and w =0
on 0p€dr. Hence w = 0 by Theorem 1. O

Remark 6. A boundary value problem for the heat equation with data prescribed on the
whole boundary 0€)7 is in general not well-posed. For example, consider the domain R =
(0,1) x (0,1) and a function ¢ € C(OR) which takes an absolute maximum on the open line
segment {0 < z < 1} x {t = 1}, then the problem u; — Au = 0 with the boundary condition
u = @ on JR cannot have a solution for it would violate Theorem 1.

2 Maximum Principle on R”

Let Qr := R" x (0,T). A point of Q7 is denoted by (z,t). By C*(Qr), we mean the
collection of functions on Q7 that are C? in the z € R™-variable and C! in the ¢ variable.

Theorem 7 (Maximum Principle for R” x (0, T)). Let u € C*Y(Qr)NC(Qr). Let us—Au < 0
in Qp and u(x,0) = g(x) with g € C(R™) N L>°(R™). Assume that u satisfies the following
growth condition: There exist constants C,a,r € (0,00) such that

u(z,t) < C’eaHmHQ, for (z,t) € Qr and |x| > 7. (5)

Then supg,, u < SUpgn g-

Proof. Assume that T is so small that 4aT < 1. Let U := B(0,p) x (0,7"). Consider the

function
£ |z[?/4(T—1)

(T — )72

One easily checks that vy — Av < 0 in U. We can therefore apply the maximum principle for
bounded domains. Let d,U denote the parabolic boundary of U. We have

Vi=u—

v(z,0) < supu(z,0) =supg(z) (6)
R R

V(T 1) |z=p < Ce®” — 5(47rT)*”/26p2/4T.
Since a < 47T, it follows that
v<0 on|z]=np. (7)
Since ¢ is arbitrary, the result follows from (6) and (7) provided that 4aT < 1.

If 4o > 1, subdivide the strip in the t-variable into finitely many strips of width less
than 1/4c . O



Theorem 8 (Uniqueness for the Cauchy problem). Let g € C(R™) and f € C(R™ x [0,T)).
Then there exists at most one solution u € CHL(R™ x (0,T) N C(R™ x [0,T) of the Cauchy
problem

u—Au = f inR"x(0,T)
u = g onR"x{t=0}

satisfying the growth estimate |u(z,t)| < Ae®®” for all z with |x| > r some constants C, v, r.

Proof. If u and v both are solutions of the Cauchy problem, apply the last theorem to the
function w = +(u — v). O

3 Example of Non-uniqueness

Proposition 9. There exist nonidentically zero solutions of the Cauchy problem u; — Au =0
in R x (0,00) and u(x,0) = 0.

Proof. For z € C, let

eV 240
0, z=0.

Define

%) an x2n
—o gt , t>0
U,(.’L',t) _ {OZTL—O dt 90( )(Zn)! . (8)

We proceed formally.
e dn 2n

limu(z,t) = Z wcp(()) o)l =0 9)

t—0
n=0

d%u = dn x
o~ 2 gDy

> qn 22(n=1)
4o G = )i

n=

e’}
dn+1 x2n

RN oY

n=0

ou
_ v 11
T (11)

These calculations are rigorous in view of the following lemma. O

Lemma 10. The series in (8 - 10) are uniformly convergent on compact subsets of R x R..



Proof. The function z — ¢(z) is holomorphic in C\ {0}.We identify the t-axis with the real
axis of the complex plane. If ¢ > 0 is fixed, the circle v(0) := t + %eie does not meet the

origin. By Cauchy integral formula we have

dr n! ©(2)
ot = — [ —22 gz
am? ) = o L =%

It follows from this that

dtn 27

For z on v, we have 2% = t2(1 + 1¢¥)2. So,

Ll b g )
0+ e

From this, we get R(2—2) > (2t)~2, and hence

z

dan 2 2
Cae] < nl)e

Fix z € R and R > 0. Then for all z with |z| < R, using the Stirling’s inequality

27 (n!)?
o) =T

n | 27 _
0 < G [ e .
0

the series in (8) is seen to be majorized, term by term, by the uniformly convergent series

[e.9]

2\n
o 1/41? Z(})n(R " o 1/482 Rt

t n!

n=0

4 Backward Uniqueness

Theorem 11 (Backward Uniqueness). Assume that u and v are solutions of the Cauchy
problem for the heat equation in Up = U x (0,T) with the same boundary condition u =v =0

on OU x [0,T]. If u(x,T) = v(x,T) for x € U, then u=v on Up.

Proof. Write w = u = v. Let

E(t) := /UwQ(x,t) dx, te]l0,T].

By hypothesis E(T) = 0 and we may assume that E(¢t) > 0 for 0 < ¢ < T. We compute the

first derivative of E.

E'(t) = Q/watdx

= Q/wAwdx
U

= —2/ |Vw|*dz < 0.
U

4

(12)



Furthermore, we compute the second derivative of E.

E'(t) = —4/(]waszktd:v

k=1

= 4/UAwwtdx
= 4/U(Aw)2da:. (13)

Now since w = 0 on 9U,

/]Vw|2d:v = —/wAwdac
U U

1/2 1/2
(/ w? dac) </ Aw? d:):) .
U U
Thus (12) and (13) imply

(B2 = 4</U\Dw\2dx>2
(o) efonre)”

= E@)E"(t).

IN

That is,
E"(t)B(t) > (E'(1))*. (14)

Let f(t) := log E(t). Then f”(t) > 0 by (14 and hence is convex on the interval (0,7).
Consequently, if A\,t € (0,1), we have
F) = fF((1=X)0+At) < (1= X1)f(0) + Af (D).

It follows that
E(X) < E(0)' M E®)Y,t € (0,T),

and so,
E(\T) < E(0)'AE(T)™.

Since E(T') = 0, this entails in E(t) = 0 for ¢ € (0,7"), a contradiction to our assumption. []

5 Nonhomogeneous Equation — Duhamel’s Principle

Theorem 12 (Duhamel). Let g € C(R™) N L>®(R™). Let f be a function on R™ x [0,T] such
that f is C*' and f;, 0;f and 0;0k[ exist, are continuous and bounded on R"™ x [0, T]. Define

u(z,t) := K(x —y,t)g(y) dy+/ K(x —y,t —s)f(y,s)dyds. (15)
Rn 0 JR™

Then u is bounded, u € C*1(R"x[0,T]) and is a solution of the initial value problem u;—Au =
f and u(xz,0) = g(x) forx e R and 0 <t < T.



Proof. We shall only sketch the main step. It suffices to show that the second term of (15) is
a solution of uy — Au = f. We compute

a t t
9 / K(x—y,t—s)f(ys)dyds — / / 9 K(w -yt — 5)f(y,s) dyds

lim [ K(zx—y,t—s)f(y,s)dyds

s—t R™

t
_ / AK(z —y,t — ) f(y,s) dy ds + f(x,t)
0 Rn

~ A (/Ot [ Ka—t- s)f(y,s)dyds)
£ S,



