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1 Maximum Principle for Bounded Domains

Let Ω be a bounded domain. Let ΩT = Ω× (0, T ), for T ∈ R+. Then the parabolic boundary
∂pΩT of ΩT is defined by

∂pΩT := ∂ΩT \ (Ω× {T}).

Theorem 1 (Maximum principle for bounded domains). Let u ∈ C2,1(ΩT )∩C(Ω0T ). Assume
that ut −∆u ≤ 0 in ΩT . Then

sup
ΩT

u = sup
∂pΩT

u. (1)

Proof. Let ε > 0 be arbitrary but fixed. Consider the function

v(x, t) := u(x, t)− εt, (x, t) ∈ ΩT−ε.

It satisfies
vt −∆v ≤ −ε < 0 in ΩTε . (2)

Since v is continuous in ΩT−ε, it achieves its maximum at some (x0, t0) ∈ ΩTε . If (x0, t0) /∈
∂pΩT−ε, by elementary calculus, (vt −∆v)(x0, t0) ≥ 0, contradicting (2). Therefore conclude
that (x0, t0) ∈ ∂pΩTε . For each ε ∈ (0, 1), we have

u(x, t) ≤ 2εT + sup
∂pΩT

u, for (x, t) ∈ ΩT−ε.

Ex. 2. Let u ∈ C2,1(ΩT ) ∩ C(Ω0T ). Assume that ut −∆u ≥ 0 in ΩT . Then

inf
ΩT

u = inf
∂pΩT

u. (3)

Corollary 3. Let u ∈ C2,1(ΩT ) ∩ C(Ω0T ). Assume that ut −∆u = 0 in ΩT . Then

‖u‖∞,ΩT
= ‖u‖∞,∂pΩT

. (4)

Remark 4. Theorem 1 is a weak maximum principle since it does not exclude the possibility
of u attaining its supremum at some other points in ΩT . For example, u could be identically
constant in ΩT . A strong maximum principle will assert that this is the only other possibility.
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Corollary 5 (Uniquenss for bounded domains). There exists at most one solution of the
boundary value problem u ∈ C2,1(ΩT ) × C(ΩT ) with ut − ∆u = f in ΩT for f ∈ C(Ω) and
u = g on ∂pΩT for g ∈ C(∂pΩT ).

Proof. If both u and v are solutions, then w = u− v is a solution of wt −∆w = 0 and w = 0
on ∂pΩT . Hence w ≡ 0 by Theorem 1.

Remark 6. A boundary value problem for the heat equation with data prescribed on the
whole boundary ∂ΩT is in general not well-posed. For example, consider the domain R =
(0, 1)× (0, 1) and a function ϕ ∈ C(∂R) which takes an absolute maximum on the open line
segment {0 < x < 1} × {t = 1}, then the problem ut −∆u = 0 with the boundary condition
u = ϕ on ∂R cannot have a solution for it would violate Theorem 1.

2 Maximum Principle on Rn

Let ΩT := Rn × (0, T ). A point of ΩT is denoted by (x, t). By C2,1(ΩT ), we mean the
collection of functions on ΩT that are C2 in the x ∈ Rn-variable and C1 in the t variable.

Theorem 7 (Maximum Principle for Rn×(0, T )). Let u ∈ C2,1(ΩT )∩C(ΩT ). Let ut−∆u ≤ 0
in ΩT and u(x, 0) = g(x) with g ∈ C(Rn) ∩ L∞(Rn). Assume that u satisfies the following
growth condition: There exist constants C,α, r ∈ (0,∞) such that

u(x, t) ≤ Ceα‖x‖
2

, for (x, t) ∈ ΩT and |x| > r. (5)

Then supΩT
u ≤ supRn g.

Proof. Assume that T is so small that 4αT < 1. Let U := B(0, ρ) × (0, T ). Consider the
function

v := u− ε

[4π(T − t)]n/2
e|x|

2/4(T−t).

One easily checks that vt −∆v ≤ 0 in U . We can therefore apply the maximum principle for
bounded domains. Let ∂pU denote the parabolic boundary of U . We have

v(x, 0) ≤ sup
Rn

u(x, 0) = sup
Rn

g(x) (6)

v(x, t)|x|=ρ ≤ Ceαρ
2 − ε(4πT )−n/2eρ

2/4T .

Since α < 4T , it follows that
v ≤ 0 on |x| = ρ. (7)

Since ε is arbitrary, the result follows from (6) and (7) provided that 4αT < 1.

If 4αT ≥ 1, subdivide the strip in the t-variable into finitely many strips of width less
than 1/4α .
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Theorem 8 (Uniqueness for the Cauchy problem). Let g ∈ C(Rn) and f ∈ C(Rn × [0, T )).
Then there exists at most one solution u ∈ C2,1(Rn × (0, T ) ∩ C(Rn × [0, T ) of the Cauchy
problem

ut −∆u = f in Rn × (0, T )

u = g on Rn × {t = 0}

satisfying the growth estimate |u(x, t)| ≤ Aeα|x|2 for all x with |x| > r some constants C,α, r.

Proof. If u and v both are solutions of the Cauchy problem, apply the last theorem to the
function w = ±(u− v).

3 Example of Non-uniqueness

Proposition 9. There exist nonidentically zero solutions of the Cauchy problem ut−∆u = 0
in R× (0,∞) and u(x, 0) = 0.

Proof. For z ∈ C, let

ϕ(z) :=

{
e−1/z2 , z 6= 0

0, z = 0.

Define

u(x, t) =

{∑∞
n=0

dn

dtnϕ(t) x2n

(2n)! , t > 0

0 t = 0.
(8)

We proceed formally.

lim
t→0

u(x, t) =
∞∑
n=0

dn

dtn
ϕ(0)

x2n

(2n)!
= 0 (9)

∂2u

∂x2
=

∞∑
n=0

dn

dtn
ϕ(t)2n(2n− 1)

x2n

(2n)!

=
∞∑
n=1

dn

dtn
ϕ(t)

x2(n−1)

(2(n− 1))!

=
∞∑
n=0

dn+1

dtn+1
ϕ(t)

x2n

(2n)!
(10)

=
∂u

∂t
. (11)

These calculations are rigorous in view of the following lemma.

Lemma 10. The series in (8 - 10) are uniformly convergent on compact subsets of R×R+.
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Proof. The function z 7→ ϕ(z) is holomorphic in C \ {0}.We identify the t-axis with the real
axis of the complex plane. If t > 0 is fixed, the circle γ(θ) := t + t

2e
iθ does not meet the

origin. By Cauchy integral formula we have

dn

dtn
ϕ(t) =

n!

2πi

∫
γ

ϕ(z)

(z − t)n+1
dz.

It follows from this that

| d
n

dtn
ϕ(t)| ≤ n!

2π
(
2

t
)n
∫ 2π

0
e−<(z−2)dθ.

For z on γ, we have z2 = t2(1 + 1
2e
iθ)2. So,

z−2 = t−2 (1 + 1
4e
−2iθ + e−iθ)

|(1 + 1
2e
iθ)2|2

.

From this, we get <(z−2) ≥ (2t)−2, and hence

| d
n

dtn
ϕ(t)| ≤ n!(

2

t
)ne−1/4t2 .

Fix x ∈ R and R > 0. Then for all x with |x| < R, using the Stirling’s inequality

2n(n!)2

(2n)!
≤ 1,

the series in (8) is seen to be majorized, term by term, by the uniformly convergent series

e−1/4t2
∞∑
n=0

(
1

t
)n

(R2)n

n!
= e−1/4t2eR

2/t.

4 Backward Uniqueness

Theorem 11 (Backward Uniqueness). Assume that u and v are solutions of the Cauchy
problem for the heat equation in UT = U × (0, T ) with the same boundary condition u = v = 0
on ∂U × [0, T ]. If u(x, T ) = v(x, T ) for x ∈ U , then u = v on UT .

Proof. Write w = u = v. Let

E(t) :=

∫
U
w2(x, t) dx, t ∈ [0, T ].

By hypothesis E(T ) = 0 and we may assume that E(t) > 0 for 0 ≤ t < T . We compute the
first derivative of E.

E′(t) = 2

∫
U
wwt dx

= 2

∫
U
w∆w dx

= −2

∫
U
|∇w|2dx ≤ 0. (12)

4



Furthermore, we compute the second derivative of E.

E′′(t) = −4

∫
U

n∑
k=1

wxkwxkt dx

= 4

∫
U

∆wwt dx

= 4

∫
U

(∆w)2 dx. (13)

Now since w = 0 on ∂U ,∫
U
|∇w|2dx = −

∫
U
w∆wdx

≤
(∫

U
w2 dx

)1/2(∫
U

∆w2 dx

)1/2

.

Thus (12) and (13) imply

(E′(t))2 = 4

(∫
U
|Dw|2 dx

)2

≤
(∫

U
w2 dx

)(
4

∫
U

(∆w)2 dx

)1/2

= E(t)E′′(t).

That is,
E′′(t)E(t) ≥ (E′(t))2. (14)

Let f(t) := logE(t). Then f ′′(t) ≥ 0 by (14 and hence is convex on the interval (0, T ).
Consequently, if λ, t ∈ (0, 1), we have

f(λt) = f((1− λ)0 + λt) ≤ (1− λ)f(0) + λf(t).

It follows that
E(λt) ≤ E(0)1−λE(t)λ, t ∈ (0, T ),

and so,
E(λT ) ≤ E(0)1−λE(T )λ.

Since E(T ) = 0, this entails in E(t) = 0 for t ∈ (0, T ), a contradiction to our assumption.

5 Nonhomogeneous Equation — Duhamel’s Principle

Theorem 12 (Duhamel). Let g ∈ C(Rn)∩L∞(Rn). Let f be a function on Rn × [0, T ] such
that f is C2,1 and ft, ∂jf and ∂j∂kf exist, are continuous and bounded on Rn× [0, T ]. Define

u(x, t) :=

∫
Rn

K(x− y, t)g(y) dy +

∫ t

0

∫
Rn

K(x− y, t− s)f(y, s) dy ds. (15)

Then u is bounded, u ∈ C2,1(Rn×[0, T ]) and is a solution of the initial value problem ut−∆u =
f and u(x, 0) = g(x) for x ∈ Rn and 0 ≤ t ≤ T .
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Proof. We shall only sketch the main step. It suffices to show that the second term of (15) is
a solution of ut −∆u = f . We compute

∂

∂t

∫ t

0

∫
Rn

K(x− y, t− s)f(y, s) dy ds =

∫ t

0

∫
Rn

∂

∂t
K(x− y, t− s)f(y, s) dy ds

lim
s→t

∫
Rn

K(x− y, t− s)f(y, s) dy ds

=

∫ t

0

∫
Rn

∆K(x− y, t− s)f(y, s) dy ds+ f(x, t)

= ∆

(∫ t

0

∫
Rn

K(x− y, t− s)f(y, s) dy ds

)
+ f(x, t).
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