A topological Proof of the Infinitute of Primes

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Theorem 1. The set of primes \mathbb{P} is infinite.

Proof. For $a \in \mathbb{Z}$ and $b \in \mathbb{N}$ consider $P_{a,b} := \{a + kb : k \in \mathbb{Z}\}$. We say that $U \subset \mathbb{Z}$ is open if either it is empty or if for each $a \in U$, there exists $b \in \mathbb{N}$ such that $P_{a,b} \subset U$. One checks that this defines a topology on \mathbb{P} . Note that any nonempty open set is infinite.

Each $P_{a,b}$ is open since for each $x \in P_{a,b}$, we have $P_{x,b} = P_{a,b}$.

Each $P_{a,b}$ is closed. For,

$$\begin{array}{lll} x \notin P_{a,b} & \Longleftrightarrow & x \neq a+kb \text{ for any } k \in \mathbb{Z} \\ & \Longleftrightarrow & x-a \text{ is not a multiple of } b \\ & \longleftrightarrow & x-a=i+kb \text{ for some } 1 \leq i \leq b-1 \text{ by Division algorithm.} \end{array}$$

Thus $\mathbb{Z} \setminus P_{a,b} = \bigcup_{i=1}^{n} P_{a+i,b}$, union of open sets. Hence $P_{a,b}$ is closed.

Now, given any $x \neq \pm 1$, there exists a prime p which divides x. Hence x = kp for some $k \in \mathbb{Z}$. Thus, $\mathbb{Z} \setminus \{\pm 1\} = \bigcup_{p \in \mathbb{P}} P_{0,p}$. If \mathbb{P} were finite, then $\mathbb{Z} \setminus \{\pm 1\}$, being a finite union of closed sets would be closed. But then the finite set $\{\pm 1\}$ is open, a contradiction.