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Definition 1. A map f : X → Y is said to be proper if for every compact subset L ⊂ Y , the
inverse image f−1(L) is a compact subset of X.

Example 2. Any continuous map from a compact space to any hausdorff space Y is proper.

Example 3. Let p be a nonconstant polynomial with complex coefficients. A most important
and typical example of a proper map is the function z 7→ p(z). Recall the standard estimate:
There exists R > 0 such that

|p(z)| ≥ |an|
2
|z|n, for |z| ≥ R, where p(z) =

n∑
k=0

akz
k.

Let K be a compact subset of C. Since p is continuous, p−1(K) is closed. If p−1(K) is not
compact, we conclude that p−1(K) is not bounded. (Why? Heine-Borel theorem!) Hence
there exists a sequence zn ∈ p−1(K) such that |zn| → ∞, but p(zn) ∈ K for all n. By the
estimate quoted above, p(zn)→∞. But since p(zn) ∈ K and K is compact, {p(zn) : n ∈ N}
is bounded. This contradiction shows that p is proper.

Ex. 4. The exponential map exp: R→ R or exp: C→ C is not proper.

Lemma 5. Let f : X → Y be a closed map. Assume that f−1(y) is compact for each y ∈ Y .
Then f is proper.

Proof. Let L ⊂ Y be a compact subset. Let {Ui : i ∈ I} is an open cover of K := f−1(L).
For each y ∈ L, by hypothesis, f−1(y) is compact. Hence, there exists a finite set Jy ⊂ I such
that {Ui : i ∈ Jy} is a finite subcover of f−1(y). Let Uy := ∪i∈JyUi. Then Uy is open and so
Ay := X \ Uy is closed in X. Since f is closed, the set Vy := Y \ f(Cy) is open in Y . Note
that f−1(Vy) ⊂ Uy. Since y ∈ Vy, the collection {Vy : y ∈ L} is an open cover of the compact
set L. Hence there exists a finite number of points yj , 1 ≤ j ≤ n such that L ⊂ V1 ∪ · · · ∪ Vn
where Vj := Vyj . But then

f−1(L) ⊂ f−1(V1) ∪ · · · ∪ f−1(Vn)

⊂ U1 ∪ · · · ∪ Un

= ∪{Ui : i ∈ Jyi , 1 ≤ i ≤ n},

a finite subcover.
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Lemma 6. Let X be compact. Then for any topological space Y , the projection πY : X×Y →
Y is closed.

Proof. Let L ⊂ X × Y be closed. We have to show that πY (L) is closed in Y . We show
that its complement is open in Y . Let y ∈ Y but y /∈ πY (L). Note that this means that
(x, y) ∈ L for any x ∈ X. What we plan to do is something similar to the preliminary step,
the so-called tube lemma, in the proof of compactness of X × Y : There exists an open set V
such that y ∈ V and (x, y′) /∈ L for any x ∈ X and y′ ∈ V . From this it follows that such a
V ⊂ Y \ πY (L).

Since L is closed and (x, y) /∈ L, we can find a basic open set Ux × Vx such that (x, y) ∈
Ux × Vx ⊂ (X × Y ) \ L. By the compactness of X, we can find x1, . . . , xn ∈ X such that
Ui := Uxi , 1 ≤ i ≤ n, cover X. Let V := V1 ∩ · · · ∩ Vn, where, as is our standard practice
Vi := Vxi , 1 ≤ i ≤ n. Note that V is an open set containing y. We have

(X × Y ) ∩ L = [(U1 ∪ · · · ∪ Un)× (V1 ∩ · · · ∩ Vn)] = ∅.

Proposition 7. If X is compact, then πY : X × Y → Y is proper.

Proof. Immediate consequence of the last two lemmas.

Theorem 8. If X and Y are compact, then X × Y is compact.

Proof. By the last proposition, the projection πY is proper and hence X × Y = π−1Y (Y ) is
compact.

The next theorem is the philosophical reason for the introduction of proper maps. Loosely
speaking, a continuous map is proper iff it maps points near to infinity to points near to
infinity. Compare and contrast the non-constant polynomial maps and the exponential maps.

We have a characterization of proper maps between locally compact hausdorff spaces in
terms of their one-point compactifications.

Given a locally compact noncompact hausdorff space X, let X∞ := X ∪ {∞} where
∞ /∈ X. Let T denote the topology on X. Consider

T∞ := T ∪ {V ⊂ X∞ : X∞ \ V is compact}.

Then
(i) T∞ is a hausdorff topology on X∞.
(ii) The subspace topology on X is T .
(iii) (X∞, T∞) is compact.
(iv) X is dense in X∞.

Theorem 9. Let X and Y be locally compact hausdorff spaces. Then a continuous map
f : X → Y is proper iff it extends to a continuous map of X∞ to Y∞ with f(∞X) =∞Y .
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Proof. Let f be proper. Extend f as above. Then we need to check its continuity. Let V
be open in Y . The f−1(V ) is an open subset of X and hence of X∞. If V 3 ∞Y , then
L := Y∞ \ V is a compact subset of Y and hence f−1(L) is a compact subset of X, since f is
proper. Since X is hausdorff, f−1(L) is closed. Hence X \ f−1(L) is open. But it is nothing
but f−1(V ).

Let f , the extension as in the statement, be continuous. Then f−1(Y ) = X, since
f(∞X) = ∞Y . If L ⊂ Y is compact, then L is closed in Y and hence in Y∞. So f−1(L) is
closed in X∞. Since X∞ is compact, f−1(L) is compact. It is clearly a subset of X. Hence f
is proper.

Proposition 10. Let f : X → Y be a proper map (i) either between two locally compact
hausdorff spaces or (ii) between two metric spaces. Then f is closed.

Proof. Assume Case (i). Let g denote the extension of f to X∞. If F is closed in Y , then
F∞ := F ∪ {∞X} is closed in X∞ and hence is compact. Hence g(F∞) is compact in Y∞
and hence is closed, since Y∞ is hausdorff. But then f(F ) = g(F∞) ∩ Y is closed in Y . This
proves the result in the first case.

We can also prove this directly without recourse to the one-point compactifcations as
follows. Let C be closed in X. Let q ∈ Y be a limit point of f(C). Let V be an open set
such that q ∈ V and L := V is compact. (This is possible since Y is locally compact and
hausdorff.) Consider K := f−1(L). Then K is closed, since f is proper. As K∩C is compact,
we have f(K ∩ C) = L ∩ f(C) (verify!) is compact and hence closed since Y is hausdorff.
Since q ∈ f(C), and V is an open neighbourhood of q, we see that

q ∈ L ∩ f(C) = L ∩ f(C) = f(K ∩ C) ⊂ f(C).

This shows that any limit point q of f(C) lies in f(C) and hence f(C) is closed.

Assume that X and Y are metric spaces. Let C ⊂ X be closed. Let w be a limit point of
f(C). Then there exists a sequence wn ∈ f(C) such that wn → w. Since wn ∈ f(C), there
exists zn ∈ C such that wn = f(zn). Now the subset L := {wn : n ∈ N} ∪ {w} is a compact
subset of Y . Since f is proper, its inverse image K := f−1(L) is compact. By our choice,
(zn) is a sequence in the compact set K and hence has a convergent subsequence, say, (znk

)
converging to z ∈ K. Since C is closed, we conclude that z ∈ C. By continuity of f at z, we
see that f(znk

) → f(z). Since f(zn) → w, it follows that f(z) = w. Hence we have shown
that w ∈ f(C), that is, f(C) is closed.
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