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Definition 1. A map f: X — Y is said to be proper if for every compact subset L C Y, the
inverse image f~!(L) is a compact subset of X.

Example 2. Any continuous map from a compact space to any hausdorff space Y is proper.

Example 3. Let p be a nonconstant polynomial with complex coefficients. A most important
and typical example of a proper map is the function z — p(z). Recall the standard estimate:
There exists R > 0 such that

|an|

n
Ip(2)| > TM", for |z| > R, where p(z) = Zakzk.
k=0

Let K be a compact subset of C. Since p is continuous, p~1(K) is closed. If p~1(K) is not
compact, we conclude that p~!(K) is not bounded. (Why? Heine-Borel theorem!) Hence
there exists a sequence 2z, € p~'(K) such that |z,| — oo, but p(z,) € K for all n. By the
estimate quoted above, p(z,) — co. But since p(z,) € K and K is compact, {p(z,) : n € N}
is bounded. This contradiction shows that p is proper.

Ex. 4. The exponential map exp: R — R or exp: C — C is not proper.

Lemma 5. Let f: X — Y be a closed map. Assume that f~'(y) is compact for each y € Y.
Then f is proper.

Proof. Let L C Y be a compact subset. Let {U; : i € I} is an open cover of K := f~*(L).
For each y € L, by hypothesis, f~!(y) is compact. Hence, there exists a finite set Jy C I such
that {U; : i € J,} is a finite subcover of f~'(y). Let Uy := U, U;. Then Uy is open and so
Ay = X\ Uy is closed in X. Since f is closed, the set V,, := Y \ f(Cy) is open in Y. Note
that f_l(Vy) C Uy. Since y € V,;, the collection {V}, : y € L} is an open cover of the compact
set L. Hence there exists a finite number of points y;, 1 < j <nsuch that LC V3 U---UV,
where Vj :=V,.. But then

ST V) U U (V)
c Uhu---uU,
= U{U;:i€e Jy,1 <i<n},
a finite subcover. O



Lemma 6. Let X be compact. Then for any topological space Y, the projection my: X XY —
Y is closed.

Proof. Let L C X x Y be closed. We have to show that 7y (L) is closed in Y. We show
that its complement is open in Y. Let y € Y but y ¢ my(L). Note that this means that
(z,y) € L for any = € X. What we plan to do is something similar to the preliminary step,
the so-called tube lemma, in the proof of compactness of X x Y: There exists an open set V'
such that y € V and (z,vy') ¢ L for any z € X and y' € V. From this it follows that such a
VY \ny(L).

Since L is closed and (z,y) ¢ L, we can find a basic open set U, x V, such that (z,y) €
Uz XV, C (X xY)\ L. By the compactness of X, we can find z1,...,z, € X such that
Ui :=Ug;, 1 <i<n,cover X. Let V:=V;Nn---NV,, where, as is our standard practice
Vi =V, 1 <7 <n. Note that V is an open set containing y. We have

(X xY)NL=[UhU---UU,) x (Vin---NV,)] =0.

Proposition 7. If X is compact, then my: X XY — Y is proper.

Proof. Immediate consequence of the last two lemmas. O

Theorem 8. If X and Y are compact, then X XY is compact.
Proof. By the last proposition, the projection 7y is proper and hence X x Y = ﬂ;l(Y) is
compact. 0

The next theorem is the philosophical reason for the introduction of proper maps. Loosely
speaking, a continuous map is proper iff it maps points near to infinity to points near to
infinity. Compare and contrast the non-constant polynomial maps and the exponential maps.

We have a characterization of proper maps between locally compact hausdorff spaces in
terms of their one-point compactifications.

Given a locally compact noncompact hausdorff space X, let Xo, := X U {oco} where
oo ¢ X. Let T denote the topology on X. Consider

Too =T U{V C X : Xoo \ V' is compact}.

Then
(i) T is a hausdorff topology on Xn.
(ii) The subspace topology on X is T.
(iii) (X0, Too) is compact.
(iv) X is dense in X.

Theorem 9. Let X and Y be locally compact hausdorff spaces. Then a continuous map
f: X =Y is proper iff it extends to a continuous map of Xoo to Yoo with f(cox) = ooy



Proof. Let f be proper. Extend f as above. Then we need to check its continuity. Let V
be open in Y. The f~'(V) is an open subset of X and hence of X. If V 3 ooy, then
L =Y, \V is a compact subset of Y and hence f~!(L) is a compact subset of X, since f is
proper. Since X is hausdorff, f~!(L) is closed. Hence X \ f~!(L) is open. But it is nothing

but f~H(V).

Let f, the extension as in the statement, be continuous. Then f~1(Y) = X, since
f(oox) = ooy. If L CY is compact, then L is closed in Y and hence in Y. So f~1(L) is
closed in Xo. Since X, is compact, f~1(L) is compact. It is clearly a subset of X. Hence f
is proper. ]

Proposition 10. Let f: X — Y be a proper map (i) either between two locally compact
hausdorff spaces or (ii) between two metric spaces. Then f is closed.

Proof. Assume Case (i). Let g denote the extension of f to X. If F'is closed in Y, then
Fy = FU{oox} is closed in X and hence is compact. Hence g(F) is compact in Y5,
and hence is closed, since Y is hausdorff. But then f(F) = ¢g(Fs) NY is closed in Y. This
proves the result in the first case.

We can also prove this directly without recourse to the one-point compactifcations as
follows. Let C be closed in X. Let ¢ € Y be a limit point of f(C). Let V be an open set
such that ¢ € V and L := V is compact. (This is possible since Y is locally compact and
hausdorff.) Consider K := f~!(L). Then K is closed, since f is proper. As KNC is compact,
we have f(K NC) = LN f(C) (verify!) is compact and hence closed since Y is hausdorff.

Since g € f(C), and V is an open neighbourhood of ¢, we see that
ge LN f(C)=LNf(C)=fEKNC)C f(O).

This shows that any limit point ¢ of f(C) lies in f(C') and hence f(C) is closed.

Assume that X and Y are metric spaces. Let C' C X be closed. Let w be a limit point of
f(C). Then there exists a sequence w, € f(C) such that w, — w. Since w,, € f(C), there
exists z, € C such that w, = f(z,). Now the subset L := {w,, : n € N} U {w} is a compact
subset of Y. Since f is proper, its inverse image K := f~!(L) is compact. By our choice,
(zn) is a sequence in the compact set K and hence has a convergent subsequence, say, (zy, )
converging to z € K. Since C' is closed, we conclude that z € C'. By continuity of f at z, we
see that f(z,,) — f(2). Since f(z,) — w, it follows that f(z) = w. Hence we have shown
that w € f(C), that is, f(C) is closed. O



