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The aim of this article is to classify the homotopy classes of maps from a circle to the
punctured plane C* := C\ {0}. Such a classification can be obtained from the knowledge
of the fundamental group 71(S1) of the circle. Our approach will be more analytic and will
yield an alternative proof of the isomorphism 7 (S?) ~ Z.

Definition 1. Let f and g be continuous functions from a space X to Y. Then f and g are
homotopic iff there is a continuous function H: I x X — Y such that H(0,z) = f(x) and
H(l,z) = g(x) for all x € X. H is called a homotopy from f to g. Thus a homotopy enables
one to pass continuously from one map to another.

Let X be a topological space. We consider maps from X into C*. Such functions form a
group under pointwise multiplication.

Definition 2. A map f: X — C* is an exponential if f = exp(g) = €9 for some continuous
map g: X — C.

Ex. 3. The exponential maps form a subgroup of the group of maps from X to C*.

Theorem 4. It is impossible to make a continuous choice 0(z) € arg(z) on C*. That is,
there is no continuous map 0: C* — R such that z = |z| exp(0(z)) for z € C*.

Proof. Assuming such a 6 exists, consider f: [0,27] — R by setting f(t) := [0(e®)+0(e~ )] /27.
Then f is a real valued continuous function on [0,27]. Then 27 f(t) is a choice of arg (ete =)
and hence of arg (1). Thus it is integer valued continuous function on the interval [0, 27]. By
intermediate value theorem, it is a constant. In particular, f(0) = f(m). This implies that
[0(1) +60(1)]/2m = [#(—1) + 6(—1)]/27. Or, 6(1) = 6(—1), which is impossible as the arg (1)
and arg (—1) are disjoint. O

However, the following lemma says that it is possible to assign the argument of a complex
number in a continuous fashion if we restrict ourselves to C minus {z € C: Rez < 0}, or the
complex plane minus any closed half line starting from the origin.

Lemma 5. There exists a continuous map
a: X :=C\{z€C:2zeR & 2<0} = (—m,m)

such that z = |z]e**) for all z € X.



Proof. Let us define the following open half-planes whose union is X: H; := {z € C: Rez >
0}, Hy:=={2€ C:Imz > 0} and Hs := {z € C:Imz < 0}. We define o; on H; which glue
together to give the required map.

Let z € H;. Then Rez = |z|cosf for some 6 € [—m, 7| and hence cos@ > 0. This
means that 6 € (—7/2,7/2). sin is increasing on (—7n/2,7/2) so that we have the continuous
inverse sin~!: (—1,1) — (—7/2,7/2). We define ai(z) := sin_l(I?Z‘f). We can similarly
define ao: Hy — (0,7) and as: Hs — (—m,0) by

as(z) = cos_l(ltlz)
as(z) = cos_l(lT;Z).

One easily sees that they agree upon their common domains. Thus we get the required
function a. O

Every continuous function f from X to positive reals is an exponential. In this case f = €9
where g := log f. More generally we have

Lemma 6. Suppose f: X — C* is a map that omits the negative real axis (that is, f(X)N
(—00,0] =0). Then f is an exponential.

Proof. We use the previous lemma. Recall that the principal logarithm Log is defined on the
given open subset of C by Log z = |z|e?, where § € (—m, 7). Thus Log depends continuously
on z. If we set g(z) := Log f, then we have f = e9. O

The following result is related to Rouche’s theorem in Complex Analysis.

Theorem 7. Let f and g be functions from X to C satisfying

[f(z) —g@)] <|f(@)| +g(x)],  zeX (1)

Then f/g and g/f are exponential. In particular f is an exponential iff g is.

Proof. Observe that the strict inequality in Eq. 1 implies that neither f nor g can vanish on
X. Dividing Eq. 1 by f(z) we obtain

1= g@)/f(@)] < 1+ |g(@)/f@)], weX.

It follows that g/f cannot assume negative real values, for, then the RHS will equal the LHS.
Hence by Lemma 6, g/ f is an exponential. As Eq. 1 is symmetric in f and g this means that
f/g is also an exponential. The last statement is a consequence of the fact that the product
of exponentials is an exponential. O

Theorem 8. Let X be a compact metric space and f,g: X — C*. Then f and g are homo-
topic iff f/g is an exponential.



Proof. Suppose that f/g is an exponential, say, f/g = €. Then F(t,z) := g(z)e*®) defines
a homotopy from f to g.

Conversely, suppose that f and g are homotopic. Let F' be a homotopy from f to g.
Since [0,1] x X is compact, the continuous positive function |F| attains its minimum. The
minimum m := inf{|F(¢t,z| : t € [0,1],2 € X} is positive. F' is uniformly continuous on the
compact metric space I X X. Thus, for € := m there exists a d > 0 such that

|s —t| <d = |F(s,z) — F(t,z)| < m, Vo e X. (2)

We now choose an integer N > 1/6 and consider the maps f;: X — C*, defined by f;(x) :=
F(j/N,x). Now fo = f and fy = g. We see from Eq. 2 that

[fi(@) = fia(o) <m < [f;(z)], zeX,1<j<N.
By Thm. 7, each f;/f;j—1 is an exponential. As f/g = (fo/f1)(f1/f2) - (fn=1/fn), we see
that f/g is an exponential. O

Corollary 9. Let X be a compact metric space and f: X — C*. Then f is an exponential
iff f is homotopic to a constant map. O

Definition 10. A space is said to be contractible if there is a homotopy between the identity
map and a constant map.

Ex. 11. Any convex subset of R™ is contractible.
Corollary 12. Let X be a compact contractible metric space. Then every map f from X to

C* is an exponential.

Proof. Let F: [0,1] x X — X be the homotopy of the identity map of X and a constant
map xg. Then f o F is a homotopy of f to the constant map f(zg). By Cor. 9, f is an
exponential. O

Now we restrict our attention to maps of S! to C*. We wish to assign to any such map
an index that corresponds to the number of times the functions wraps around the origin.

Definition 13. Let f: S — C* be a map. Consider the map 6 — f(e*) of [0,27] into C*.
Since the interval is contractible, by Corollary 12,

F(e) = 99 for some g: [0,27] — C*. (3)

Let g1: [0,2n] — C* be another map which satisfies Eq. 3. Then e9®)-91() — 1 Hence
9(0) — g1(6) must assume values from the discrete set 2miZ. Since g — g1 is continuous, it
follows that g — g; is a constant. Thus the number g(27) — ¢(0) is independent of the choice
of g satisfying Eq. 3. Consequently the number

ind (f) := [g(27) — g(0)]/2mi
is well defined. This integer is called the index of the map f.

Ex. 14. Let f,(z) = 2" for n € Z. Then ind (f) = n.



Theorem 15. The index function, defined on the maps from S' to C* has the following
properties:

(1) ind (fg) = ind (f) + ind (g).

(i) ind (f) = 0 iff f is an exponential.

(iii) ind (/| f]) = ind (f).

(iv) If f: S — St is a map such that f(1) = 1, then ind (f) coincides with that of the loop
a defined by a(s) = f(e2™), 0< s < 1.

Proof. (i) is easy and left to the reader.

Suppose f(e) = ") If we set g(t) = h(e') then g satisfies Eq. 3. Since g(27) = ¢(0),
ind (f) = 0. Conversely, assume that ind (f) = 0. Write f(e”) = €9() for 0 < t < 27. Then
g(0) = g(2m) so that the function h: S — C defined by setting h(e') = g(t), 0 < t < 2, is
well defined and continuous. Since f = " f is an exponential. This proves (ii).

Since |f] is an exponential, ind (| f|) = 0 by (ii). By (i), ind (f) = ind (f/|f]) + ind (| f]).
(iii) follows.

Let f and « be as in (iv). Choose h: [0,1] — R such that h(0) and a(s) = > for
0 < s < 1. Thus h is a lift of @ and hence index ind (a) = h(1). Define g: [0,27] — C by
g(t) := 2mih(t/2m). Then g satisfies Eq. 3 so that

ind (f) = [9(2) - g(0)]/2mi = (1) = ind (a).
This proves (iv). O

Theorem 16. Let f,g: S' — C* be maps. Then the following are equivalent:
(i) f is homotopic to g.
(i1) ind (f) = ind (g).

(iii) f/g is an exponential.

Proof. The equivalence of (i ) and (iii) is a special case of Thm. 8.

If f/g is an exponential, then by (ii) of Thm. 15, ind (f/g) = 0. Write f = g-(f/g). By (i)
of Thm. 15, we obtain ind (f) = ind (f/g) +ind (¢) = ind (g). Conversely, if ind (f) = ind (g),
then ind (f/g) = 0. So, by (ii) of Thm. 15, f/g is an exponential. O

Corollary 17. Each map f: S' — C* is homotopic to precisely one of the maps fy,: z — 2"
where n = ind (f). O

Corollary 18. We have 71 (S, 1) = Z.

Proof. Since the maps 2" are not homotopic, the loops a,,: [0,1] — S! defined by o, (t) =
e?™mt cannot be homotopic with end points fixed. On the other hand, let a: [0,1] — S*
be an arbitrary loop based at 1. Define f: S1 — S by f(e?™*) = a(s). Let n := ind (f).
By Thm. 16, f/a, is an exponential, say, f(e2™)/e2mns = ¢Me™) for 0 < s < 1. Then
F(t,s) := eth(e™) g2mins for 0 < st < 11is a homotopy from «,, and the loop « with end
points fixed. Thus the correspondence ¢: [ay,] — n is a bijection between 7 (S!,1) and Z.
One easily checks that the product path a;,a;, corresponds to a map from S to itself of index
m + n, so that a,«, is homotopic to anyn. Thus ¢ is a group homomorphism. O



Theorem 19 (Fundamental Theorem of Algebra). A polynomial p(z) = 2" + an_12"" 1 +
-o- 4 a1z + ag of degree n > 1 and with complex coefficients has a zero in C.

Proof. Choose R so large that

an—1 p_ ai

ap
R Rnfl + ﬁ| < 1, |U}‘ S 1.

This can be done, if, for instance, we take R > |ap—1]| + --- + |ap| + 1. Define a map
g: B[0,1] — C by setting

. pn—-1 p_1 ao
R R

lw| < 1.

The estimate above shows that |g(w) —w™| < 1 for w = 1. By Thm. 7, the restriction of w"/g
to the unit circle is an exponential. Now w™ is not an exponential since its index is n > 1
(Theorem 15). Hence g = w™ - (g/w™) is not an exponential. Corollary 12 shows that g must
have a zero on B[0, 1], and hence p has a zero in C. O

We now apply some of our earlier results to arrive at some standard theorems of the
topology of the plane.
Corollary 20. Assume that f: S' — S is homotopic to a constant map. Then there is a
continuous function ¢: S* — R such that f(z) = ) for all z € S*.
Proof. A special case of Corollary 9. O
Theorem 21. The circle S* is not contractible.
Proof. If it were, then by Corollary 20 there is a function ¢: S! — R such that Id(z) =

z = (@) for all € S'. Thus, there is a continuous argument on S and hence on C*,
contradicting Theorem 4.

Or, more directly, such a ¢ is 1-1 and in particular ¢(z) # ¢(—z). Define g: St — {£1}
by

o p(x) — p(—x)
p(x) = e(=x)|

Then g maps S! continuously onto {£1}. This contradicts the connectedness of S?. O

g(z

Definition 22. A subset A of a space X is a retract of X if there is a continuous function
r: X — A such that r(a) = a for all @ € A. r is called a retraction of X onto A.

Corollary 23. There is no retraction of R? onto S'.

Proof. Let r: R? — S! be retraction. Let p = (0,0). Define a homotopy H: I x S — R?
by H(t,x) = tp+ (1 —t)x. Then ro H: I x S! — S' is a contraction — contradicting
Thm. 21. O

Corollary 24 (Brouwer Fixed Point Theorem). Let f: B[0,1] — B[0,1] be a continuous
map. Then f has a fized point, i.e., there is an x € B0,1] such that f(z) = x.



Proof. If there is no point x such that f(x) = z, then the two distinct points f(z) and x
determine a line joining f(x) and x. We let g(x) be the point on the boundary at which the
line starting from f(x) and going to x meets S'. Then g is a retraction of B[0, 1] onto S'—a

contradiction to Corollary 23. In analytical terms, we have g(z) = x +tv, where v = %
and ¢ == () + /1= | 2]|* + (@, 0))" =

We end this article with some exercises.

Ex. 25. Let X be compact and f: X — C* be an exponential. Show that there exists € > 0
such that any map g: X — C* which satisfies |f(z) — g(z)| < € is an exponential.

Ex. 26. Let X be locally compact hausdorff space. Show that two maps f and g from X to
C* are homotopic iff f/g is an exponential. Hint: Consider first the case when X is compact.

Ex. 27. Let X be a locally compact contractible metric space. Show that any map f: X —
C* is an exponential.

Ex. 28. Let f: S' — C* be given. Show that there exists a ¢ > 0 such that any map
g: St — C* with |f(2) — g(2)| < e for z € S! has the same index as f.

Ex. 29. Assume that f,g: S' — S' be maps such that f and g do not assume antipodal
values at any point of S'. Show that ind (f) = ind (g).

Ex. 30. Show that any map from S™ (n > 2) to C* is an exponential.

Ex. 31. Show that any map from P"(R) (n > 2) to C* is an exponential. (Note that P" is
not simply connected. Can you explain what is happening here?)

Ex. 32. Classify the maps from the figure eight to C*.



