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The aim of this article is to classify the homotopy classes of maps from a circle to the
punctured plane C∗ := C \ {0}. Such a classification can be obtained from the knowledge
of the fundamental group π1(S

1) of the circle. Our approach will be more analytic and will
yield an alternative proof of the isomorphism π1(S

1) ' Z.

Definition 1. Let f and g be continuous functions from a space X to Y . Then f and g are
homotopic iff there is a continuous function H : I × X → Y such that H(0, x) = f(x) and
H(1, x) = g(x) for all x ∈ X. H is called a homotopy from f to g. Thus a homotopy enables
one to pass continuously from one map to another.

Let X be a topological space. We consider maps from X into C∗. Such functions form a
group under pointwise multiplication.

Definition 2. A map f : X → C∗ is an exponential if f = exp(g) = eg for some continuous
map g : X → C.

Ex. 3. The exponential maps form a subgroup of the group of maps from X to C∗.

Theorem 4. It is impossible to make a continuous choice θ(z) ∈ arg (z) on C∗. That is,
there is no continuous map θ : C∗ → R such that z = |z| exp(θ(z)) for z ∈ C∗.

Proof. Assuming such a θ exists, consider f : [0, 2π]→ R by setting f(t) := [θ(eit)+θ(e−it)]/2π.
Then f is a real valued continuous function on [0, 2π]. Then 2πf(t) is a choice of arg (eite−it)
and hence of arg (1). Thus it is integer valued continuous function on the interval [0, 2π]. By
intermediate value theorem, it is a constant. In particular, f(0) = f(π). This implies that
[θ(1) + θ(1)]/2π = [θ(−1) + θ(−1)]/2π. Or, θ(1) = θ(−1), which is impossible as the arg (1)
and arg (−1) are disjoint.

However, the following lemma says that it is possible to assign the argument of a complex
number in a continuous fashion if we restrict ourselves to C minus {z ∈ C : Re z ≤ 0}, or the
complex plane minus any closed half line starting from the origin.

Lemma 5. There exists a continuous map

α : X := C \ {z ∈ C : z ∈ R & z ≤ 0} → (−π, π)

such that z = |z|eiα(z) for all z ∈ X.
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Proof. Let us define the following open half-planes whose union is X: H1 := {z ∈ C : Re z >
0}, H2 := {z ∈ C : Im z > 0} and H3 := {z ∈ C : Im z < 0}. We define αi on Hi which glue
together to give the required map.

Let z ∈ H1. Then Re z = |z| cos θ for some θ ∈ [−π, π] and hence cos θ > 0. This
means that θ ∈ (−π/2, π/2). sin is increasing on (−π/2, π/2) so that we have the continuous
inverse sin−1 : (−1, 1) → (−π/2, π/2). We define α1(z) := sin−1( Im z

|z| ). We can similarly

define α2 : H2 → (0, π) and α3 : H3 → (−π, 0) by

α2(z) = cos−1(
Re z

|z|
)

α3(z) = cos−1(
Re z

|z|
).

One easily sees that they agree upon their common domains. Thus we get the required
function α.

Every continuous function f from X to positive reals is an exponential. In this case f = eg

where g := log f . More generally we have

Lemma 6. Suppose f : X → C∗ is a map that omits the negative real axis (that is, f(X) ∩
(−∞, 0] = ∅). Then f is an exponential.

Proof. We use the previous lemma. Recall that the principal logarithm Log is defined on the
given open subset of C by Log z = |z|eiθ, where θ ∈ (−π, π). Thus Log depends continuously
on z. If we set g(z) := Log f , then we have f = eg.

The following result is related to Rouche’s theorem in Complex Analysis.

Theorem 7. Let f and g be functions from X to C satisfying

|f(x)− g(x)| < |f(x)|+ |g(x)|, x ∈ X. (1)

Then f/g and g/f are exponential. In particular f is an exponential iff g is.

Proof. Observe that the strict inequality in Eq. 1 implies that neither f nor g can vanish on
X. Dividing Eq. 1 by f(x) we obtain

|1− g(x)/f(x)| < 1 + |g(x)/f(x)|, x ∈ X.

It follows that g/f cannot assume negative real values, for, then the RHS will equal the LHS.
Hence by Lemma 6, g/f is an exponential. As Eq. 1 is symmetric in f and g this means that
f/g is also an exponential. The last statement is a consequence of the fact that the product
of exponentials is an exponential.

Theorem 8. Let X be a compact metric space and f, g : X → C∗. Then f and g are homo-
topic iff f/g is an exponential.
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Proof. Suppose that f/g is an exponential, say, f/g = eh. Then F (t, x) := g(x)eth(x) defines
a homotopy from f to g.

Conversely, suppose that f and g are homotopic. Let F be a homotopy from f to g.
Since [0, 1] × X is compact, the continuous positive function |F | attains its minimum. The
minimum m := inf{|F (t, x| : t ∈ [0, 1], x ∈ X} is positive. F is uniformly continuous on the
compact metric space I ×X. Thus, for ε := m there exists a δ > 0 such that

|s− t| < δ =⇒ |F (s, x)− F (t, x)| < m, ∀x ∈ X. (2)

We now choose an integer N > 1/δ and consider the maps fj : X → C∗, defined by fj(x) :=
F (j/N, x). Now f0 = f and fN = g. We see from Eq. 2 that

|fj(x)− fj−1(x)| < m ≤ |fj(x)|, x ∈ X, 1 ≤ j ≤ N.

By Thm. 7, each fj/fj−1 is an exponential. As f/g = (f0/f1)(f1/f2) · · · (fN−1/fN ), we see
that f/g is an exponential.

Corollary 9. Let X be a compact metric space and f : X → C∗. Then f is an exponential
iff f is homotopic to a constant map.

Definition 10. A space is said to be contractible if there is a homotopy between the identity
map and a constant map.

Ex. 11. Any convex subset of Rn is contractible.

Corollary 12. Let X be a compact contractible metric space. Then every map f from X to
C∗ is an exponential.

Proof. Let F : [0, 1] × X → X be the homotopy of the identity map of X and a constant
map x0. Then f ◦ F is a homotopy of f to the constant map f(x0). By Cor. 9, f is an
exponential.

Now we restrict our attention to maps of S1 to C∗. We wish to assign to any such map
an index that corresponds to the number of times the functions wraps around the origin.

Definition 13. Let f : S1 → C∗ be a map. Consider the map θ 7→ f(eiθ) of [0, 2π] into C∗.
Since the interval is contractible, by Corollary 12,

f(eiθ) = eg(θ) for some g : [0, 2π]→ C∗. (3)

Let g1 : [0, 2π] → C∗ be another map which satisfies Eq. 3. Then eg(θ)−g1(θ) = 1. Hence
g(θ) − g1(θ) must assume values from the discrete set 2πiZ. Since g − g1 is continuous, it
follows that g − g1 is a constant. Thus the number g(2π)− g(0) is independent of the choice
of g satisfying Eq. 3. Consequently the number

ind (f) := [g(2π)− g(0)]/2πi

is well defined. This integer is called the index of the map f .

Ex. 14. Let fn(z) = zn for n ∈ Z. Then ind (f) = n.
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Theorem 15. The index function, defined on the maps from S1 to C∗ has the following
properties:

(i) ind (fg) = ind (f) + ind (g).
(ii) ind (f) = 0 iff f is an exponential.
(iii) ind (f/|f |) = ind (f).
(iv) If f : S1 → S1 is a map such that f(1) = 1, then ind (f) coincides with that of the loop

α defined by α(s) = f(e2πis), 0 ≤ s ≤ 1.

Proof. (i) is easy and left to the reader.

Suppose f(eiθ) = eh(e
iθ). If we set g(t) = h(eit) then g satisfies Eq. 3. Since g(2π) = g(0),

ind (f) = 0. Conversely, assume that ind (f) = 0. Write f(eit) = eig(t) for 0 ≤ t ≤ 2π. Then
g(0) = g(2π) so that the function h : S1 → C defined by setting h(eit) = g(t), 0 ≤ t ≤ 2π, is
well defined and continuous. Since f = eh f is an exponential. This proves (ii).

Since |f | is an exponential, ind (|f |) = 0 by (ii). By (i), ind (f) = ind (f/|f |) + ind (|f |).
(iii) follows.

Let f and α be as in (iv). Choose h : [0, 1] → R such that h(0) and α(s) = e2πih(s), for
0 ≤ s ≤ 1. Thus h is a lift of α and hence index ind (α) = h(1). Define g : [0, 2π] → C by
g(t) := 2πih(t/2π). Then g satisfies Eq. 3 so that

ind (f) = [g(2π)− g(0)]/2πi = h(1) = ind (α).

This proves (iv).

Theorem 16. Let f, g : S1 → C∗ be maps. Then the following are equivalent:
(i) f is homotopic to g.
(ii) ind (f) = ind (g).
(iii) f/g is an exponential.

Proof. The equivalence of (i ) and (iii) is a special case of Thm. 8.

If f/g is an exponential, then by (ii) of Thm. 15, ind (f/g) = 0. Write f = g ·(f/g). By (i)
of Thm. 15, we obtain ind (f) = ind (f/g) + ind (g) = ind (g). Conversely, if ind (f) = ind (g),
then ind (f/g) = 0. So, by (ii) of Thm. 15, f/g is an exponential.

Corollary 17. Each map f : S1 → C∗ is homotopic to precisely one of the maps fm : z 7→ zn

where n = ind (f).

Corollary 18. We have π1(S
1, 1) ≡ Z.

Proof. Since the maps zn are not homotopic, the loops αn : [0, 1] → S1 defined by αn(t) =
e2πint cannot be homotopic with end points fixed. On the other hand, let α : [0, 1] → S1

be an arbitrary loop based at 1. Define f : S1 → S1 by f(e2πis) = α(s). Let n := ind (f).

By Thm. 16, f/αn is an exponential, say, f(e2πis)/e2πins = eh(e
2πis) for 0 ≤ s ≤ 1. Then

F (t, s) := eth(e
2πis)e2πins for 0 ≤ s, t ≤ 1 is a homotopy from αn and the loop α with end

points fixed. Thus the correspondence ϕ : [αn] 7→ n is a bijection between π1(S
1, 1) and Z.

One easily checks that the product path αmαn corresponds to a map from S1 to itself of index
m+ n, so that αmαn is homotopic to am+n. Thus ϕ is a group homomorphism.
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Theorem 19 (Fundamental Theorem of Algebra). A polynomial p(z) := zn + an−1z
n−1 +

· · ·+ a1z + a0 of degree n ≥ 1 and with complex coefficients has a zero in C.

Proof. Choose R so large that

|an−1
R

wn−1 + · · ·+ a1
Rn−1

+
a0
Rn
| < 1, |w| ≤ 1.

This can be done, if, for instance, we take R > |an−1| + · · · + |a0| + 1. Define a map
g : B[0, 1]→ C by setting

g(w) :=
p(Rw)

Rn
= wn +

an−1
R

wn−1 + · · ·+ a0
Rn

, |w| ≤ 1.

The estimate above shows that |g(w)−wn| < 1 for w = 1. By Thm. 7, the restriction of wn/g
to the unit circle is an exponential. Now wn is not an exponential since its index is n ≥ 1
(Theorem 15). Hence g = wn · (g/wn) is not an exponential. Corollary 12 shows that g must
have a zero on B[0, 1], and hence p has a zero in C.

We now apply some of our earlier results to arrive at some standard theorems of the
topology of the plane.

Corollary 20. Assume that f : S1 → S1 is homotopic to a constant map. Then there is a
continuous function ϕ : S1 → R such that f(x) = eiϕ(x) for all x ∈ S1.

Proof. A special case of Corollary 9.

Theorem 21. The circle S1 is not contractible.

Proof. If it were, then by Corollary 20 there is a function ϕ : S1 → R such that Id(x) ≡
x = eiϕ(x) for all x ∈ S1. Thus, there is a continuous argument on S1 and hence on C∗,
contradicting Theorem 4.

Or, more directly, such a ϕ is 1-1 and in particular ϕ(x) 6= ϕ(−x). Define g : S1 → {±1}
by

g(x) :=
ϕ(x)− ϕ(−x)

|ϕ(x)− ϕ(−x)|
.

Then g maps S1 continuously onto {±1}. This contradicts the connectedness of S1.

Definition 22. A subset A of a space X is a retract of X if there is a continuous function
r : X → A such that r(a) = a for all a ∈ A. r is called a retraction of X onto A.

Corollary 23. There is no retraction of R2 onto S1.

Proof. Let r : R2 → S1 be retraction. Let p = (0, 0). Define a homotopy H : I × S1 → R2

by H(t, x) = tp + (1 − t)x. Then r ◦ H : I × S1 → S1 is a contraction — contradicting
Thm. 21.

Corollary 24 (Brouwer Fixed Point Theorem). Let f : B[0, 1] → B[0, 1] be a continuous
map. Then f has a fixed point, i.e., there is an x ∈ B[0, 1] such that f(x) = x.
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Proof. If there is no point x such that f(x) = x, then the two distinct points f(x) and x
determine a line joining f(x) and x. We let g(x) be the point on the boundary at which the
line starting from f(x) and going to x meets S1. Then g is a retraction of B[0, 1] onto S1—a

contradiction to Corollary 23. In analytical terms, we have g(x) = x+ tv, where v = x−f(x)
‖x−f(x)‖

and t = −〈x, v〉+
√

1− ‖x‖2 + (〈x, v〉)2.

We end this article with some exercises.

Ex. 25. Let X be compact and f : X → C∗ be an exponential. Show that there exists ε > 0
such that any map g : X → C∗ which satisfies |f(x)− g(x)| < ε is an exponential.

Ex. 26. Let X be locally compact hausdorff space. Show that two maps f and g from X to
C∗ are homotopic iff f/g is an exponential. Hint: Consider first the case when X is compact.

Ex. 27. Let X be a locally compact contractible metric space. Show that any map f : X →
C∗ is an exponential.

Ex. 28. Let f : S1 → C∗ be given. Show that there exists a ε > 0 such that any map
g : S1 → C∗ with |f(z)− g(z)| < ε for z ∈ S1 has the same index as f .

Ex. 29. Assume that f, g : S1 → S1 be maps such that f and g do not assume antipodal
values at any point of S1. Show that ind (f) = ind (g).

Ex. 30. Show that any map from Sn (n ≥ 2) to C∗ is an exponential.

Ex. 31. Show that any map from Pn(R) (n ≥ 2) to C∗ is an exponential. (Note that Pn is
not simply connected. Can you explain what is happening here?)

Ex. 32. Classify the maps from the figure eight to C∗.
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