Examples of Cosets and Quotient Groups

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

G acts transitively on $X (= \{aH/a \in G\})$. Find a G-set Y which is isomorphic to X.

Let $\{g_1B, g_2B, \ldots, g_kB\}$ be a partition of G, where B is a subset of G. Then, there exists i such that g_iB is a subgroup of G. It follows that this partition is a coset decomposition.

Warm-up for cosets

1. $G = (\mathbb{R}^2, +)$ $H = \{y = 0\} = X$ axis 2. $G = \mathbb{C}^*$ $H = S^1 = \{z \in \mathbb{C}/|z| = 1\}$ 3. $G = \mathbb{Z}$ $H = m\mathbb{Z}$ 4. $H \le G$ Define $\forall x, y \in G, x \sim y$ if xH = yH. 5. $G = (\mathbb{R}^*, \cdot)$ $H = \{\pm 1\}$

Quotient groups

1.
$$G = (\mathbb{R}^2, +)$$
 $H = \{y = 0\} = X$ axis $G/H \cong (\mathbb{R}, +)$ $(x, y) \rightarrow y$
2. $G = \mathbb{C}^*$ $H = S^1$ $G/H \cong (\mathbb{R}^+, \cdot)$ $z \rightarrow |z|$
3. $G = \mathbb{C}^*$ $H = (\mathbb{R}^+, \cdot)$ $G/H \cong S^1$ $z \rightarrow \frac{z}{|z|}$
4. $G = \mathbb{Z}$ $H = n\mathbb{Z}$ $\zeta = e^{\frac{2\pi i}{n}}$ $G/H \cong \langle \zeta \rangle$ $\bar{a} \rightarrow \zeta^a$
5. $G = GL(n, \mathbb{R})$ $H = SL(n, \mathbb{R})$ $G/H \cong (\mathbb{R}^*, \cdot)$ $A \rightarrow det(A)$
6. $G = (\mathbb{R}^*, \cdot)$ $H = \{\pm 1\}$ $G/H \cong (\mathbb{R}^+, \cdot)$ $x \rightarrow |x|$ $x \rightarrow x^2$
7. $G = (\mathbb{C}^*, \cdot)$ $H_n = \{n^{\text{th}} \text{ roots of unity}\}$ $G/H_n \cong G$ $z \rightarrow z^n$

8. $G = (\mathbb{R}, +)$ $H = 2\pi\mathbb{Z}$ $G/H \cong S^1$ $x \to e^{ix}$ 9. $G = (\mathbb{R}, +)$ $H_1 = \mathbb{Z}$ $G/H_1 \cong S^1$ $x \to e^{i2\pi x}$

Caution: $H \cong H_1 \Rightarrow G/H \cong G/H_1$

- $$\begin{split} m,n \in \mathbb{Z} \backslash \{0\} \Rightarrow m\mathbb{Z} \cong n\mathbb{Z}. \text{ But} \\ \mathbb{Z}/m\mathbb{Z} \cong \mathbb{Z}/n\mathbb{Z} \Leftrightarrow m = \pm n \end{split}$$
- 10. $G = (\mathbb{C}^*, \cdot)$ $H = (\mathbb{R}^*, \cdot)$ $G/H \cong S^1$ $z \to (\frac{z}{|z|})^2$ From (7), $H_n \ncong H_m$ for $n \neq m$ but $G/H_n \cong G/H_m$ Thus, $G/H_1 \cong G/H_2 \Rightarrow H_1 \cong H_2$.

In most of the examples, G/H is isomorphic to a subgroup of G.

However, $\mathbb{Z}/n\mathbb{Z}$ for $n \neq 0, \pm 1, \pm 2$ gives an example to the contrary.

Acknowledgement: This was typed by Dr. Balakumar of CUTN, Tamilnadu and was based on my lectures at MTTS 2014 at Mysore.