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Like any science, one investigates, conducts experiments and makes observations in order
to see a pattern and make a guess in Mathematics. With an overwhelming emphasis on rigour,
a typcial teacher does not want to explain how the result or a proof was arrived at. A case
in point is the ability to guess what the quotient ring would be and how to work with it. It
is the aim of this article to initiate the reader into the ‘non-rigorous’ way of thinking so that
one gets to see a ‘picture’ and then proves rigorously what was observed.

Caution: We warn the pedantic readers or champions of rigour that they would find
this article a real pain, as we exhbit our raw thought process with no heed for rigour at the
preliminary stage of investigation.

Assume that we are quotienting a ring with respect to an ideal I. Let {ai : i ∈ I} be
a set of generators of I. The basic intuition is that we are going to think of ai (and hence
‘ideal expressions’ involving ai) as the zero element (in the quotient ring). This will allow us
to get an idea what the quotient ring may be. We then use the first fundamental theorem of
homomorphism to prove our guess is correct (if it is!). Keep these vague ideas while going
through the examples below. After going through them, we hope that students will be more
comfortable while dealing with quotient rings.

Example 1. Let I := 〈x− 5〉 be the (principal) ideal generated by x − 5 in R := Q[x]. We
show that R/I is Q.

The quotient must be a field since the polynomial x − 5 is irreducible so that the ideal
〈x− 5〉 is maximal.

Since x− 5 = 0 in the quotient ring, the basic intuition is that in any polynomial p(x) ∈
Q[x], we can replace x by 5. This means that if we have ax2 + bx + c, then we read it as
a ∗ 52 + b ∗ 5 + c. This suggests that the quotient must be Q. Substituting 5 for x means
that we are evaluating the polynomial at x = 5. We consider the evalution homomorphism
e5 : Q[x] → Q given by p(x) 7→ p(5). Clearly, 〈x− 5〉 ⊂ ker e5. Let p(x) ∈ ker e5. We write
p(x) = (x− 5)q(x) + c, by division algorithm. Then p(5) = 0 + c = 0 implies that c = 0, that
is, p ∈ 〈x− 5〉. Hence we conclude that ker e5 = 〈x− 5〉. It is clear that the map is onto.
By the first fundamental theorem of homomorphism, we conclude that the quotient ring is
isomorphic to Q.

Example 2. Zn as a quotient of Z.
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Consider the map f : Z→ Zn given by k 7→ [k] where [k] stands for the congruence class of
k modulo n. Thus, [k] = [r] if we write k = qn+ r using division algorithm. It is well-known
that f is a ring homomorphism and the kernel is I = nZ, the ideal of all multiples of n. Hence
by the first fundamental theorem of homomorphism, we conclude that Z/ 〈n〉 is isomorphic
to Zn.

Example 3. R[x]/
〈
1 + x2

〉
as C.

Here again, the intuition is that whenever we see x2, we can replace it by −1. Thus, if x3

is read as x2 ∗ x = −x, then 2 + x2 = 2− 1 = 1 etc. If n = 2k + 1, then xn is interpreted as
(x2k) ∗ x = (−1)kx. Thus any polynomial p(x) will “reduce” to one of the form a+ bx.

Also, if we multiply (ax+b)(cx+d) = acx2+(ad+bc)x+bd, it is read as (bd−ac)+(ad+bc)x.
This suggests that the multiplication looks like the multiplication of complex numbers and
(the coset of) x behaves like i =

√
−1. So, the quotient ring may be the field of complex

numbers. We now prove this rigorously.

Consider the map f : R[x]→ C given by p(x) 7→ p(i). Clearly,
〈
x2 + 1

〉
⊂ ker f . To prove

the converse, let p(x) ∈ ker f . Using division algorithm, we write p(x) = (x2 + 1)q(x) +
(a + bx). Then 0 = f(p) = f((x2 + 1)q(x)) + a + bi = a + bi. Hence a = 0 = b, in other
words, p ∈

〈
x2 + 1

〉
, The map is obviously onto. Hence by the first fundamental theorem of

homomorphism, the claim follows.

Ex. 4. Show that Z[x]/
〈
x2 + 1

〉
is the ring of Gaussian integers.

Example 5. Consider Q[x]
〈x2+2x+2〉 . Since x2 + 2x + 2 is irreducible in Q[x], the quotient ring

is a field. We show that the inverse of the coset [x3 + 1] is −[ 4
13

(
x
2 −

1
4

)
].

The trick is to use the Euclidean algorithm.

x3 + 1 = (x− 2)(x2 + 2x+ 2) + (2x+ 5)

x2 + 2x+ 2 =

(
x

2
− 1

4

)
(2x+ 5) +

13

4
.

Hence we get

13

4
= (x2 + 2x+ 2)−

(
x

2
− 1

4

)
(2x+ 5)

= (x2 + 2x+ 2)−
(
x

2
− 1

4

)(
(x3 + 1)− (x− 2)(x2 + 2x+ 2)

)
= p(x)(x2 + 2x+ 2)−

(
x

2
− 1

4

)
(x3 + 1),

where p(x) is some polynomial. Hence we get

1 = − 4

13

(
x

2
− 1

4

)
(x3 + 1) modulo x2 + 2x+ 2.

Ex. 6. In the quotient ring Z3[x]
〈x3+2x+1〉 , show that

(i) [x2 + x+ 2][2x2 + 1] = [x2].

(ii) [x2 + 1]−1 = [2x2 + x+ 2].
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Example 7. We show that
〈
x− y2

〉
is a prime ideal in R[x, y] by showing that that quotient

ring is an integral domain. The idea here is that in the polynomial ring R[x, y], we replace x
by y2. It is ‘obvious’ that we get only polynomials in y. Thus, we expect the quotient ring to
be a polynomial ring in one variable. We now prove this.

Consider the ring homomorphism ϕ : R[x, y]→ R[t] given by ϕ(x) = t2 and ϕ(y) = t. (To
make sure you understand, find out the images of some concrete examples of polynomials
and then later of a polynomial of the form

∑
i,j ai,jx

iyj . Check that ϕ is a surjective ring

homomorphism.) Clearly,
〈
x− y2

〉
⊂ kerϕ. Let p(x, y) ∈ kerϕ.

Let S := R/I where I :=
〈
x− y2

〉
. A polynomial f(x, y) in the variables x, y can be

written as a polynomial in y with coefficients in R[x]. Since y2 = x modulo (x−y2), f(x, y) is
a linear polynomial in y with coefficients in R[x] modulo (x− y2). This motivates the claim:
every element of S can be written in the form p(x) + q(x)y+ I, for p, q ∈ R[x]. To prove this,
consider an arbitrary coset f(x, y) + I ∈ S. Then we can write this as

f(x, y) + I = q(x) + terms with odd powers of y + terms with even powers of y + I

= q(x) + y · terms with even powers of y + terms with even powers of y + I.

Since any term with an even power of y is of the form g(x)y2k and since x + I = y2 + I, we
see that we can replace the second and third terms above by terms of the form h1(x)y + I
and h2(x) + I. Hence the claim follows.

We are now ready for the kill. Let f(x, y) ∈ kerϕ. Using the claim, we write f(x, y) =
g(x) + h(x)y + ψ(x, y) where ψ ∈ I. Now, we operate ϕ on both sides of the equation to get

ϕ(f)(t) = g(t2) + h(t2) · t = 0.

Noting that there are no common powers of t in the two terms g(t2) and h(t2) · t, we see that
the coefficients of g and h must be zero. Hence f = ψ ∈ I.

Example 8. We let C be the ring of Cauchy sequences of rational numbers and N the set of
sequences of rational numbers converging to 0. We show that N is a maximal ideal of C. We
also identify the quotient ring. It should not be a surprise that we need real analysis for this
problem.

Let (xn) ∈ C. Since (xn) is a Cauchy sequence of rational numbers and hence a priori a
Cauchy sequence of real numbers, it is convergent to a real number, say x. If (xn) and (yn)
in C are such that their difference (xn − yn) ∈ N , we know that both converge to the same
real number. These considerations suggest that the quotient ring is R.

The proof is an exercise in real analysis. Consider the map f : C → R given by f((xn)) :=
limxn, where limxn is the real number to which (xn) converges. By the algebra of limits,
the map f is a ring homomorphism. By the very definition, the kernel of f is N . Also, by
the density of Q in R, we know that for any given x ∈ R, and for any n ∈ N, there exists a
rational xn ∈ (x − 1

n , x + 1
n). Clearly, (xn) ∈ C and we have f((xn)) = x. Hence f is onto.

Now the first fundamental theorem of homomorphism tells us the quotient ring C/N is R and
hence N is a maximal ideal in C.

Example 9. Let I :=
〈
x2 − y3

〉
and R := R[x, y]. We identify the quotient ring R/I as the

subring of R[t] consisting of polynomials in t in which the coefficient of t is zero.
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This time, we are looking for a ring A and an onto ring homomorphism f : R→ A whose
kernel is

〈
x2 − y3

〉
. Based on our experience with earlier examples, we may think of A = R[t]

and f(x) = t3, and f(y) = t2.

Consider the map f : R → A given by f(p(x, y)) = p(t3, t2). It is easy to verify that f is
a ring homomorphism. Try out this map with some specific polynomials in x and y to gain
some idea of what is happening. You may find that the first degree term is absent in the
image polynomials in t. Since we want an onto map, we take the subring S of polynomials in
t with the property that the coefficient of the first degree term is zero as the codomain of the
map f . It is easy to see that f : R → S is onto. p(x, y) := a0 + a2y + a3x + a4y

2 + . . . is its
pre-image. For example, t5 = f(xy), t9 = f(x2y) etc.

We now show that ker f =
〈
x2 − y3

〉
. We need only show that if p(x, y) ∈ ker f , then

p(x, y) +
〈
x2 − y3

〉
=
〈
x2 − y3

〉
. We claim that

p(x, y) = p1(y) + p2(y)x modulo (x2 − y2). (1)

To prove this we observe

p(x, y) = p1(y) + terms with even powers of x+ odd powers of x.

Let us look at a typical ‘even power’ term x2kyr = y3kyr = y3k+r modulo (x2 − y3). On the
other hand, we have x2k+1yr = xy3k+r modulo (x2 − y3). Hence the claim (1) follows. If we
now apply ϕ to both side of (1), we get

0 = p1(t
2) + p2(t

2)t3.

The first term on the right side has only even powers of t while the second has only odd
powers of t. Hence we conclude that p1 = 0 = p2. That is, p(x, y) = 0 modulo (x2 − y3).

Example 10. We claim that R[x, y]/(x − y) is R[t]. This is intuitively clear since in a
polynomial p(x, y) we can replace y by x so that we get finally a polynomial in a single
variable x.

We prove this rigorously as follows: Consider ϕ : R[x, y] → R[t] by setting ϕ(p(x, y)) =
p(t, t). Clearly, (x− y) ⊂ kerϕ. We show the reverse inclusion as in the last Example 9. Let
ϕ(p(x, y)) = 0.

p(x, y) = a, the constant term + terms with either the power of x or of y being positive

= a+ p1(x) modulo the ideal < x− y > with constant term of p1 equal to 0.

Hence ϕ(p(x, y)) = 0 implies that a+ p1(t) = 0, that is a = 0 and p1 = 0. Thus, p(x, y) = 0
modulo the ideal < x− y >. By now, the reader should know how to complete the story.

Example 11. We compute the quotient ring Z[i]/(1 + 2i). The ring Z[i] is generated by 1, i.
Now the ideal gives a relation between them, namely, 2i = −1 and hence −4 = 1. Thus, in the
quotient, we should expect 5 = 0, that is, the quotient ring must have 5 as its characteristic.
Since 1 of the ring will go 1 of the quotient ring, we need to see where i goes to. Now,
1+2i = 0 implies “i = −(1/2)”, that is, “i is the additive inverse of the multiplicative inverse
of 2” in the quotient ring. In Z5, we have the multiplicative inverse of 2 as 3 whose additive
inverse is 2. This suggests that we consider the map

ϕ : Z[i]→ Z5 given by ϕ(1) = [1] and ϕ(i) = [2], ϕ(a+ ib) = [a+ 2b].
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It is easy see that ϕ is an onto ring homomorphism such that (1 + 2i) ⊂ kerϕ. Let
a+ ib ∈ kerϕ. This means that a+ 2b = 5k for some k ∈ Z, or a = 5k − 2b. We have

a+ ib = (5k − 2b) + ib

= 5k + ib(1 + 2i)

= (1 + 2i)(1− 2i)k + ib(1 + 2i)

= (1 + i(b− 2k)) (1 + 2i)

∈ (1 + 2i).

Thus kerϕ = (1 + 2i). We have thus proved that the quotient ring is Z5.

Example 12. We show that the quotient ring R[x, y]/ 〈xy〉 is isomorphic to

{(p, q) : p(t), q(t) ∈ R[t] with p(0) = q(0)}.

(You may check that the above subset is a subring of the ring R[t]×R[t] = R[t]⊕R[t].) Since
x and y commute and [x][y] = 0, the quotient ring is a commutative ring (with multiplicative
identity and) with zero divisors. Also, [1], [x] and [y] generate the quotient. Further, there
is no other relation between [x] and [y] implying that no polynomial expression in [x] and [y]
without mixd terms can collapse in the quotient ring. This suggests that the quotient ring may
be something like a direct sum of two polynomial rings, say, R[u]⊕R[v]. (In fact, in the first
attempt, we claimed this!) So, we consider the ring homomorphism ϕ : R[x, y]→ R[u]⊕R[v]
defined by setting ϕ(1) = (1, 1), ϕ(x) = (u, 0) and ϕ(y) = (0, v). Let us determine the image
of ϕ. If p(x, y) = a0 +

∑
i+j=k aijx

iyj , then

ϕ(p(x, y)) = a0(1, 1) +
∑

i+j=k

aij(u
i, 0)(0, vj) = (a0 + p1(u), a0 + p2(v)), say.

Thus the image lies in {(f(u), g(v)) : f(0) = g(0)}. We leave it to the reader to check that
this is the image of ϕ.

Clearly, 〈xy〉 ⊂ kerϕ. Let p(x, y) ∈ kerϕ. We have

p(x, y) =

(∑
r

arx
r +

∑
s

bsy
s

)
modulo (xy).

Hence, we see that

0 = ϕ(p(x, y)) =
∑
r

ar(u, 0)r +
∑
s

bs(0, v)s

implies that ar = 0 = bs for all r and s. Thus, p(x, y) = 0 modulo the ideal (xy). Hence the
quotient ring is as specified.

Example 13. We show that the quotient R[x, y]/(xy − 1) is the ‘localization’ of R[t] with
respect to the multiplicative set {tn : n ∈ Z+}.

The idea here is that we can replace y by 1/x. Thus, xmyn 7→ xm−n where xr = (1/x−r)
if r < 0. Hence we expect the quotient ring would be the ring R[t](t) of Laurent polynomials
in a variable t, that is, polynomials in t and 1/t. (Another way of looking at the ring of
Laurent polynomials is that it is got by localising the polynomial ring R[t] with respect to

5



the multiplicative set {tn : n ∈ N}. If you have not seen the concept of localisation earlier,
you may skip this explanation.)

Consider the map ϕ : R[x, y] → R[t](t) given by ϕ(p(x, y)) = p(t, 1/t). It is easy to check
that this is a ring homomorphism and that (xy− 1) ⊂ kerϕ. Let p(x, y) ∈ kerϕ. Let us look
at a typical term xiyj :

xiyj = (xy)iyj−i = yj−i modulo (xy − 1) if i ≤ j
= (xy)jxi−j = xi−j modulo (xy − 1) if j ≤ i.

Hence we see that p(x, y) = (p1(x) + p2(y)) modulo (xy − 1). Thus, if ϕ(p(x, y)) = 0, then
we get ϕ(p1(x)) + ϕ(p2(y)) = p1(t) + p2(1/t) = 0. This means that p1(x) = 0 and p2(y) = 0.
In other words, if p(x, y) ∈ kerϕ, then p(x, y) = 0 modulo (xy − 1).

Another important tool is the third isomorphism theorem:
If I ⊆ J are ideals of R then R/J ' (R/I)/(J/I).

This is useful in the following way. If the ideal J is generated by two elements, say, J =<
a, b >, then R/J = R/ < a > /(< a, b > / < a >). A useful remark is that it is up to us
to choose which is the first element we want to ‘equate’ to 0! The following example will
illustrate this.

Example 14. What is the quotient ring Z[i]/ < 2 >? We may think of this ring as the
quotient ring Z[x]/ < x2 + 1, 2 >. We then quotient Z[x] first by < 2 > to get Z2[x] in which
we have to use ‘x2 = 1’ or ‘x = i’. We find that the elements of Z2[x]/ < 1 + x2 > can be
written in the form a + bx with a, b ∈ Z2 with the relation x2 = −1. Thus the elements can
be written as 0, 1, i, 1 + i (or 0, 1, x and 1 + x). The element (1 + i)2 = 0 and is therefore a
nilpotent. Similarly, i(1 + i) = i− 1 = i+ 1 etc. Though as a group the quoteint Z[i]/ < 2 >
is isomorphic to Z2 ⊕ Z2, they are not isomorphic as rings. (Why?)

Example 15. Consider the quotient ring Z[x]/ < x3 + x+ 1, 5 >. We want to show that the
ideal < x3 + x + 1, 5 > is maximal in Z[x]. We wish to prove this by showing the quotient
Z[x]/ < x3 +x+ 1, 5 > is a field. We may first quotient Z[x] by < 5 > to get Z5[x]. Now it is
eaily seen that x3 + x + 1 is irreducible in Z5[x] by a straight-forward computation, namely
by showing that no element of Z5 is a zero of the polynomial. Hence the claim follows.

Example 16. What are the quotient rings of Z12? To answer this, we need to find the
ideals in Z12. This is well-known because of the correspondence between the ideals J in the
quotient ring R/I and the ideals J (in R) containing I. Thus, the ideals in Z12 “correspond“
to the ideals < d > where d is a divisor of 12. Now the ideals in Z that contain < 12 > are
< 1 >,< 2 >,< 3 >,< 4 >,< 6 >,< 12 >. Hence the ideals in Z12 are Z12, {0, 2, 4, 6, 8, 10},
{0, 3, 6, 9}, {0, 4, 8} {0, 6} and {0}. As groups the corresponding quotient groups are Zd,
where d = 1, 2, 3, 4, 6, 12. These group homomorphisms preserve the multiplication and hence
they are ring isomorphisms. (Note that, by the third isomorphism theorem, Zmn/ 〈n〉 ' Zn.)
Hence we have found all the quotient rings of Z12.

Example 17. When is Z3[x]/ < x3 + x+ c > a field? It is well-known that the quotient is a
field iff the polynomial p(x) := x3 +x+c is irreducible. Again, being cubic, p(x) is irreducible
iff it does not have a root in Z3. Now, if c = 0, then x = 0 is a root and hence p(x) is not
irreducible. If c = 1, then x = 1 is a root. It is easily verified that if c = 2, the polynomial
p(x) has no roots in Z3. Hence the quotient ring is a field iff c = 2.
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Example 18. Consider the ring Z5[x]/ < x2 + 1 >. The ring has 25 elements as any element
is of the form a+ bx, with a, b ∈ Z5. (Why?) However, the ring is not a field, since we have

(x+ 2)(x+ 3) = 0 modulo the ideal < x2 + 1 > .

Thus the ring has zero divisors.

Example 19. One can similarly prove the following:
(i) Z[x]/ < x2 − x − 1, 2 > is a field of 4 elements, say, [0], [1] [x], and [1 + x]. The

multilicative inverses of the nonzero elements (in the order of listing) are [1], [1 + x] and [x].
Hint: In Z2[x] use “x2 = 1 + x”.

(ii) Z[x]/ < x3 − x− 1, 2 > is a field of 8 elements.
(iii) Z[x]/ < x2 + 1, 3 > is a field of 9 elements.

Remark 20. A set of notes written by Ashish Bansal based on my lectures in MTTS 2007
(Level 2) was useful in some of the examples in this article. I thank the referee for poining
out a sign problem in Example 5 and suggestions that improved the readability of this article.
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