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The geometric ideas behind the decimal, binary and ternary expansions of any real number
depend on the nested interval theorem. We recall it in a form useful to us.

Theorem 1 (Nested Interval Theorem). Let Ik ⊂ R be finite intervals with endpoints ak and
bk such that (i) Ik+1 ⊂ Ik for each k ∈ N and (ii) limk→∞ ℓ(Ik) = limk→∞ bk−ak → 0. Then
there exists a unique c ∈ R such that ak ≤ c ≤ bk for all k.

Proof. Consider the set A := {ak : k ∈ N}. This set is nonempty, bounded above by each of
bn. Hence by the least upper bound property of R, there exists c ∈ R such that c = supA.
Then c ≤ bn, since c is the l.u.b. of A and each bn is an upper bound for A. Also, since c is
an upper bound for A, an ≤ c for all n. Thus, an ≤ c ≤ bn.

If d is also such that an ≤ d ≤ bn for each n, then, c, d ∈ [an, bn] for each n. From this we
conclude that |c − d| ≤ bn − an for all n. As bn − an → 0, it follows that |c − d| = 0. Hence
c = d.

Remark 2. Let us reiterate that we did not assume that the intervals Ik are closed. However,
our conclusion was that c ∈ [an, bn] for all n. We do not claim that c ∈ In. An easy example
is Ik = (0, 1/k).

How do we plan to use this? Let p ∈ N be greater than or equal to 2. Then we want to
show that there exists p-expansion for any real number x in the following sense: There exists
an integer x0 and numbers ak lying in {0, 1, . . . , p− 1} such that

x = x0 +
∑

k

ak
pk

.

We may assume without loss of generality that x ≥ 0. For, x < 0 and if y = −x = y0+
∑

k
ak
pk

is the p-expansion of y, then x = −(y0 + 1) +
∑

∞

k=1
ak
pk

is the p-expansion for x. Any real

number x can be written in the form x = x0 + a, where x0 ∈ Z and a ∈ [0, 1). This suggests
that it suffices to consider only x ∈ [0, 1).

Let x ∈ [0, 1) be given. The key geometric idea is to subdivide [0, 1) into p-equal parts,
choose the one which contains our element x, then subdivide this subinterval into p-equal
parts choose the one in which x lies and so on. We are mostly interested when p = 2, 3, 10.
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When p = 2, 3, 10, the expansions are respectively called binary, ternary and decimal. To
keep our notation simple, let us concentrate on p = 3 and describe the ternary expansion.

Let x ∈ [0, 1) be given. We can subdivide [0, 1) into three disjoint subintervals: [0, 1) =
[0, 1/3) ∪ [1/3, 2/3) ∪ [2/3, 1). . Now x lies in exactly one of the subintervals, I0 := [0, 1/3),
I1 := [1/3, 2/3) and I2 := [2/3, 1). If it lies in Ik, we let a1 = k. For example, if we consider,
x = 10/27, then a1 = 1 whereas if x = 2/3, then a1 = 2. We then subdivide Ik into three equal
parts, as earlier: if Ik = [c, d), (where d = c+ 1

3
then the subintervals are [c/3, (c/3) + 1/9),

[(3c + 1)/9, (3c + 2)/9) and [(3c + 2)/9, d). Then x lies in precisely one of them. We let a2
to be the right endpoint of this subinterval. We carry out this process ad inf. Thus we get a
sequence of intervals

Jn := [
a1
3

+ · · ·+
an−1

3n−1
+

an
3n

,
a1
3

+ · · ·+
an−1

3n−1
+

an + 1

3n
),

such that x ∈ Jn. Note that 0 ≤ k ≤ 2. By nested interval theorem, x ∈ Jn for each n. Hence
x =

∑

n
an
3n
. (Exercise: Prove this.)

Another subdivision of (0, 1] (note that it is not closed on the left but on the right) which
is also used is: (0, 1] = (0, 1/3] ∪ (1/3, 2/3] ∪ (2/3, 1]. The subinterval in which x lies is
further subdivided into three equal parts as per the new recipe. In this process, the first
digit in the ternary expansion of x = 1/3 is 0, and all other digits are 2. Thus, we have
1/3 = 0.1(ternary) = 0.0222 · · · (ternary).

Thus in both the processes, the digits are defined by locating the point x in a sequence of
intervals, the length of which go down by a factor of three each time:

a1 = sup

{

k ∈ Z

∣

∣

∣

∣

k

3
≤ x

}

b1 = sup

{

k ∈ Z

∣

∣

∣

∣

k

3
< x

}

a2 = sup

{

k ∈ Z

∣

∣

∣

∣

a1
3

+
k

32
≤ x

}

b2 = sup

{

k ∈ Z

∣

∣

∣

∣

a1
3

+
k

32
< x

}

...
...

an = sup

{

k ∈ Z

∣

∣

∣

∣

a1
3

+ · · ·+
an−1

3n−1
+

k

3n
≤ x

}

bn = sup

{

k ∈ Z

∣

∣

∣

∣

a1
3

+ · · ·+
an−1

3n−1
+

k

3n
< x

}

Note that an, bn ∈ {0, 1, 2}. We then have x = 0.a1a2 · an · · · = 0.b1b2 · · · bn · · · . We refer to
the first (resp. the second) form as the terminating (resp. nonterminating) ternary expansion
of x. (As in the case of decimals, one can characterize those x that admit both expansions. We
leave the investigation to the reader.) For instance, if x = 10

27
, then x = 0.101 = 0.100222 . . .

(ternary). Note that ak ∈ {0, 1, 2}.

With this brief introduction, we are ready to define Cantor ternary set. We shall give
analytical definition first and explain the geometric construction later.
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Consider the interval [0, 1], represented in the nonterminating ternary form: for each
x ∈ [0, 1], x =

∑

∞

k=1
ak
3k
, where ak ∈ {0, 1, 2} for all k ∈ N. The Cantor (ternary) set K

consists of all those x ∈ [0, 1] which have a ternary representation
∑

∞

k=1

ak
3k
, where ak ∈ {0, 2}

for all k ∈ N.

The geometric construction behind K is as follows:

First a piece of notation. Given an interval [a, b], the interval (a+ 1

3
(b− a), b − 1

3
(b− a))

is called the middle third open interval of [a, b].

Take [0, 1] and delete the open middle third interval J11 := (1
3
, 2
3
). This deletes numbers

with 1 in the first ternary place. (The numbers 1

3
and 1 are not deleted as they have ternary

expansions 0.0222 . . . and 0.222 . . . respectively).

Step 1:

0 1/3 1

1/9 2/9 1/3 7/9

step 2:

2/3 8/9 1

2/3

0

Take the two remaining closed intervals [0, 1
3
] and [2

3
, 1] and delete the open middle thirds

of these intervals. They are J21 := (1/9, 2/9) and J22 := (7/9, 8/9). In this step we have
deleted numbers with 1 in the second ternary place. (The numbers 1

9
and 7

9
are not deleted,

because they have ternary expansions 0.002 and 0.202 respectively.)

Continuing this way, after n steps, we would have deleted 1 + 2 + · · · + 2n−1 = 2n − 1
disjoint open intervals Jkr where 1 ≤ k ≤ n and 1 ≤ j ≤ 2k−1. We are left with 2n closed
intervals each of length 3−n.

We continue this process ad infinitum. What remains is the Cantor set K:

K := [0, 1] \ ∪∞

k=1 ∪
2k−1
r=1 Jkr.

K is closed: For, K was obtained by removing an open set U := ∪∞

k=1
∪2k−1
r=1 Jkr a union of

open intervals.

We also note that K is contained in [0, 1]\∪n
k=1

∪2k−1
r=1 for each n. The latter set is a union

of 2n intervals sum of whose lengths is (2/3)n. Thus K has “no length”. However K has
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uncountably many points, more than the obvious points, viz., the end points of the deleted
intervals.

This follows from the ternary expansion and the fact that the set of functions from N to
{0, 2} has the cardinality of R. More specifically, consider the map f : K → [0, 1] given by

f(
∞
∑

k=1

ak
3k

) =
∞
∑

k=1

ak
2
2−k.

Then f maps K onto [0, 1]. However f is not one-to-one. f is called the Cantor-Lebesgue
function.

Remark 3. Note that at the nth stage of the construction we have a closed set Fn which is
the union of 2n closed intervals of the form [ k

3n
, k+1

3n
] for specific k’s. For example

F1 = [0,
1

3
] ∪ [

2

3
, 1]

F2 = [0,
1

9
] ∪ [

2

9
,
1

9
] ∪ [

6

9
,
7

9
] ∪ [

8

9
, 1]

Thus K is ∩Fn. From this it follows that K contains no non-empty open interval. For, if
(a, b) ⊂ Fn for each n, then |a− b| ≤ 1

3n
for all n and hence a = b and hence (a, b) = ∅.

In particular, no connected subset of K can have more than one point.

Let x ∈ K. Then x ∈ Fk for each k and is therefore a cluster point of the end points of
the intervals in Fk. Thus K is a perfect set — a set each of whose points is its cluster point.
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