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This article is devoted to the mathematical formulation of gluing geometric objects to get
new geometric objects. For example, one may form a circle from a closed line segment by
bending it around and gluing the ends together. Or, one can form a cylinder from a rectangle
by bending the rectangle around and gluing two opposite sides together. If we further bend
the cylinder around and glue the two circular rims together we get a torus or a cycle tube. In
this article, we concentrate on some of the very basic results of the theory which will enable
the reader to deal with quotient spaces with confidence. The theory is full of pathologies and
often text-books and teachers tend to frighten the beginner with the macabre rather than
emphasizing the positive aspects and initiating him into a working knowledge of quotient
spaces. This article attempts to make it easy for a student to learn quotient spaces.

Let X be a set and ∼ be an equivalence relation on X. Let X/∼ be the quotient set or the
set of equivalence classes of ∼. Let π : X → X/∼ be the quotient map defined by π(x) = [x],
the equivalence class of x. If we further assume that X is a topological space, we then want
to introduce a topology on the quotient set so that the quotient map π is continuous. Note
that the indiscrete topology on X/∼ will be one such. However we would like to have the
largest possible topology on X/∼ with this property. If τ is such a topology and V is open
in X/∼, then π−1(V ) must be open in X. This suggests the following

Definition 1. With the notation as above, we define τ to be the set of V ⊂ X/∼ such that
π−1(V ) is open in X. It is easy to check that τ is indeed a topology on the quotient set. The
space (X/∼, τ) is called the quotient space of X relative to the equivalence ∼.

We record the following fact which is an immediate consequence of the definition of the
quotient topology.

Proposition 2. Let X be a topological space and ∼ an equivalence relation on X. Then
the quotient topology on X/∼ is the largest topology for which the natural quotient map
π : X → X/∼ is continuous.

The next theorem, though easy, is quite often used to check the continuity of maps from
quotient spaces to others.

Theorem 3 ( Universal Mapping Property). Let π : X → X/∼ be a quotient map. A map
f : X/∼→ Y is continuous iff f ◦ π is continuous.
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Proof. If f is continuous, then certainly so is f ◦ π. To prove the converse, let V be an open
set of Y . Then (f ◦ π)−1(V ) = π−1(f−1(V )) is an open subset of X. By the definition of
quotient topology, f−1(V ) is open set in X/∼. Hence f is continuous.

The next theorem tells us how to generate quotient spaces.

Theorem 4. Let f : X → Y be continuous. Let ∼ be the equivalence relation on X defined
by x1 ∼ x2 iff f(x1) = f(x2). Then there exists a continuous function g : X/∼→ Y such that
f = g ◦ π.

Proof. Define g([x]) = f(x) for any x ∈ [x] ∈ X/∼. Then g is well-defined and g ◦ π = f .
Thm. 3 assures the continuity of g.

The following result allows us to identify quotient spaces with other concrete spaces.

Theorem 5. Let X and Y be compact. Assume further that Y is hausdorff. Let f : X → Y
be a surjective continuous map. Define the equivalence relation ∼ by declaring x1 ∼ x2 iff
f(x1) = f(x2). Then X/∼ is homeomorphic to Y .

Proof. X/∼ is compact, being the image of X under the continuous map π. Let g : X/∼→ Y
be the continuous function defined by g([x]) = f(x). Then g is continuous, 1-1 and onto.
Hence by Exer. 6 g is a homeomorphism.

Ex. 6. Let f : X → Y be a 1-1 continuous map from a compact space to a Hausdorff space.
Then f is a homeomorphism of X onto f(X).

We give four simple applications to illustrate the power of Thm. 5.

Example 7. Consider the quotient space obtained from [0, 1] got by identifying the end
points 0 and 1. That is, Y is the space X/∼ where X := [0, 1] and the equivalence classes are
{t} for 0 < t < 1 and {0, 1}. Consider the map f : [0, 1] → S1 given by f(t) := e2πit. Y and
S1 are homeomorphic by Thm. 5.

Example 8. We show that the quotient space got by identifying two of the opposite sides of
a rectangle is homeomorphic to a cylinder. Let X := {(u, v) ∈ R2 : −π ≤ u ≤ π,−1 ≤ v ≤ 1}.
Let Y := {(x, y, z) ∈ R3 : x2 + y2 = 1, |z| ≤ 1}. On X we define the equivalence relation by
setting (u, v) ∼ (u′, v′) iff u = ±π = u′ and v = v′ if u = ±π = u′ and otherwise u = u′ and
v = v′. Consider the map f : X → Y given by f(u, v) := (cosu, sinu, v). Then the level sets
of f are precisely the equivalence classes. f induces a homeomorphism via Thm. 5.

Example 9. Let X := [0, 1]× [0, 1] and f : X → S1×S1 be defined by f(s, t) := (e2πis, e2πit).
The level sets of f are the singletons inside the square, the pairs of opposite points on the
interiors of the bounding intervals and the set of four vertices of X. Thus we see that the
quotient space of a square obtained from the equivalence is a torus.

For any space X and a subset A of X, the space X/A stands for the quotient space of X
with respect to the equivalence: x1 ∼ x2 iff x1 = x2 or x1, x2 ∈ A. Thus X/A is the space
obtained from X by collapsing A to a single point.
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Example 10. Consider the map f : B[0, 1] ⊂ Rn → Sn ⊂ Rn+1 defined by setting

f(tx) := (cosπ(1− t), x1 sinπ(1− t), . . . , xn sinπ(1− t)),

where x ∈ Sn−1 and 0 ≤ t ≤ 1. Then f(Sn−1) = e0 = (1, 0, . . . , 0) ∈ Sn. f induces a
homeomorphism of B[0, 1]/Sn−1 with Sn. See also Exer. 12 below.

Ex. 11. Let F be a closed subset of a compact Hausdorff space X. Prove that the quotient
space obtained from X by identifying F to a single point is homeomorphic to the one-point
compactification of X \ F .

Ex. 12. Let B be the closed unit ball in Rn. Prove that the quotient space obtained from B
by identifying its boundary Sn−1 to a point is homeomorphic to the n-sphere.

Ex. 13. Let X denote the union of circles (in R2) centred at (0, 1/n) and of radius 1/n
with the subspace topology of R2. Let Y denote the quotient space R/Z obtained from R by
collapsing all of Z to a single point. Show that X and Y are not homeomorphic.

Thm. 5 is a special case of the next theorem which can be used the same way as the
former was used in the examples above. Thm. 3, Thm. 5 and Thm. 14 are thus the most
useful results in practice.

Theorem 14. Let f : X → Y be an open (or closed) continuous surjective map. Then Y
is homeomorphic to the quotient space of X obtained by identifying each level set of f to a
point.

Proof. Argue as in Thm. 5.

The following exercises introduce some of the important quotient spaces. They will help
the reader understand the concept of quotient spaces well.

Ex. 15 (Real Projective Spaces). Let Pn(R) be the n-dimensional projective space over R.
It is the quotient space obtained from Sn with respect to the equivalence relation x ∼ y iff
x = ±y. Prove the following:
(a) Pn(R) is a compact Hausdorff space.
(b) The projection π : Sn → Pn(R) is a local homeomorphism, that is, each x ∈ Sn has an
open neighbourhood which is mapped homeomorphically onto an open neighbourhood of π(x)
by π.
(c) P1 is homeomorphic to S1.
(d) Pn(R) is homeomorphic to the quotient space obtained from the closed unit ball B in Rn
by identifying the antipodal points of its boundary Sn−1.
(e) On X := Rn+1 \ {0} introduce the equivalence relation x ∼ y iff there is a nonzero α ∈ R
such that x = αy. Show that X/∼ is homeomorphic to Pn(R). (Thm. 14 may be of use here.)

Ex. 16 (Complex Projective Spaces). Think of X := S2n+1 as a subset of Cn+1:

S2n+1 = {z ∈ Cn+1 :
∑
i

|zi|2 = 1}.

Define an equivalence relation on X by declaring that z ∼ w iff there exists a λ ∈ S1 ⊂ C
such that z = λw. The resulting quotient space, denoted by Pn(C) is called the n-dimensional
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complex projective space. Prove the following:
(a) Pn(C) is a compact Hausdorff space.
(b) P1(C) is homeomorphic to S2.
(c) Let π denote the projection π : X → Pn(C). Show that π−1(x) is homeomorphic to S1

for all x ∈ Pn(C). Show that each x ∈ Pn(C) has a neighbourhood U such that π−1(U) is
homeomorphic to U × S1.
(d) Let Y := Cn+1 \ {0}. Let ∼ be the equivalence relation defined by x ∼ y iff there exists
a nonzero λ ∈ C such that x = λy. Then the quotient space Y/∼ is homeomorphic to Pn(C).
Thus Pn(C) can be regarded as the set of one-dimensional subspaces of Cn+1.

Quotient spaces are full of pathologies. It is necessary to recognize which of the topological
properties of X are inherited by X/∼ and which are not. The following exercises deal with
this concern.

Ex. 17. Let X be a topological space and X/∼ be its quotient with respect to an equivalence
relation. Prove the following:
(a) If X is compact, so is X/∼.
(b) If X is connected, so is X/∼.
(c) If X is path connected, so is X/∼.

Ex. 18. Pathologies
(a) Let ∼ be an equivalence relation on a space X. Prove that X/∼ is a T1-space iff each
equivalence class is closed. Give an example of a T1 space X and a quotient space of X which
is not T1.
(b) Define an equivalence relation on X := [0, 1]× [0, 1] by setting (s, t) ∼ (s′, t′) iff t = t′ > 0.
Describe the quotient space and show that it is not Hausdorff.

One of the most important ways of defining equivalence relations is by means of group
actions. So it should not be a surprise that many quotient spaces arise as the quotients of
group actions on spaces. Below we indicate some of these instances.

Definition 19. We say a group G acts on a space X if there is a map ϕ : G×X → X with
the following properties (Below we write g · x for ϕ(g, x)):
(i) e · x = x for the identity e ∈ G and x ∈ X.
(ii) For g, h ∈ G and x ∈ X, we have (gh) · x = g · (h · x).

Note that these conditions mean that for each g ∈ G the map ϕg : x 7→ g · x is a
homeomorphism of X onto itself. Thus we have a group homomorphism of G into the group
of homeomorphisms of X.

We say X is a G-space if an action of G on X is given.

On any G-space, we have a natural equivalence: x ∼ y iff there exists a g ∈ G such that
y = g · x. The equivalence classes are called the orbits of G, for, [x] ≡ {g · x : g ∈ G}. The
corresponding quotient space X/∼ is denoted by X/G.

Ex. 20. Let X = R and G = Z. Let G act on X by n · x = x+ n. Then the quotient space
R/Z is homeomorphic to S1.

Ex. 21. Let X = R2 and G = Z. G acts on X by n · (x, y) = (x + n, y). Show that the
resulting quotient space is the infinite cylinder {(x, y, z) ∈ R3 : x2 + y2 = 1}.

4



Ex. 22. Let X = Sn and G = Z2, the multiplicative group of two elements. If −1 is the
nontrivial element of G, then define −1 · x := −x. Then X/G is Pn(R).

In a similar way, if we let G := R∗, the multiplicative group of nonzero reals act on
X := Rn+1 \ {0} via scalar multiplication, then X/G is the n-dimensional real projective
space.

Ex. 23. Let X := S2n+1 ⊂ Cn+1. Let S1 ⊂ C act on X by

eit · (z1, . . . , zn+1) := (eitz1, . . . , e
itzn+1).

The quotient S2n+1/S1 is homeomorphic to Pn(C).

Let Y := Cn+1 \ {0}. Let G := C∗, the multiplicative group of complex numbers act on
Y via scalar multiplication. The quotient Y/G is Pn(C).

Ex. 24. Let X = R2 and G = Z2. The action is (m,n) · (x, y) = (x+m, y+n). The quotient
R2/Z2 is homeomorphic to the torus in R3 got by revolving around the z-axis a circle of
unit radius centered at (2, 0, 0) and of radius 1 in the (x, z)-plane. Hint : Consider the map
(u, v) 7→ ((2 + cos 2πu) cos 2πv, (2 + cos 2πu) sin 2πv, sin 2πu).

Ex. 25 (Möbius Strip). On the unit square X we define the equivalence relation as follows:

(x, y) ∼ (x′, y′) ⇐⇒ (x, y) = (x′, y′) or {x, x′} = {0, 1} and y = 1− y′.

Thus two points of opposite vertical sides are identified cross-wise. The quotient space is
known as the Möbius strip.

Let Y := {(x, y) ∈ R2 : −1/2 ≤ y ≤ 1/2}. Let Z act on Y by m ·(x, y) := (m+x, (−1)my).
Show that the quotient space Y/Z is homeomorphic to the Möbius strip.

Ex. 26 (Klein Bottle). Let X be the unit square. Define an equivalence relation on X whose
nontrivial relations are given by

(0, y) ∼ (1, y) and (x, 0) ∼ (1− x, 1).

The quotient space is called the Klein’s bottle.

Let Y = R2. Let ϕ,ψ : R2 → R2 be given by

ϕ(x, y) := (x+ 1, y), ψ(x, y) := (1− x, y + 1).

Thus ϕ is a translation parallel to the x-axis and ψ is a glide reflection along the line x = 1/2.
Show that ϕ and ψ are homeomorphisms of R2, ψ ◦ ϕ = ϕ−1 ◦ ψ so that G := {ϕmψ2nψε :
m,n ∈ Z, ε ∈ {0, 1}} is a group of homeomorphisms of R2. Show that Y/G is homeomorphic
to the Klein bottle.

Ex. 27. Can you identify the quotient spaces X/G?
(a) Let S1 ⊂ C act on S2 via rotations about the z-axis.
(b) Let Zn act on S2 via rotations by an angle which is a multiple of 2π/n.
(c) Let O(n), the orthogonal group, act on Rn via the usual linear action.
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Ex. 28 (Lens Spaces). Consider S3 ⊂ C2. Let p and q be relatively prime integers. Let
a generator g ∈ Zp act on S3 by g · (z1, z2) := (e2πi/pz1, e

2πqi/pz2). The quotient space is
denoted by L(p, q) and called a Lens space. Show that L(2, 1) is homeomorphic to P3(R). If
p divides q − q′, then L(p, q) is homeomorphic to L(p, q′).

If L(p, q) and L(p′, q′) are homeomorphic then p = p′. Hint: What is the fundamental
group of X/G if X is simply connected and G acts properly discontinuosly? (G acts properly
discontinuously on X if for any x ∈ X there exists a neighbourhood U of x such that g·U∩U =
∅ for every g 6= e in G.)

Ex. 29. Let X := Rn \ {0}. Fix any real number α /∈ {0,±1}. Let G := Z act on X by
m · x := αmx. Show that G acts properly discontinuously. Identify the quotient X/G.

Hausdorff Quotient Spaces

Definition 30. Let ∼ be an open equivalence on a space X. For any set A ⊂ X, we let
[A] stand for the set of all elements x ∈ X which are equivalent to some element of A. The
equivalence is called open if [A] is open whenever A is open in X.

Ex. 31. An equivalence relation ∼ on a topological space is open iff the quotient map
π : X → X/∼ is open. Hint: Observe that [A] = π−1(π(A)).

Proposition 32. Let ∼ be an equivalence on a topological space X. Then R := {(x, y) : x ∼
y} is closed in X ×X iff the quotient space X/∼ is hausdorff.

Proof. Assume that X/∼ is hausdorff and that (x, y) /∈ R. Then there exist disjoint neigh-
bourhoods U of π(x) and V of π(y). We denote by Ũ and Ṽ the open sets π−1(U) and
π−1(V ), which contain x and y respectively. If the open set Ũ × Ṽ containing (x, y) intersects
R, then it must contain a point (x′, y′) for which x′ ∼ y′, so that π(x′) = π(y′), contrary to
the assumption that U ∩ V = ∅. This contradiction shows that Ũ × Ṽ does not intersect R.
Hence R is closed.

Conversely, suppose that R is closed. Given any distinct pair of points π(x) and π(y) in
X/∼, there is an open set of the form Ũ × Ṽ containing (x, y) and having no points in R. It
follows that U := π(Ũ) and V := π(Ṽ ) are disjoint. Exer. 31 and hypothesis imply that U
and V are open. Thus X/∼ is hausdorff.

Example 33. We show a typical application of the last result by proving that Pn(R) is
hausdorff. Let X = Rn+1 \ {0}. Let the equivalence be as in (e) of Exer. 15. We first show
that π : X → Pn(R)is open. If α ∈ R is nonzero, the map ϕα : X → X given be ϕα(x) = αx
is a homeomorphism. If U ⊂ X is open, then [U ] = ∪ϕα(U) where the union is taken over all
nonzero reals. Since each ϕα(U) is open, their union [U ] is also open. By Exer. 31, π is open.

We now show that Pn(R) is hausdorff. Consider the function f : X ×X → R is given by
f(x, y) :=

∑
i 6=j(xiyj−xjyi)2. Then f is continuous and vanishes iff y = αx for some nonzero

real α, that is, iff x ∼ y. Thus R = {(x, y) : x ∼ y} = f−1(0) is a closed subset of X ×X. By
Prop. 32, Pn(R) is hausdorff.
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Collapsing and Attaching

We now discuss two construction which are very important Algebraic Topology and which
arise as quotient spaces.

Example 34. Let A be a nonempty subset of a topological space. Define ∼ to be the
equivalence relation on X that identifies all points of A with each other:

x ∼ y ⇐⇒ (x = y) or (x ∈ A and y ∈ A).

The points of the quotient set X/ ∼ are the singletons {x} for x /∈ A and the distinguished
point A. The quotient space is most often denoted by X/A. One says that it is obtained by
collapsing A to a single point.

Let π : X → X/A be the quotient map. Then π maps the open subspace x \A of X onto
the complement (X \ A) \ {A} of the special point A of X/A. Thus the complement of A in
X/A is open, as its inverse image under π is X \A.

In fact, π induces a homeomorphism X \A ∼= (X/A)\{A}. Note that the continuous map
π is one-one on X \ A. If U ⊂ (X \ A) is open in X \ A, then π−1(π(U)) = U is open in X.
Therefore, π(U) is open in X/A. We thus see that X/A contains a point whose complement
is the same as X \A topologically.

We now consider a specific example. Let X = B[0, 1] ⊂ R2, the closed unit disc in the
plane and A = S1, its boundary. Can you imagine what the quotient space look like? Imagine
a circular piece of rubber with a drawstring along its boundary. When the string is drawn
tight, a kind of spherical bag results. Therefore, we should expect X/A ∼= S2, the unit sphere
in R3.

How do we prove this rigorously? Let p be the north pole of S2. Geometrically thinking,
can we find a map f : X → S2 that sends each point of S1 to p and maps X \ S2 injectively
onto S2 \ {p}? The induced map on X/A would be as required. Look at the closed unit disk
D := {(x, y, z) ∈ R2 : x2 + y2 ≤ π, z = −1} in the plane tangent to S2 at the south pole −p.
We wrap it S2 by wrapping each radial line segment in this disk onto a meridian of S2. If you
still remember cylindrical and spherical coordinates, what we plan to do is to send a point
P ∈ D with cylindrical coordinates (r, θ,−1) to a point on S2 whose spherical coordinates
are (1, π − r, θ). Thus f will be the composite of two maps: one is the homeomorphism
(x, y) 7→ (πx, πy,−1) of X onto D and the second is as described earlier. Since the resulting
map is from a compact space to a Hausdorff space, it is closed. It is clearly continuous.

Example 35. Let X and Y be topological spaces and A ⊂ X be nonempty and closed.
Let f : A→ Y continuous. Imagine joining X and Y together by gluing each point a ∈ A to
f(a) ∈ Y . The resulting space should be a topological space Z which contains (homeomorphic)
copies of X \ A and Y in which each y ∈ f(A) represents an identification of all a ∈ f−1(y)
with y. Our aim is to construct such a space.

Before doing this, we need the notion of sum of two topological spaces. Consider two
topological spaces X and Y . Assume that as sets they are disjoint. Consider the union
Z = X ∪ Y . We wish to endow a topology on Z in an obvious manner: call W ⊂ Z open iff
W ∩X and W ∩Y are open in X and Y respectively. Note that this is the same as saying any
open set W ⊂ Z is of the form W = U ∪V with U and V being open in X and Y respectively.
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One easily shows that this defines a topology on Z in such a way that both X and Y are
open subspaces in Z. The space Z is called the topological sum of X and Y

If X and Y are not disjoint, we resort to a standard trick. In stead of X and Y , we
consider X1 := X × {1} and Y := Y × {2}. The open sets of X1 are U × {1}. Similarly, we
define open sets in Y1. Clearly, X1

∼= X and Y1 ∼= Y . Let Z be the topological sum of X1

and Y1. The space Z is denoted as X1 + Y1. Via the maps x 7→ (x, 1) and y 7→ (y, 2), we see
that X and Y are open subsets of Z.

Let us now return to our original notation. Let us first assume that X and Y are disjoint.
Then the space X + Y contains both X and Y as open, closed subspaces. We define an
equivalence relation ∼ on X + Y as follows:

u ∼ v ⇐⇒ (u = v) or (u ∈ A & v = f(u)) or (v ∈ A & u = f(v))

or (u ∈ A & v ∈ A & f(u) = f(v)).

We let Z = (X + Y )/ ∼. The standard notation for Z is X ∪f Y . We say that X ∪f Y is
obtained by attaching X to Y by f . The map f is called the attaching map.

We now show that X ∪f Y has the desired properties. Let π : X + Y → X ∪f Y be the
quotient map. Clearly, π(a) = π(f(a)) for any a ∈ A. Also, we have

X ∪f Y = π(X) ∪ π(Y ) = π(X \A) ∪ π(A) ∪ π(Y ),

as well as
π(X) ∩ π(Y ) = π(A) = π(f(A)).

We make the following claims: (i) π(Y ) is closed in X ∪f Y and π maps Y homeomorphically
onto π(Y ), (ii) π(X \A) is open in X∪f Y and π maps X \A homeomorphically onto π(X \A).

Proof of Claim (i): The set π(Y ) is closed since π−1(π(Y )) = A ∪ Y is closed in X + Y .
The restriction of π to Y is continuous and injective. If F is closed in Y , then π(F ) is closed
in π(Y ) since π−1(π(F )) = A ∪ F is closed in X + Y . This proves (i). The proof of (ii) is
similar.

We now take up a specific example. Let X = [0, 1] and A = {0, 1}. Let Y = B[0, 1], the
closed unit disk in R2. Let f : A → Y be such that f(0) = f(1) = 0 ∈ Y . Can you imagine
the space X ∪f Y ? It looks line a circle touching a unit disk tangentially at the origin of the
disk. More precisely, we show that X ∪f Y is homeomorphic to the subspace

Z = {(x, y, z) ∈ R3 : z = 0, x2 + y2 ≤ 1} ∪ {(x, y, z) ∈ R3 : x = 0, y2 + (z − 1)2 = 1}.

See Figure??? To complete the proof, consider the map g : X + Y → Z given by

g(x) = (0, sin 2πx, 1− cos 2πx), for x ∈ X,
g(y) = (y1, y2, 0), for y ∈ Y.

The general case is done considering X1 and Y1 as earlier and form their sum. Let
h : X → X1+Y1 and k : Y → X1+Y1 be the imbeddings defined earlier. Define an equivalence
relation on X1 + Y1 using these imbeddings and so on. The details are left to the reader.
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