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Ex. 1. Let A: R”™ — R" be linear. Let f(v) := (Av,v) for v € R". Then f is differentiable
and f'(v)(h) = (Av, h) + (A*v, h). Hint: Consider

F(o+h) = F(v) = (Av, b + (A%, h) +2 (AR, h)
Use continuity of A to conclude that

f(’U + h) — f(v) — (<A’U,h> + <A*1), h>)
IR ]]

—0

as [[h|| — 0.
Definition 2. Let v € R™ be nonzero. The Rayleigh quotient of v w.r.t. A is
(Av,v)

R(v) := oo

Note that R(v) = R(tv) for any 0 # t € R. Hence we may consider R as a function on the
sphere S :={u € R" : ||u|| = 1}.

Ex. 3. R attains maximum and minimum values on R™ \ {0}.

Ex. 4. R is differentiable and we have

Av + A*v — 2R(v)v, h)
(v,0) '

Hint: Note that R can be thought of f/g where f(v) := (Av,v) and g(v) := (v,v). Apply
Ex. 1 and the quotient rule.

R@)(h) =

Ex. 5. Let A be symmetric: (Av, w) = (v, Aw). Let R be its Rayleigh quotient. Let v be a
critical point of R. (Why does it exist?) Then v is an eigen vector of A. Conversely, if v is
a nonzero eigen vector of A, then v is a critical point of R. Deduce the spectral theorem for
symmetric maps: There exists an orthonormal basis consisiting og eigen vectors. Hint: Note
that R'(v) = 0 iff 24v = R(v)v and that (Rv)* is invariant under A. Apply induction.

Ex. 6. Let A be orthogonal. Then A has at least one invariant subspace of dimension 1 or
2. Hint: If v is a critical point of R, then Av + A*v — 2R(v)v = 0 so that the three vectors
Av, A*v = A~ and R(v)v are linearly dependent.



Ex. 7. Let A be orthogonal and V' C R” be an invariant vector subspace. Then V= is also
A invariant.

Ex. 8. Show that the only orthogonal linear maps of R are the identity map and the negative
of the identity map.

Definition 9. Recall the classification of orthogonal linear maps of R?: they are either
rotations or reflections across a line through the origin. If A is orthogonal on R™ and if
P C R" is a two dimensional vector subspace invariant under A, then we say it is a rotation
(resp. reflection) plane according as whether the restriction of A to P is a rotation or a
reflection.

Theorem 10. Ifn > 3 and A: R™ — R" is orthogonal, then A has a rotation plane.

Proof. Let n = 3. Then there exists a two dimensional vector subspace V invariant under A
(by Ex. 6 and Ex. 7). If the restriction of A is not a rotation, then V' has a one dimensional
subspace L w.r.t. which A |y is a reflection. If V+ denotes the one dimensional orthogonal
complement of L in R3, then A |, . is either the identity or a reflection w.r.t. the origin. (See
Ex. 8.) In the first case, span {L UV} is rotation plane.

Let n = 4. Let V be an invariant vector subspace of A. If dimV = 1, then dimV+ = 3
and by the last paragraph, we are through. If dimV = 2, and if A |y is a rotation we are
through. If both V and V- are reflection planes, then span {LUM} is a rotation plane, where
L (resp. M) is the line of reflection.

Now the proof is completed by induction. ]

Ex. 11. Let A: R® — R"™ be orthogonal. Then

(a) If n = 2k + 1, then R" is the orthogonal direct sum of k rotation planes and an
invariant line.

(b) If n = 2(k + 1), then R™ is the orthogonal direct sum of k& rotation planes and an
invariant plane.
Hint: Induction.

Ex. 12. Any orthogonal linear transformation of R™ can be expressed as a composition of
atmost n reflections. Hint: Induction.



