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Ex. 1. Let A : Rn → Rn be linear. Let f(v) := 〈Av, v〉 for v ∈ Rn. Then f is differentiable
and f ′(v)(h) = 〈Av, h〉+ 〈A∗v, h〉. Hint: Consider

f(v + h)− f(v) = 〈Av, h〉+ 〈A∗v, h〉+ 2 〈Ah, h〉 .

Use continuity of A to conclude that

f(v + h)− f(v)− (〈Av, h〉+ 〈A∗v, h〉)
‖h‖

→ 0

as ‖h‖ → 0.

Definition 2. Let v ∈ Rn be nonzero. The Rayleigh quotient of v w.r.t. A is

R(v) :=
〈Av, v〉
〈v, v〉

.

Note that R(v) = R(tv) for any 0 6= t ∈ R. Hence we may consider R as a function on the
sphere S := {u ∈ Rn : ‖u‖ = 1}.

Ex. 3. R attains maximum and minimum values on Rn \ {0}.

Ex. 4. R is differentiable and we have

R′(v)(h) =
〈Av + A∗v − 2R(v)v, h〉

〈v, v〉
.

Hint: Note that R can be thought of f/g where f(v) := 〈Av, v〉 and g(v) := 〈v, v〉. Apply
Ex. 1 and the quotient rule.

Ex. 5. Let A be symmetric: 〈Av,w〉 = 〈v,Aw〉. Let R be its Rayleigh quotient. Let v be a
critical point of R. (Why does it exist?) Then v is an eigen vector of A. Conversely, if v is
a nonzero eigen vector of A, then v is a critical point of R. Deduce the spectral theorem for
symmetric maps: There exists an orthonormal basis consisiting og eigen vectors. Hint: Note
that R′(v) = 0 iff 2Av = R(v)v and that (Rv)⊥ is invariant under A. Apply induction.

Ex. 6. Let A be orthogonal. Then A has at least one invariant subspace of dimension 1 or
2. Hint: If v is a critical point of R, then Av + A∗v − 2R(v)v = 0 so that the three vectors
Av, A∗v = A−1v and R(v)v are linearly dependent.
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Ex. 7. Let A be orthogonal and V ⊂ Rn be an invariant vector subspace. Then V ⊥ is also
A invariant.

Ex. 8. Show that the only orthogonal linear maps of R are the identity map and the negative
of the identity map.

Definition 9. Recall the classification of orthogonal linear maps of R2: they are either
rotations or reflections across a line through the origin. If A is orthogonal on Rn and if
P ⊂ Rn is a two dimensional vector subspace invariant under A, then we say it is a rotation
(resp. reflection) plane according as whether the restriction of A to P is a rotation or a
reflection.

Theorem 10. If n ≥ 3 and A : Rn → Rn is orthogonal, then A has a rotation plane.

Proof. Let n = 3. Then there exists a two dimensional vector subspace V invariant under A
(by Ex. 6 and Ex. 7). If the restriction of A is not a rotation, then V has a one dimensional
subspace L w.r.t. which A |V is a reflection. If V ⊥ denotes the one dimensional orthogonal
complement of L in R3, then A |L⊥ is either the identity or a reflection w.r.t. the origin. (See
Ex. 8.) In the first case, span {L ∪ V ⊥} is rotation plane.

Let n = 4. Let V be an invariant vector subspace of A. If dimV = 1, then dimV ⊥ = 3
and by the last paragraph, we are through. If dimV = 2, and if A |V is a rotation we are
through. If both V and V ⊥ are reflection planes, then span {L∪M} is a rotation plane, where
L (resp. M) is the line of reflection.

Now the proof is completed by induction.

Ex. 11. Let A : Rn → Rn be orthogonal. Then
(a) If n = 2k + 1, then Rn is the orthogonal direct sum of k rotation planes and an

invariant line.
(b) If n = 2(k + 1), then Rn is the orthogonal direct sum of k rotation planes and an

invariant plane.
Hint: Induction.

Ex. 12. Any orthogonal linear transformation of Rn can be expressed as a composition of
atmost n reflections. Hint: Induction.

2


