Raleigh Quotients and Spectral Theorems

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Ex. 1. Let $A: \mathbb{R}^n \to \mathbb{R}^n$ be linear. Let $f(v) := \langle Av, v \rangle$ for $v \in \mathbb{R}^n$. Then f is differentiable and $f'(v)(h) = \langle Av, h \rangle + \langle A^*v, h \rangle$. *Hint:* Consider

$$f(v+h) - f(v) = \langle Av, h \rangle + \langle A^*v, h \rangle + 2 \langle Ah, h \rangle$$

Use continuity of A to conclude that

$$\frac{f(v+h) - f(v) - (\langle Av, h \rangle + \langle A^*v, h \rangle)}{\|h\|} \to 0$$

as $||h|| \to 0$.

Definition 2. Let $v \in \mathbb{R}^n$ be nonzero. The *Rayleigh quotient* of v w.r.t. A is

$$R(v) := \frac{\langle Av, v \rangle}{\langle v, v \rangle}.$$

Note that R(v) = R(tv) for any $0 \neq t \in \mathbb{R}$. Hence we may consider R as a function on the sphere $S := \{u \in \mathbb{R}^n : ||u|| = 1\}.$

Ex. 3. R attains maximum and minimum values on $\mathbb{R}^n \setminus \{0\}$.

Ex. 4. R is differentiable and we have

$$R'(v)(h) = \frac{\langle Av + A^*v - 2R(v)v, h \rangle}{\langle v, v \rangle}.$$

Hint: Note that R can be thought of f/g where $f(v) := \langle Av, v \rangle$ and $g(v) := \langle v, v \rangle$. Apply Ex. 1 and the quotient rule.

Ex. 5. Let A be symmetric: $\langle Av, w \rangle = \langle v, Aw \rangle$. Let R be its Rayleigh quotient. Let v be a critical point of R. (Why does it exist?) Then v is an eigen vector of A. Conversely, if v is a nonzero eigen vector of A, then v is a critical point of R. Deduce the spectral theorem for symmetric maps: There exists an orthonormal basis consisiting og eigen vectors. *Hint:* Note that R'(v) = 0 iff 2Av = R(v)v and that $(\mathbb{R}v)^{\perp}$ is invariant under A. Apply induction.

Ex. 6. Let A be orthogonal. Then A has at least one invariant subspace of dimension 1 or 2. *Hint:* If v is a critical point of R, then $Av + A^*v - 2R(v)v = 0$ so that the three vectors Av, $A^*v = A^{-1}v$ and R(v)v are linearly dependent.

Ex. 7. Let A be orthogonal and $V \subset \mathbb{R}^n$ be an invariant vector subspace. Then V^{\perp} is also A invariant.

Ex. 8. Show that the only orthogonal linear maps of \mathbb{R} are the identity map and the negative of the identity map.

Definition 9. Recall the classification of orthogonal linear maps of \mathbb{R}^2 : they are either rotations or reflections across a line through the origin. If A is orthogonal on \mathbb{R}^n and if $P \subset \mathbb{R}^n$ is a two dimensional vector subspace invariant under A, then we say it is a rotation (resp. reflection) plane according as whether the restriction of A to P is a rotation or a reflection.

Theorem 10. If $n \ge 3$ and $A: \mathbb{R}^n \to \mathbb{R}^n$ is orthogonal, then A has a rotation plane.

Proof. Let n = 3. Then there exists a two dimensional vector subspace V invariant under A (by Ex. 6 and Ex. 7). If the restriction of A is not a rotation, then V has a one dimensional subspace L w.r.t. which $A \mid_V$ is a reflection. If V^{\perp} denotes the one dimensional orthogonal complement of L in \mathbb{R}^3 , then $A \mid_{L^{\perp}}$ is either the identity or a reflection w.r.t. the origin. (See Ex. 8.) In the first case, span $\{L \cup V^{\perp}\}$ is rotation plane.

Let n = 4. Let V be an invariant vector subspace of A. If dim V = 1, then dim $V^{\perp} = 3$ and by the last paragraph, we are through. If dim V = 2, and if $A \mid_V$ is a rotation we are through. If both V and V^{\perp} are reflection planes, then span $\{L \cup M\}$ is a rotation plane, where L (resp. M) is the line of reflection.

Now the proof is completed by induction.

Ex. 11. Let $A: \mathbb{R}^n \to \mathbb{R}^n$ be orthogonal. Then

(a) If n = 2k + 1, then \mathbb{R}^n is the orthogonal direct sum of k rotation planes and an invariant line.

(b) If n = 2(k + 1), then \mathbb{R}^n is the orthogonal direct sum of k rotation planes and an invariant plane.

Hint: Induction.

Ex. 12. Any orthogonal linear transformation of \mathbb{R}^n can be expressed as a composition of atmost *n* reflections. *Hint:* Induction.