Rank Theorem

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Let $A: \mathbb{R}^m \to \mathbb{R}^n$ be linear. Assume that the rank of A is r. Then we can choose bases for \mathbb{R}^m and \mathbb{R}^n in such a way that the matrix representation of A with respect to the bases looks like $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$. To prove this, let us choose a basis $\{w_1, \ldots, w_r\}$ of the image of A. We choose $v_i \in \mathbb{R}^m$ such that $Av_i = w_i, 1 \leq i \leq r$. We now choose a basis $\{v_{r+1}, \ldots, v_m\}$ of the kernel of A. It is easy to see that $\{v_i: 1 \leq i \leq n\}$ is a basis of \mathbb{R}^m . We extend the set $\{w_i: 1 \leq i \leq r\}$ of linearly independent vectors to a basis of \mathbb{R}^n . Then $\{v_i: 1 \leq i \leq m\}$ and $\{w_j: 1 \leq j \leq n\}$ are bases of \mathbb{R}^m and \mathbb{R}^n as required. Note that if we use the system of coordinates given rise to by these bases, then the linear map A is the map $(x_1, \ldots, x_m) \mapsto (x_1, \ldots, x_r, 0, \ldots, x_r)$.

The rank theorem says that if $f: \mathbb{R}^m \to \mathbb{R}^n$ is smooth and has constant rank r in a neighbourhood of a point $p \in \mathbb{R}^m$, then there exist local coordinates around p and f(p) with respect which the map is represented as $(x_1, \ldots, x_m) \mapsto (x_1, \ldots, x_r, 0, \ldots, 0)$. To make this precise, we need the following

Definition 1. Let $U \subset \mathbb{R}^m$ be open. Let $f: U \to \mathbb{R}^m$ be smooth and $p \in U$. If Df(p) is nonsingular, then by the inverse mapping theorem, there exists a neighbourhood U' of p in U such that f maps U' bijectively onto an open set f(U') and $f^{-1}: U' \to U$ is smooth. Thus f is a local diffeomorphism at p. We say that f is a local coordinate system at p: for, if we define $y_i(p') := \langle f(p'), e_i \rangle$, for $p' \in U'$, then we have a new system of coordinates on U'.

Theorem 2 (Rank Theorem). Let $U \subset \mathbb{R}^m$ be open. Let $f: U \to \mathbb{R}^n$ be smooth. If the derivative Df(p') has a constant rank r in a neighbourhood of $p \in U$, then there is a local coordinate system g around p and a local coordinate system h at q := f(p) such that

$$h \circ f \circ g^{-1}$$
: $(x_1, \ldots, x_m) \mapsto (x_1, \ldots, x_r, 0, \ldots, 0).$

Proof. Without loss of generality, we may assume that $p = 0 \in \mathbb{R}^m$ and $f(p) = 0 \in \mathbb{R}^n$. We write $f = (f_1, \ldots, f_n)$. Reindexing the variables, if necessary, we may assume that the matrix $J_1 := (\frac{\partial f_i}{\partial x_j})_{1 \leq i,j \leq r}$ is has nonzero determinant at 0.

We define

$$F(x_1,...,x_m) = (f_1(x),...,f_r(x),x_{r+1},...,x_m).$$

Then the Jacobian of F is $\begin{pmatrix} J_1 & * \\ 0 & I_{m-r} \end{pmatrix}$. Its determinant is the same as that of J_1 and hence is nonzero. The map F therefore gives rise to a local diffeomorphism g at 0 and therefore to

a local coordinate system g. We observe that the map $\varphi := f \circ g^{-1}$ is given by

$$(z_1,\ldots,z_m)\mapsto (z_1,\ldots,z_r,\varphi_{r+1}(z),\ldots,\varphi_n(z)).$$

The Jacobian of $f \circ g^{-1}$ is of the form $\begin{pmatrix} I_r & 0 \\ * & A(z) \end{pmatrix}$ where $A(z) = (\frac{\partial \varphi_i}{\partial z_j})_{r+1 \le i \le n, r+1 \le j \le m}$. We have so far used the fact that the rank of f is at least r and used this information to find a new system of coordinates in the domain space.

Since we have $\operatorname{Rank}(Df) = \operatorname{Rank}(D(f \circ g^{-1})) = r$ in an open set W containing $0 \in \mathbb{R}^m$, we must have

$$\frac{\partial \varphi_i}{\partial z_j} = 0, \text{ on } W, \text{ for } r+1 \le i \le n, r+1 \le j \le m.$$
(1)

We write $y = (y_1, \ldots, y_n) \in \mathbb{R}^n = \mathbb{R}^r \times \mathbb{R}^{n-r}$ as y = (u, v). Consider now the map h defined in a neighbourhood of $0 \in \mathbb{R}^n$ by

$$(u,v) := (y_1,\ldots,y_n) \mapsto (u,y_{r+1} - \varphi_{r+1}(u,0),\ldots,y_n - \varphi_n(u,0)).$$

The Jacobian of h is of the form $\begin{pmatrix} I_r & 0 \\ * & I_{n-r} \end{pmatrix}$. Thus h gives rise to a system of local coordinates at $0 \in \mathbb{R}^n$. We also find that the map $h \circ f \circ g^{-1}$ is represented by

$$\begin{aligned} (z_1, \dots, z_m) &\mapsto (z_1, \dots, z_r, \varphi_{r+1}(z), \dots, \varphi_n(z)) \\ &\mapsto (z_1, \dots, z_r, \varphi_{r+1}(z) - \varphi_{r+1}(z_1, \dots, z_r, 0, \dots, 0), \dots, \\ &\varphi_n(z) - \varphi_n(z_1, \dots, z_r, 0, \dots, 0)) \,. \end{aligned}$$

If we now restrict ourselves to a sufficiently small open ball around $0 \in \mathbb{R}^m$, then

$$\varphi_i(z_1, \dots, z_n) - \varphi_i(z_1, \dots, z_r, 0, \dots, 0) = 0$$
, for $r+1 \le i \le n_i$

in view of (1). Therefore we conclude the map $h \circ f \circ g^{-1}$ is represented on this neighbourhood by

$$(z_1,\ldots,z_m)\mapsto (z_1,\ldots,z_r,0,\ldots,0).$$

An immediate corollary is when f is of maximal rank at a point p, since in such a case, f is of constant rank in a neighbourhood of p. (Why?) Applying the rank theorem to this situation yields the following

Corollary 3. Let $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$ be smooth. Assume that f is of maximal rank at $p \in U$.

Case (1): Df(p) is one-one. Then there exist local coordinate systems around p and q := f(p) such that the map f is represented as $(z_1, \ldots, z_m) \mapsto (z_1, \ldots, z_m, 0, \ldots, 0)$. That is, f looks like the restriction of canonical inclusion of \mathbb{R}^m to \mathbb{R}^n with respect to the new systems of coordinates.

Case (2): Df(p) is onto. Then there exist local coordinate systems around p and q := f(p)such that the map f is represented as $(z_1, \ldots, z_m) \mapsto (z_1, \ldots, z_n)$. That is, f looks like the restriction of canonical projection of \mathbb{R}^m to \mathbb{R}^n with respect to the new systems of coordinates. In particular, f is open on a neighbourhood of p.