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• Basic LUB Property

1. Sets bounded above and below, LUB Property of R.

2. Archimedean property of N. Two versions.

3. Density of rational numbers in R. Density of irrational numbers in R.

4. The non-existence of solutions of X2 = 2 in Q.

5. Existence and uniqueness of non-negative n-th roots of non-negative real numbers.

6. Nested interval theorem.

• Sequences and their convergence

1. Definition of sequences and their convergence. Importance of looking at the con-
vergence definition geometrically.

2. Uniqueness of the limit.

3. If xn → x and xn ≥ 0, then x ≥ 0.

4. Sandwich Lemma. Let (xn) , (yn) and (zn) be sequences such that (i) xn → α and
yn → α and (ii) xn ≤ zn ≤ yn. Then zn → α.

5. Some examples of convergent sequences.

6. Bounded sequences; every convergent sequence is bounded.

7. We showed: The sequence ((−1)n) = (−1, 1,−1, 1, . . .) is bounded but not conver-
gent.

8. Let (xn) be such that xn → x. Assume that x 6= 0. Then there exists N such that
for all n ≥ N , we have |xn| ≥ |x|/2.

We proved this in two ways. One geometric which looked at cases when x is positive
and negative. The second one used triangle inequality.

9. Algebra of convergent sequences: Let xn → x, yn → y and α ∈ R. Then

(a) xn + yn → x+ y.

(b) αxn → αx.

(c) xn · yn → xy.
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(d) 1
xn
→ 1

x provided that x 6= 0. By Item 8, the terms 1/xn make sense for all
sufficiently large n.

10. Let (an) be bounded and (xn) converge to 0. Then anxn → 0.

11. Let (xn) be increasing. Then it is convergent iff it is bounded above.

12. Let (xn) be decreasing. Then it is convergent iff it is bounded below.

13. Some Important Limits.

(a) Let 0 ≤ r < 1 and xn := rn. Then xn → 0.

(b) Let xn → `. Fix N ∈ N. Define yn := xn if n > N . Let yk be any real number
for 1 ≤ k ≤ N . Then yn → x.

(c) xn → 0 iff |xn| → 0.

(d) Let −1 < t < 1. Then tn → 0.

(e) Let |r| < 1. Then nrn → 0.

(f) n1/n → 1.

(g) Fix a ∈ R. Then an

n! → 0.

(h) Let a > 0. Then a1/n → 1. Hint: f a > 1 then 1 ≤ a1/n ≤ n1/n for n ≥ a.

14. Definition of divergence to ∞ (or to −∞). We showed that (n!)1/n diverges to ∞.

15. Let xn → 0. Let (sn) be the sequence of arithmetic means (or averages) defined
by sn := x1+···+xn

n . Then sn → 0.

16. Let xn → x. Then the sequence (sn) of arithmetic means converges to x.

17. Let a ∈ R. Consider x1 = a, x2 = 1+a
2 , and by induction xn := 1+xn−1

2 . Then
xn → 1.

18. Definition of a subsequence. (Do you recall it?) Most important observation:
nk ≥ k for all k.

19. If xn → x, and if (xnk
) is a subsequence, then xnk

→ x as k →∞.

20. We looked at the sequence a1/n again.

21. Given any sequence (xn) there exists a monotone subsequence.

22. Bolzano-Weierstrass Theorem: If (xn) is a bounded sequence, it has a convergent
subsequence.

23. Definition of a Cauchy sequence of real numbers. Any Cauchy sequence is bounded.

24. Let (xn) be Cauchy. Let a subsequence (xnk
) converge to x. Then xn → x.

25. A real sequence (xn) is Cauchy iff it is convergent.

26. Given any real number x there exist sequences (sn) of rational numbers and (tn)
of irrational numbers such that sn → x and tn → x.

• Continuity

1. Sequential definition of continuity.

2. Examples of continuous functions such as f(x) = x2, f(x) = 1/x.

3. The characteristic function of Q defined by f(x) = 1 if x ∈ Q and 0 if x /∈ Q is not
continuous at any point of R.
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4. Algebra of continuous functions: Let f, g : (a, b) → R be continuous at c ∈ (a, b).
Let α ∈ R. Then

(a) f + g is continuous at c.

(b) αf is continuous at c. (In view of these two properties, the set of functions
from (a, b)→ R continuous at c is a real vector space.)

(c) The product fg is continuous at c.

(d) If we further assume f(c) 6= 0, then 1/f is continuous at c.

(e) |f | is continuous at c.

(f) Let h(x) := max{f(x), g(x)}. Then h is continuous at c. Similarly, the func-
tion k(x) := min{f(x), g(x)} is continuous at c. Hint: Observe that for any two
real numbers max{a, b} = [(a+b)+|a−b|]/2 and min{a, b} = [(a+b)−|a−b|]/2.

(g) Let f : (a, b) → R be continuous at c. Assume that f(c) ∈ (α, β) and that
g : (α, β)→ R is continuous at f(c). Then the composition g ◦ f is continuous
at c.

5. Sequential definition of continuity is equivalent to the ε-δ definition of continuity.

6. Some examples to work with ε-δ definition: f(x) = xn, g(x) = 1/x for x > 0 and
h(x) = 1/x for x ≥ 1.

7. Let f(x) := x if x ∈ Q and f(x) = 0 if x /∈ Q. Then f is continuous only at x = 0.

8. Let f : R→ R be continuous. Assume that f(r) = 0 for r ∈ Q. Then f = 0.

9. Let f, g : R→ R be continuous. If f(x) = g(x) for x ∈ Q, then f = g.

10. Let f : R → R be continuous which is also an additive homomorphism, that is,
f(x+ y) = f(x) + f(y) for all x, y ∈ R. Then f(x) = λx where λ = f(1).

11. Consider f : (0, 1) → R defined by f(x) = 1/q if x = p/q in reduced form and
f(x) = 0 if x /∈ Q. Then f is continuous only at the irrationals.

12. Let f(x) =

{
x sin(1/x) if x 6= 0

0 if x = 0
. Show that f is continuous at 0.

13. Let f : (a, b) → R be continuous at c with f(c) 6= 0. Then there exists δ > 0 such
that f(x) > |f(c)|/2 for all x ∈ (c− α, c+ δ).

14. Let f : R → R be defined by f(x) = x − [x], where [x] stands for the greatest
integer less than or equal to x. At what points f is continuous? Hint: Draw a
picture.

15. Let f : R→ R be defined by f(x) = min{x− [x], 1 + [x]−x}, that is, the minimum
of the distances of x from [x] and [x] + 1. At what points f is continuous? Hint:
Draw a picture.

16. If A ⊂ R is a nonempty subset, define f(x) := inf{|x − a| : a ∈ A}. Then f is
continuous.

• Two important Results:

1. Intermediate Value Theorem. Let f : [a, b]→ R be a continuous function such
that f(a) < 0 < f(b). Then there exists c ∈ (a, b) such that f(c) = 0.

We gave two proofs of this result. One used the nested interval theorem and the
other LUB property.
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Let g : [a, b] → R be a continuous function. Let λ be a real number between g(a)
and g(b). Then there exists c ∈ (a, b) such that g(c) = λ.

2. Weierstrass Theorem.Let f : [a, b] → R be a continuous function. Then f is
bounded. In fact, there exists x1, x2 ∈ [a, b] such that f(x1) ≤ f(x) ≤ f(x2) for
all x ∈ [a, b]. (In other words, a continuous function f on a closed and bounded
interval is bounded and attains its maximum and minimum.)

We proved the boundedness of f in three way: (i) Sequences and Bolzano-Weiestrass
theorem (ii) LUB Property and (iii) Nested interval theorem.

• Applications of the two important results.

1. Let f : [a, b]→ [a, b] be continuous. Then there exists x ∈ [a, b] such that f(x) = x.

2. Prove that x = cosx for some x ∈ (0, π/2).

3. Prove that xex = 1 for some x ∈ (0, 1).

4. Let f : R→ R be continuous taking values in Q. Then f is a constant.

5. Let f : [a, b] → R be a nonconstant continuous function. Show that f([a, b]) is
uncountable.

6. Let f : [0, 1]→ R be continuous. Assume that the image of f lies in [1, 2] ∪ (5, 10)
and that f(1/2) ∈ [0, 1]. What can you conclude about the image of f?

7. Existence of n-th roots: Let α ≥ 0 and n ∈ N be given. Then there exists x ≥ 0
such that xn = α.

8. Let f : [0, 2π] → [0, 2π] be continuous such that f(0) = f(2π). Show that there
exists x ∈ [0, 2π] such that f(x) = f(x+ π).

9. Let p(X) be an odd degree polynomial with real coefficients. Then p has a real
root.

10. Let p be a real polynomial function of odd degree. Show that p : R→ R is onto.

11. Show that x4 + 5x3 − 7 has two real roots.

12. Let p(X) := a0 +a1X + · · ·+anX
n. If a0aN < 0, show that p has at least two real

roots.

13. Let J be an interval and f : J → R be continuous and 1-1. Then f is strictly
monotone.

14. Let I be an interval and f : I → R be strictly monotone. If f(I) is an interval,
show that f is continuous.

15. Use the last item to conclude that the function x 7→ x1/n from [0,∞) → [0,∞) is
continuous.

16. Let f : [a, b] → R be continuous. Show that f([a, b]) = [c, d]. Can you “identify”
c, d?

17. Does there exists a continuous function f : [0, 1]→ (0,∞) which is onto?

18. Let f : [a, b] → R be continuous such that f(x) > 0 for all x ∈ [a, b]. Show that
there exists δ such that f(x) > δ for all x ∈ [a, b].

19. Does there exists a continuous function f : [a, b]→ (0, 1) which is onto?
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20. Let f : R → R be continuous. Assume that f(x) → 0 as |x| → ∞. (Do you
understand this?) Show that there exists c ∈ R such that either f(x) ≤ f(c) or
f(x) ≥ f(c) for all x ∈ R. Give an example of a function in which only one of
these happens.

21. Are there continuous functions f : R→ R such that

f(x) /∈ Q for x ∈ Q and f(x) ∈ Q for x /∈ Q?

22. Let f : R→ R be a function such that (i) f(R) ⊂ (−2,−1)∪ [1, 5) and (ii) f(0) = e.
Can you give ‘realistic bounds’ for f?

• Sequences in Rn

1. Review of Euclidean metric on Rn.

2. Let xk := (xk1, . . . , xkn) ∈ Rn be a sequence in Rn. Then xk converges to x =
(x1, . . . , xn) iff xkj → xj for 1 ≤ j ≤ n,

3. The limit of a convergenct sequence is unique.

4. Any converegence sequnce is bounded.

5. A sequnece (xk) in Rn is convergent iff it is a Cauchy sequence.

6. Bolzano-Weierstrass theroem for bounded sequences in Rn.

7. Examples: (n1/n, (−1)n) ∈ R2, (a1/n, sin(1/n)) ∈ R2 for some a > 0 etc.

8. Let xk → x and yk → y in Rn. Then

(a) xk + yk → x+ y in Rn.

(b) xk · yk → x · y. (Here u · v stands for the standard dot product of vectors u
and v in Rn.

• Continuity

1. Definition of open sets in Rn.

2. Equivalent conditions of continuity of a function f : X → Y at a point, where X,Y
are metric spaces.

3. Examples of continuous functions:

(a) The projections x 7→ xi are continuous.

(b) Algebra of real valued continuous functions.

(c) Any polynomial function from Rn to R is continuous.

4. The set U := {(x, y) ∈ R2 : xy > 0} is open in R2.

5. Let F : Rm → Rn be continuous. if F (x) := (f1(x), . . . , fn(x)), then F is continuous
iff each fi is continuous.

6. Theorem. Let K ⊂ Rm be closed and bounded. Let f : K → Rn be continuous.
Then f is bounded. If n = 1, then there exist points x1, x2 ∈ K such that
f1(x) ≤ f(x) ≤ f2(x) for all x ∈ K.

• Uniform Continuity
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1. Any linear map f : Rm → Rn is continuous. A key step was: There exists C > 0
such that ‖f(x)‖ ≤ C ‖x‖ for all x ∈ Rn. We concluded that f is in fact uniformly
continuous.

2. Lipschitz maps between metric spaces.

(a) Any Lipschitz map is uniformly continuous.

(b) Any linear map f : Rm → Rn is Lipchitz.

(c) Let J ⊂ R be an interval. Let f : J → R be differentiable with bounded
derivative, that is, there exists M > 0 such that |f ′(x)| ≤ M for all x ∈ J .
Then f is Lipschitz.

– The sine function sin : R→ R is Lipschitz.

– The inverse of tan tan−1 : (−π/2, π/2)→ R is Lipschitz.

3. Examples of uniformly continuous functions:

(a) The identity function on any metric space is uniformly continuous.

(b) Let a > 0. The function f : (a,∞) → R defined by f(x) = 1/x is uniformly
continuous on (a,∞). In fact, it is Lipschitz.

(c) The function f : (0, 1)→ (1,∞) given by f(x) = 1/x is not uniformly contin-
uous on (0, 1).

(d) The function f : (a, b) → R given by f(x) = x2 is Lipschitz and uniformly
contunuous on (a, b).

(e) But, the function g : R → R given by g(x) = x2 is not uniformly continuous
on R.

(f) Let p(x) :=
∑n

k=0 axx
k be a poynomial with real coefficients. Let J ⊂ R be

any bounded interval. Consider p as a function on J . Then p is Lipschitz and
hence uniformly continuous on J . Hint: p′ is bounded on the closure of J .

(g) Let ∅ 6= A ⊂ X be a metric space. Let f(x) := dA(x) ≡ d(x,A) := inf{d(x, a) :
a ∈ A}. Then dA is uniformly continuous on X.

4. The first serious application of the notion of uniform continuity in an elementary
course in real analysis was in the proof of the Riemann integrability of a continuous
function defined o a closed and bounded interval.

5. Let X and Y be metric spaces. Let f : X → Y be uniformly continuous. Then f
carries Cauchy sequences to Cauchy sequences.

6. The function in Item 3e carries Cauchy sequences to Cauchy sequences, but is not
uniformly continuous.

7. Theorem. Let K ⊂ Rm be a closed and bounded set. Let f : K → Rn be
continuous. Then f is uniformly continuous.

8. When we analyzed the proof of the theorem in Item 7, we found that the codmain
could be any metric space. But the domain should be a metric space in which
Bolzano-Weiesrtrass theorem must hold true.

9. We say that a metric space X is compact if evey sequence (xn) in X has a subse-
quence (xnk

) which converges to an x ∈ X.

(a) Any closed and bounded subset of Rn is a metric space.

(b) The metric spaces Rn are not compact. Hint: Consider the sequence (xk)
where xk = (k, . . . , k).
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(c) R with discrete metric is closed and bounded. But it is not compact.

10. Our understanding of the proof of the theorem in Item 7 allowed us to arrive at
the following more general result:

Let X be a compact metric space and Y be any metric space. Let f : X → Y be
continuous. Then f is uniformly continuous.

11. We defined extensions of functions. The function f : (0, 1) → (1,∞) given by
f(x) = 1/x does not have an extension to [0, 1).

12. Theorem. Let X and Y be metric spaces. Let D be a dense subset of X. Assume
that Y is a complete metric space. Let f : D → Y be uniformly continuus. Then
f extends uniquely to a (uniformly) continuous function g on X.

Items 1–11 of Uniform Continuity were done on a marathon session on September 28,
2007.
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