Summary of Real Analysis — Batch B (2007–08)

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

• Basic LUB Property

- 1. Sets bounded above and below, LUB Property of \mathbb{R} .
- 2. Archimedean property of \mathbb{N} . Two versions.
- 3. Density of rational numbers in \mathbb{R} . Density of irrational numbers in \mathbb{R} .
- 4. The non-existence of solutions of $X^2 = 2$ in \mathbb{Q} .
- 5. Existence and uniqueness of non-negative n-th roots of non-negative real numbers.
- 6. Nested interval theorem.

• Sequences and their convergence

- 1. Definition of sequences and their convergence. Importance of looking at the convergence definition geometrically.
- 2. Uniqueness of the limit.
- 3. If $x_n \to x$ and $x_n \ge 0$, then $x \ge 0$.
- 4. Sandwich Lemma. Let (x_n) , (y_n) and (z_n) be sequences such that (i) $x_n \to \alpha$ and $y_n \to \alpha$ and (ii) $x_n \leq z_n \leq y_n$. Then $z_n \to \alpha$.
- 5. Some examples of convergent sequences.
- 6. Bounded sequences; every convergent sequence is bounded.
- 7. We showed: The sequence $((-1)^n) = (-1, 1, -1, 1, ...)$ is bounded but not convergent.
- 8. Let (x_n) be such that $x_n \to x$. Assume that $x \neq 0$. Then there exists N such that for all $n \geq N$, we have $|x_n| \geq |x|/2$. We proved this in two ways. One geometric which looked at cases when x is positive and negative. The second one used triangle inequality.
- 9. Algebra of convergent sequences: Let $x_n \to x$, $y_n \to y$ and $\alpha \in \mathbb{R}$. Then
 - (a) $x_n + y_n \to x + y$.
 - (b) $\alpha x_n \to \alpha x$.
 - (c) $x_n \cdot y_n \to xy$.

- (d) $\frac{1}{x_n} \to \frac{1}{x}$ provided that $x \neq 0$. By Item 8, the terms $1/x_n$ make sense for all sufficiently large n.
- 10. Let (a_n) be bounded and (x_n) converge to 0. Then $a_n x_n \to 0$.
- 11. Let (x_n) be increasing. Then it is convergent iff it is bounded above.
- 12. Let (x_n) be decreasing. Then it is convergent iff it is bounded below.
- 13. Some Important Limits.
 - (a) Let $0 \le r < 1$ and $x_n := r^n$. Then $x_n \to 0$.
 - (b) Let $x_n \to \ell$. Fix $N \in \mathbb{N}$. Define $y_n := x_n$ if n > N. Let y_k be any real number for $1 \le k \le N$. Then $y_n \to x$.
 - (c) $x_n \to 0$ iff $|x_n| \to 0$.
 - (d) Let -1 < t < 1. Then $t^n \to 0$.
 - (e) Let |r| < 1. Then $nr^n \to 0$.
 - (f) $n^{1/n} \to 1$.
 - (g) Fix $a \in \mathbb{R}$. Then $\frac{a^n}{n!} \to 0$.
 - (h) Let a > 0. Then $a^{1/n} \to 1$. Hint: f a > 1 then $1 \le a^{1/n} \le n^{1/n}$ for $n \ge a$.
- 14. Definition of divergence to ∞ (or to $-\infty$). We showed that $(n!)^{1/n}$ diverges to ∞ .
- 15. Let $x_n \to 0$. Let (s_n) be the sequence of arithmetic means (or averages) defined by $s_n := \frac{x_1 + \dots + x_n}{n}$. Then $s_n \to 0$.
- 16. Let $x_n \to x$. Then the sequence (s_n) of arithmetic means converges to x.
- 17. Let $a \in \mathbb{R}$. Consider $x_1 = a$, $x_2 = \frac{1+a}{2}$, and by induction $x_n := \frac{1+x_{n-1}}{2}$. Then $x_n \to 1$.
- 18. Definition of a subsequence. (Do you recall it?) Most important observation: $n_k \ge k$ for all k.
- 19. If $x_n \to x$, and if (x_{n_k}) is a subsequence, then $x_{n_k} \to x$ as $k \to \infty$.
- 20. We looked at the sequence $a^{1/n}$ again.
- 21. Given any sequence (x_n) there exists a monotone subsequence.
- 22. Bolzano-Weierstrass Theorem: If (x_n) is a bounded sequence, it has a convergent subsequence.
- 23. Definition of a Cauchy sequence of real numbers. Any Cauchy sequence is bounded.
- 24. Let (x_n) be Cauchy. Let a subsequence (x_{n_k}) converge to x. Then $x_n \to x$.
- 25. A real sequence (x_n) is Cauchy iff it is convergent.
- 26. Given any real number x there exist sequences (s_n) of rational numbers and (t_n) of irrational numbers such that $s_n \to x$ and $t_n \to x$.

• Continuity

- 1. Sequential definition of continuity.
- 2. Examples of continuous functions such as $f(x) = x^2$, f(x) = 1/x.
- 3. The characteristic function of \mathbb{Q} defined by f(x) = 1 if $x \in \mathbb{Q}$ and 0 if $x \notin \mathbb{Q}$ is not continuous at any point of \mathbb{R} .

- 4. Algebra of continuous functions: Let $f, g: (a, b) \to \mathbb{R}$ be continuous at $c \in (a, b)$. Let $\alpha \in \mathbb{R}$. Then
 - (a) f + g is continuous at c.
 - (b) αf is continuous at c. (In view of these two properties, the set of functions from $(a, b) \to \mathbb{R}$ continuous at c is a real vector space.)
 - (c) The product fg is continuous at c.
 - (d) If we further assume $f(c) \neq 0$, then 1/f is continuous at c.
 - (e) |f| is continuous at c.
 - (f) Let $h(x) := \max\{f(x), g(x)\}$. Then h is continuous at c. Similarly, the function $k(x) := \min\{f(x), g(x)\}$ is continuous at c. Hint: Observe that for any two real numbers $\max\{a, b\} = [(a+b)+|a-b|]/2$ and $\min\{a, b\} = [(a+b)-|a-b|]/2$.
 - (g) Let $f: (a, b) \to \mathbb{R}$ be continuous at c. Assume that $f(c) \in (\alpha, \beta)$ and that $g: (\alpha, \beta) \to \mathbb{R}$ is continuous at f(c). Then the composition $g \circ f$ is continuous at c.
- 5. Sequential definition of continuity is equivalent to the ε - δ definition of continuity.
- 6. Some examples to work with ε - δ definition: $f(x) = x^n$, g(x) = 1/x for x > 0 and h(x) = 1/x for $x \ge 1$.
- 7. Let f(x) := x if $x \in \mathbb{Q}$ and f(x) = 0 if $x \notin \mathbb{Q}$. Then f is continuous only at x = 0.
- 8. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous. Assume that f(r) = 0 for $r \in \mathbb{Q}$. Then f = 0.
- 9. Let $f, g: \mathbb{R} \to \mathbb{R}$ be continuous. If f(x) = g(x) for $x \in \mathbb{Q}$, then f = g.
- 10. Let $f \colon \mathbb{R} \to \mathbb{R}$ be continuous which is also an additive homomorphism, that is, f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Then $f(x) = \lambda x$ where $\lambda = f(1)$.
- 11. Consider $f: (0,1) \to \mathbb{R}$ defined by f(x) = 1/q if x = p/q in reduced form and f(x) = 0 if $x \notin \mathbb{Q}$. Then f is continuous only at the irrationals.
- 12. Let $f(x) = \begin{cases} x \sin(1/x) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$. Show that f is continuous at 0.
- 13. Let $f: (a, b) \to \mathbb{R}$ be continuous at c with $f(c) \neq 0$. Then there exists $\delta > 0$ such that f(x) > |f(c)|/2 for all $x \in (c \alpha, c + \delta)$.
- 14. Let $f \colon \mathbb{R} \to \mathbb{R}$ be defined by f(x) = x [x], where [x] stands for the greatest integer less than or equal to x. At what points f is continuous? *Hint:* Draw a picture.
- 15. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \min\{x [x], 1 + [x] x\}$, that is, the minimum of the distances of x from [x] and [x] + 1. At what points f is continuous? *Hint:* Draw a picture.
- 16. If $A \subset \mathbb{R}$ is a nonempty subset, define $f(x) := \inf\{|x a| : a \in A\}$. Then f is continuous.
- Two important Results:
 - 1. Intermediate Value Theorem. Let $f: [a, b] \to \mathbb{R}$ be a continuous function such that f(a) < 0 < f(b). Then there exists $c \in (a, b)$ such that f(c) = 0.

We gave two proofs of this result. One used the nested interval theorem and the other LUB property.

Let $g: [a, b] \to \mathbb{R}$ be a continuous function. Let λ be a real number between g(a) and g(b). Then there exists $c \in (a, b)$ such that $g(c) = \lambda$.

2. Weierstrass Theorem.Let $f: [a, b] \to \mathbb{R}$ be a continuous function. Then f is bounded. In fact, there exists $x_1, x_2 \in [a, b]$ such that $f(x_1) \leq f(x) \leq f(x_2)$ for all $x \in [a, b]$. (In other words, a continuous function f on a closed and bounded interval is bounded and attains its maximum and minimum.)

We proved the boundedness of f in three way: (i) Sequences and Bolzano-Weiestrass theorem (ii) LUB Property and (iii) Nested interval theorem.

• Applications of the two important results.

- 1. Let $f: [a, b] \to [a, b]$ be continuous. Then there exists $x \in [a, b]$ such that f(x) = x.
- 2. Prove that $x = \cos x$ for some $x \in (0, \pi/2)$.
- 3. Prove that $xe^x = 1$ for some $x \in (0, 1)$.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous taking values in \mathbb{Q} . Then f is a constant.
- 5. Let $f: [a,b] \to \mathbb{R}$ be a nonconstant continuous function. Show that f([a,b]) is uncountable.
- 6. Let $f: [0,1] \to \mathbb{R}$ be continuous. Assume that the image of f lies in $[1,2] \cup (5,10)$ and that $f(1/2) \in [0,1]$. What can you conclude about the image of f?
- 7. Existence of *n*-th roots: Let $\alpha \ge 0$ and $n \in \mathbb{N}$ be given. Then there exists $x \ge 0$ such that $x^n = \alpha$.
- 8. Let $f: [0, 2\pi] \to [0, 2\pi]$ be continuous such that $f(0) = f(2\pi)$. Show that there exists $x \in [0, 2\pi]$ such that $f(x) = f(x + \pi)$.
- 9. Let p(X) be an odd degree polynomial with real coefficients. Then p has a real root.
- 10. Let p be a real polynomial function of odd degree. Show that $p: \mathbb{R} \to \mathbb{R}$ is onto.
- 11. Show that $x^4 + 5x^3 7$ has two real roots.
- 12. Let $p(X) := a_0 + a_1 X + \dots + a_n X^n$. If $a_0 a_N < 0$, show that p has at least two real roots.
- 13. Let J be an interval and $f: J \to \mathbb{R}$ be continuous and 1-1. Then f is strictly monotone.
- 14. Let I be an interval and $f: I \to \mathbb{R}$ be strictly monotone. If f(I) is an interval, show that f is continuous.
- 15. Use the last item to conclude that the function $x \mapsto x^{1/n}$ from $[0, \infty) \to [0, \infty)$ is continuous.
- 16. Let $f: [a, b] \to \mathbb{R}$ be continuous. Show that f([a, b]) = [c, d]. Can you "identify" c, d?
- 17. Does there exists a continuous function $f: [0,1] \to (0,\infty)$ which is onto?
- 18. Let $f: [a,b] \to \mathbb{R}$ be continuous such that f(x) > 0 for all $x \in [a,b]$. Show that there exists δ such that $f(x) > \delta$ for all $x \in [a,b]$.
- 19. Does there exists a continuous function $f: [a, b] \to (0, 1)$ which is onto?

- 20. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Assume that $f(x) \to 0$ as $|x| \to \infty$. (Do you understand this?) Show that there exists $c \in \mathbb{R}$ such that either $f(x) \leq f(c)$ or $f(x) \geq f(c)$ for all $x \in \mathbb{R}$. Give an example of a function in which only one of these happens.
- 21. Are there continuous functions $f \colon \mathbb{R} \to \mathbb{R}$ such that

$$f(x) \notin \mathbb{Q}$$
 for $x \in \mathbb{Q}$ and $f(x) \in \mathbb{Q}$ for $x \notin \mathbb{Q}$?

22. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that (i) $f(\mathbb{R}) \subset (-2, -1) \cup [1, 5)$ and (ii) f(0) = e. Can you give 'realistic bounds' for f?

• Sequences in \mathbb{R}^n

- 1. Review of Euclidean metric on \mathbb{R}^n .
- 2. Let $x_k := (x_{k1}, \ldots, x_{kn}) \in \mathbb{R}^n$ be a sequence in \mathbb{R}^n . Then x_k converges to $x = (x_1, \ldots, x_n)$ iff $x_{kj} \to x_j$ for $1 \le j \le n$,
- 3. The limit of a convergenct sequence is unique.
- 4. Any convergence sequnce is bounded.
- 5. A sequnece (x_k) in \mathbb{R}^n is convergent iff it is a Cauchy sequence.
- 6. Bolzano-Weierstrass theorem for bounded sequences in \mathbb{R}^n .
- 7. Examples: $(n^{1/n}, (-1)^n) \in \mathbb{R}^2, (a^{1/n}, \sin(1/n)) \in \mathbb{R}^2$ for some a > 0 etc.
- 8. Let $x_k \to x$ and $y_k \to y$ in \mathbb{R}^n . Then
 - (a) $x_k + y_k \to x + y$ in \mathbb{R}^n .
 - (b) $x_k \cdot y_k \to x \cdot y$. (Here $u \cdot v$ stands for the standard dot product of vectors u and v in \mathbb{R}^n .

• Continuity

- 1. Definition of open sets in \mathbb{R}^n .
- 2. Equivalent conditions of continuity of a function $f: X \to Y$ at a point, where X, Y are metric spaces.
- 3. Examples of continuous functions:
 - (a) The projections $x \mapsto x_i$ are continuous.
 - (b) Algebra of real valued continuous functions.
 - (c) Any polynomial function from \mathbb{R}^n to \mathbb{R} is continuous.
- 4. The set $U := \{(x, y) \in \mathbb{R}^2 : xy > 0\}$ is open in \mathbb{R}^2 .
- 5. Let $F : \mathbb{R}^m \to \mathbb{R}^n$ be continuous. if $F(x) := (f_1(x), \ldots, f_n(x))$, then F is continuous iff each f_i is continuous.
- 6. **Theorem.** Let $K \subset \mathbb{R}^m$ be closed and bounded. Let $f: K \to \mathbb{R}^n$ be continuous. Then f is bounded. If n = 1, then there exist points $x_1, x_2 \in K$ such that $f_1(x) \leq f(x) \leq f_2(x)$ for all $x \in K$.
- Uniform Continuity

- 1. Any linear map $f : \mathbb{R}^m \to \mathbb{R}^n$ is continuous. A key step was: There exists C > 0 such that $||f(x)|| \le C ||x||$ for all $x \in \mathbb{R}^n$. We concluded that f is in fact uniformly continuous.
- 2. Lipschitz maps between metric spaces.
 - (a) Any Lipschitz map is uniformly continuous.
 - (b) Any linear map $f : \mathbb{R}^m \to \mathbb{R}^n$ is Lipchitz.
 - (c) Let $J \subset \mathbb{R}$ be an interval. Let $f: J \to \mathbb{R}$ be differentiable with bounded derivative, that is, there exists M > 0 such that $|f'(x)| \leq M$ for all $x \in J$. Then f is Lipschitz.
 - The sine function sin: $\mathbb{R} \to \mathbb{R}$ is Lipschitz.
 - The inverse of $\tan \tan^{-1}: (-\pi/2, \pi/2) \to \mathbb{R}$ is Lipschitz.
- 3. Examples of uniformly continuous functions:
 - (a) The identity function on any metric space is uniformly continuous.
 - (b) Let a > 0. The function $f: (a, \infty) \to \mathbb{R}$ defined by f(x) = 1/x is uniformly continuous on (a, ∞) . In fact, it is Lipschitz.
 - (c) The function $f: (0,1) \to (1,\infty)$ given by f(x) = 1/x is not uniformly continuous on (0,1).
 - (d) The function $f: (a, b) \to \mathbb{R}$ given by $f(x) = x^2$ is Lipschitz and uniformly contunuous on (a, b).
 - (e) But, the function $g \colon \mathbb{R} \to \mathbb{R}$ given by $g(x) = x^2$ is not uniformly continuous on \mathbb{R} .
 - (f) Let $p(x) := \sum_{k=0}^{n} a_{x}x^{k}$ be a poynomial with real coefficients. Let $J \subset \mathbb{R}$ be any *bounded* interval. Consider p as a function on J. Then p is Lipschitz and hence uniformly continuous on J. *Hint:* p' is bounded on the closure of J.
 - (g) Let $\emptyset \neq A \subset X$ be a metric space. Let $f(x) := d_A(x) \equiv d(x, A) := \inf\{d(x, a) : a \in A\}$. Then d_A is uniformly continuous on X.
- 4. The first serious application of the notion of uniform continuity in an elementary course in real analysis was in the proof of the Riemann integrability of a continuous function defined o a closed and bounded interval.
- 5. Let X and Y be metric spaces. Let $f: X \to Y$ be uniformly continuous. Then f carries Cauchy sequences to Cauchy sequences.
- 6. The function in Item 3e carries Cauchy sequences to Cauchy sequences, but is not uniformly continuous.
- 7. Theorem. Let $K \subset \mathbb{R}^m$ be a closed and bounded set. Let $f: K \to \mathbb{R}^n$ be continuous. Then f is uniformly continuous.
- 8. When we analyzed the proof of the theorem in Item 7, we found that the codmain could be any metric space. But the domain should be a metric space in which Bolzano-Weiesrtrass theorem must hold true.
- 9. We say that a metric space X is compact if every sequence (x_n) in X has a subsequence (x_{n_k}) which converges to an $x \in X$.
 - (a) Any closed and bounded subset of \mathbb{R}^n is a metric space.
 - (b) The metric spaces \mathbb{R}^n are not compact. *Hint:* Consider the sequence (x_k) where $x_k = (k, \ldots, k)$.

- (c) \mathbb{R} with discrete metric is closed and bounded. But it is not compact.
- 10. Our understanding of the proof of the theorem in Item 7 allowed us to arrive at the following more general result:
 Let X be a compact metric space and Y be any metric space. Let f: X → Y be continuous. Then f is uniformly continuous.
- 11. We defined extensions of functions. The function $f: (0,1) \to (1,\infty)$ given by f(x) = 1/x does not have an extension to [0,1).
- 12. **Theorem.** Let X and Y be metric spaces. Let D be a dense subset of X. Assume that Y is a complete metric space. Let $f: D \to Y$ be uniformly continuous. Then f extends uniquely to a (uniformly) continuous function g on X.

Items 1–11 of Uniform Continuity were done on a marathon session on September 28, 2007.