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Riemann Integral on Rn

1. An interval (or a rectangle) J in Rn is a set of the from [a1, b1] × · · · × [an, bn] where
a− k, bk ∈ R with ak ≤ bk for 1 ≤ k ≤ n. The ‘length’, ‘area’ , or the ‘volume’ |J | of J
is defined as |J | :=

∏n
k=1(bk − ak).

2. Any partition P of an interval J ⊂ Rn is a ‘product’ of partitions Pk of the component
intervals [ak, bk]. Any ‘subinterval’ of the partition P of J is of the form I1 × · · · × In
where Ik is a subinterval of the partition Pk of [ak, bk]. If Pk = Jk1 ∪ · · · ∪ Jkmk

is the
partition of [ak, bk], then a component subinterval of the partition P of J is of the form
J1r1 × J2r2 × · · · Jnrn where 1 ≤ rk ≤ mk for 1 ≤ k ≤ n. (Draw pictures when n = 2.
This will help you understand and not be overwhelmed by the excessive notation.)

The mesh of P is the largest side of all component sub-intervals, that is, the largest of
the meshes of Pk.

3. We defined Riemann integrability of a bounded function f : J → R as in the one dimen-
sional case. Given a partition P of J , we let MI(f) to be the supremum of f on the
subinterval I of the partition P . Similarly, mI(f) is the infimum of f on the subinterval
I of the partition P . The upper and lower (Darboux) sums are defined as follows:

U(f, P ) :=
∑
I

MI(f)|I| and L(f, P ) :=
∑
I

mI(f)|I|

4. One similarly defines the upper integral and the lower integral of f as follows.

U(f) := inf{U(f, P ) : P a partition of J} and L(f) := sup{L(f, P ) : P a partition of J}.

We say that f is (Darboux ) integrable on J if U(f) = L(f). The common value is
called the integral of f on J and is denoted by

∫
J f(x) dx or simply

∫
J f .

5. Let f : J → R be a bounded function, say, m ≤ f ≤ M on J . Let P be a partition of
J . Then the following are easy to verify.

(a) m|J | ≤ L(f, P ) ≤ U(f, P ) ≤M |J |.
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(b) m|J | ≤ L(f)) ≤M |J |.
(c) m|J | ≤ U(f)) ≤M |J |.

6. Refinements of a partition P are defined as in the one dimensional case. A partition
Q of J is a refinement of P is every component subinterval of Q is a subinterval of a
component of P . In other words, if P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn), then Qk is
a refinement of Pk for each k.

7. The following results are proved in the same way as in the one dimensional case and
pose no new problems.

(a) If Q is a refinement of P , then L(f,Q) ≥ L(f, P ) and U(f,Q) ≤ U(f, P ).

(b) For any two partitions P1, P2, we have L(f, P1) ≤ U(f, P2).

(c) L(f) ≤ U(f).

(d) f is integrable iff for any given ε > 0, there exists a partition P of J such that
U(f, P )− L(f, P ) < ε.

8. Using the uniform continuity, we show that a continuous function f : J → R is inte-
grable.

9. The following facts are proved as in the one dimensional case.

(a) The set of integrable functions on J is a real vector space and the integral f : 7→∫
J f is linear.

(b) The integral is monotone: if f ≤ g on J , then
∫
J f ≤

∫
J g.

(c) If m ≤ f ≤ M on J and if g : [m,M ] → R is continuous, then g ◦ f is integrable
on J .

(d) If f is integrable on J , then so is |f | and we have |
∫
j f | ≤

∫
J |f |.

(e) If f and g are integrable on J ,, then so are f2 and fg.

(f) If fk → f uniformly on J and if each fk is integrable on J , then so is f and we
have

∫
J f = lim

∫
J fk.

10. For physical applications, it is important to know the original definition of Riemann
integrability of a function. Let f : J → R be bounded. Let P be partition of J . If I is a
subinterval of partition, let tI ∈ I be a any point. Let t := {tI : I a subinterval of the partition P}.
Then the pair (P, t) is called the tagged partition of J and tI are called the tags.

The Riemann sum corresponding to the tagged partition is defined as

S(f, P, t) :=
∑
I

f(tI)|I|.

We say that f is Riemann integrable on J if there exists A ∈ R such that for a given
ε > 0, there exists δ > 0 such that for any partition P of J whose mesh is less than δ
and for any set t of tags, we have

|S(f, P, t)−A| < ε.

11. Theorem. A bounded function f : J → R is integrable iff it is Riemann integrable.
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12. We proved this in the one dimensional case, later adapted the argument to prove the
n-dimensional case. We went through the proof as in a textbook and simplified the
argument on the way.

Theorem 1 (Fubini). Let J1 ⊂ Rm and J2 ⊂ Rn be (closed and bounded) intervals. Let
J := J1 × J2 and f : J → R be integrable. Let fx(y) := f(x, y) for (x, y) ∈ J1 × J2. Then
g(x) := L(fx, J2), the lower integral of fx on J2 and h(x) := U(fx, J2), the upper integral of
fx on J2 are integrable on J1 and we have∫

J
f(x, y) dx dy =

∫
J1

L(fx, J2) =

∫
J1

(∫
J2

f(x, y) dy

)
dx (1)

=

∫
J1

U(fx, J2) =

∫
J2

(∫
J1

f(x, y) dy

)
dx. (2)

In particular, if f is continuous on J , then we have∫
J
f(x, y) dx dy =

∫
J1

(∫
J2

f(x, y) dy

)
dx =

∫
J2

(∫
J1

f(x, y) dx

)
dy. (3)

Proof. Given ε > 0, since f is integrable on J there exists a partition P = (P1, P2) of J such
that U(f, P ) − L(f, P ) < ε. Let R = R1 × R2 be an arbitrary subinterval of the partition.
Then we have, forr any fixed x ∈ J1,

U(f, P ) =
∑
R

Mf (R)|R|

=
∑
R1

∑
R2

MR1×R2(f)|R2||R1|

≥
∑
R1

∑
R2

MR2(fx)|R2|

 |R1|

=
∑
R1

U(fx, P2)|R1|

≥
∑
R1

U(fx, J2)|R1|.

In particular, we have for any x ∈ R1, U(f, P ) ≥
∑

R1
h(x)|R1| so that by taking supremum

over x ∈ R1, we obtain

U(f, P ) ≥
∑
R1

MR1(h)|R1|.

Hence U(f, P ) ≥ U(h, P1).

In a similar way, we obtain L(f, P ) ≤ L(g, P1). We now observe that

L(f, P ) ≤ L(g, P1) ≤ L(h, P1) ≤ U(h, P1) ≤ U(f, P ).

Since the first and fifth terms are ε-close, it follows that U(h, P1)−L(h, P1) < ε, that is, h is
integrable on J1. Consequently, (2) follows.
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Theorem 2. Let U ⊂ Rn and V ⊂ Rn be open sets. Let ϕ : U → V be a C1-diffeomorphism,
that is, ϕ is bijective, C1 and its inverse ϕ− is also C1. Let j(x) := |det(Dϕ(x))| for x ∈ U .
Let f : V → R be a continuous function. Then∫

V
f(y) dy =

∫
U
f ◦ ϕ(x)j(x) dx. (4)

Proof. As we have seen earlier, if ϕ is the restriction of a nonsingular linear map A, then (4)
is true. We shall make use of this in the sequel.

For estimating purpose, it is easier to use the following norms:

‖x‖ := ‖x‖∞ ≡ max{|xi| : 1 ≤ i ≤ n} and ‖A‖ := max

{
n∑

k=1

|aik| : 1 ≤ i ≤ n

}
. (5)

It is then easy to check that ‖Ax‖ ≤ ‖A‖ ‖x‖. The advantage of this norm lies in the fact
that a cube (centered at a and side-length 2r) can be described as: Q(a, r) := {z ∈ Rn :
‖z − a‖ ≤ r}.1

As usual, we write |E| to denote the n-dimensional volume of E ⊂ Rn. Write ϕ =
(ϕ1, . . . , ϕn). Let x ∈ Q(a, r). Then by mean value theorem applied to ϕi, we get

ϕi(x)− ϕi(a) =
n∑

k=1

∂ϕi

∂xk
(zi)(xk − ak), (6)

for some zi in the line segment joining a and z. In view of our definitions of the norm on Rn,
we see that

|ϕi(x)− ϕi(a)| ≤
n∑

k=1

|∂ϕi

∂xk
(zi)||(xk − ak)|. (7)

Now in view of our definition of the norm of a matrix, we obtain

‖ϕ(x)− ϕ(a)‖ ≤ rmax{‖Dϕ(x)‖ : x ∈ Q}. (8)

In particular, the image ϕ(Q) is completely contained in the image of the cube defined by
{z : ‖z − ϕ(a)‖ ≤ rmax{j(x) : x ∈ Q}. Hence it follows that

|ϕ(Q)| ≤ (max{|Df(x)| : x ∈ Q})n |Q|. (9)

Let A be any nonsingular linear map. We apply (9) to the map A−1ϕ and make use of
the earlier observation that |A−1(E)| = | det(A−1)||E| for E ⊂ Rn. We obtain

|det(A−1)||ϕ(Q)| ≤
(
max{A−1Df(x) : x ∈ Q}

)n |Q|. (10)

Hence we get, since det(A−1) = det(A)−1,

|ϕ(Q)| ≤ |det(A)|
(
max{|A−1Df(x)| : x ∈ Q}

)n |Q|. (11)

1See, in particular, the way the inequalities (7) and (8) are derived.
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The idea now is the subdivide the cube Q into smaller ones and replace A by Df(ak),
ak being the centres of these subcubes. Let {Qk : 1 ≤ k ≤ N} be a ‘partition’ 2 of Q into
subcubes. Assume that the sides are of length at most δ. Let ak be the center of Qk. If we
apply (11) to each of these cubes and if we replace A by Ak := Dϕ(ak), we obtain

|ϕ(Q)| ≤
N∑
k=1

det(Ak)
(
max{|A−1k Df(x)| : x ∈ Qk}

)n |Qk|. (12)

Since x 7→ Dϕ(x) is (uniformly) continuous on (the compact set) Q, we see that Dϕ(x) →
Dϕ(ak) if x → a in Qk. Hence the matrix Dϕ(ak)−1Dϕ(x) goes to the identity as x → ak.
In particular, the determinant |Dϕ(ak)−1Dϕ(x)| → 1 as x→ a. Given ε > 0, we may choose
δ > 0 in such a way that |Dϕ(z)−1Df(ak)|n ≤ 1 + ε. This yields

|ϕ(Q)| ≤ (1 + ε)
N∑
k=1

|Ak||Qk| =
N∑
k=1

|j(ak||Qk|. (13)

The right side term of (13) is a Riemann sum which approaches the Riemann integral∫
Q j(x) dx, as the mesh δ → 0. Hence we arrive at the following inequality:

|ϕ(Q)| ≤
∫
Q
j(x) dx. (14)

Now let f : V → R be any non-negative continuous function such that its support

Support(f) := Closure of {y ∈ V : f(y) 6= 0} ⊂ L,

is a compact subset of V . Note that the support of f ◦ϕ is ϕ−1(Support(f)) is also compact,
since ϕ is a homeomorphism.

Let Q be a covering of U by means of a finite collection of cubes whose mesh is δ. Let
{Qk : 1 ≤ k ≤ N} be those cubes of Q which are contained in the support of f . Let SN
denote the complement of their union in U so that U = SN ∪

(
∪Nk=1Qk

)
. We set bk := ϕ(ak)

and αk := f(ϕ(ak)), 1 ≤ k ≤ N . From (14), we get

N∑
k=1

αk

∫
ϕ(Qk)

dy ≤
N∑
k=1

αk

∫
Qk

j(x) dx. (15)

We expect the term on the left side ‘approximates’
∫
V f(y) dy and the one on the right

‘approximates’
∫
U (f ◦ ϕ)j(x) dx.

Let E :=
∫
V f(y) dy −

∫
U (f ◦ ϕ)(x)j(x) dx. We then have, in view of (15)

E ≤

(∫
V
f(y) dy −

N∑
k=1

αk

∫
ϕ(Qk)

)
+

(
N∑
k=1

αk

∫
Qk

j(x) dx−
∫
U

(f ◦ ϕ)(x)j(x) dx

)
. (16)

2A partition of Q is a collection of subcubes such that their union is Q and any two distinct subcubes meet
at most along their sides.
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Since ϕ(U) = ∪Nk=1ϕ(Qk) ∪ ϕ(Sn),3 we have

E ≤
∫
ϕ(SN )

f(y) dy+

N∑
k=1

∫
ϕ(Qk)

(f−αk) dy+

N∑
k=1

∫
Qk

(αk−f ◦ϕ)j(x) dx−
∫
SN

(f ◦ϕ)(x)j(x) dx.

(17)
Since ϕ is C1, it is Lipschitz on the support of f , that is, there exists L > 0 such that

‖ϕ(x1)− ϕ(x2)‖ ≤ L ‖x1 − x2‖ on the support of f. (18)

Also, since the support of f is compact, f is uniformly continuous on U . Hence given ε > 0,
we can choose the mesh δ > 0 so small such that

|f ◦ ϕ(x)− αk| < ε, for all x ∈ Qk, 1 ≤ k ≤ N. (19)

Using the Lipschitz nature of ϕ, by shrinking δ > 0 is necessary, we may assume that

|f(y)− αk| < ε for all y ∈ ϕ(Qk), 1 ≤ k ≤ N. (20)

Hence it follows that

E ≤
∫
ϕ(SN )

f(y) dy −
∫
SN

(f ◦ ϕ)(x)j(x) dx+ ε (|ϕ(S)|+ |S|) , (21)

where S is the support of f .

Choose a mesh so that |SN | < ε. It follows that |ϕ(SN )| ≤ Lnε. If M is a bound for f ,
then we arrive at the following inequality:

E ≤ ε (MLn +M + |ϕ(S)|+ |S|) . (22)

Hence we conclude D ≤ 0. Most importantly, we obtain∫
V
f(y) dy ≤

∫
U
f(ϕ(x))j(x) dx. (23)

Replacing ϕ by ϕ−1, we deduce from (23)∫
V
f(y) dy ≤

∫
U
f(ϕ(x))j(x) dx ≤

∫
V
f(ϕ(ϕ−1))(y)|Dϕ−1(y)||Dϕ(x)| dy =

∫
V
f(y) dy.

3Note that the union may not be pairwise disjoint. One can easily show using the Lipschitz nature of ϕ
that the common intersections are of measure zero.

6


