Summary of Real Analysis 2 – Semester 2 (2009-10)

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Riemann Integral on \mathbb{R}^n

- 1. An interval (or a rectangle) J in \mathbb{R}^n is a set of the from $[a_1, b_1] \times \cdots \times [a_n, b_n]$ where $a k, b_k \in \mathbb{R}$ with $a_k \leq b_k$ for $1 \leq k \leq n$. The 'length', 'area', or the 'volume' |J| of J is defined as $|J| := \prod_{k=1}^n (b_k a_k)$.
- 2. Any partition P of an interval $J \subset \mathbb{R}^n$ is a 'product' of partitions P_k of the component intervals $[a_k, b_k]$. Any 'subinterval' of the partition P of J is of the form $I_1 \times \cdots \times I_n$ where I_k is a subinterval of the partition P_k of $[a_k, b_k]$. If $P_k = J_{k1} \cup \cdots \cup J_{km_k}$ is the partition of $[a_k, b_k]$, then a component subinterval of the partition P of J is of the form $J_{1r_1} \times J_{2r_2} \times \cdots J_{nr_n}$ where $1 \leq r_k \leq m_k$ for $1 \leq k \leq n$. (Draw pictures when n = 2. This will help you understand and not be overwhelmed by the excessive notation.)

The mesh of P is the largest side of all component sub-intervals, that is, the largest of the meshes of P_k .

3. We defined Riemann integrability of a bounded function $f: J \to \mathbb{R}$ as in the one dimensional case. Given a partition P of J, we let $M_I(f)$ to be the supremum of f on the subinterval I of the partition P. Similarly, $m_I(f)$ is the infimum of f on the subinterval I of the partition P. The upper and lower (Darboux) sums are defined as follows:

$$U(f, P) := \sum_{I} M_{I}(f)|I| \text{ and } L(f, P) := \sum_{I} m_{I}(f)|I|$$

4. One similarly defines the upper integral and the lower integral of f as follows.

 $U(f) := \inf\{U(f, P) : P \text{ a partition of } J\} \text{ and } L(f) := \sup\{L(f, P) : P \text{ a partition of } J\}.$

We say that f is (Darboux) integrable on J if U(f) = L(f). The common value is called the integral of f on J and is denoted by $\int_J f(x) dx$ or simply $\int_J f$.

- 5. Let $f: J \to \mathbb{R}$ be a bounded function, say, $m \leq f \leq M$ on J. Let P be a partition of J. Then the following are easy to verify.
 - (a) $m|J| \le L(f, P) \le U(f, P) \le M|J|.$

- (b) $m|J| \le L(f)) \le M|J|.$
- (c) $m|J| \le U(f) \le M|J|$.
- 6. Refinements of a partition P are defined as in the one dimensional case. A partition Q of J is a refinement of P is every component subinterval of Q is a subinterval of a component of P. In other words, if $P = (P_1, \ldots, P_n)$ and $Q = (Q_1, \ldots, Q_n)$, then Q_k is a refinement of P_k for each k.
- 7. The following results are proved in the same way as in the one dimensional case and pose no new problems.
 - (a) If Q is a refinement of P, then $L(f, Q) \ge L(f, P)$ and $U(f, Q) \le U(f, P)$.
 - (b) For any two partitions P_1 , P_2 , we have $L(f, P_1) \leq U(f, P_2)$.
 - (c) $L(f) \leq U(f)$.
 - (d) f is integrable iff for any given $\varepsilon > 0$, there exists a partition P of J such that $U(f, P) L(f, P) < \varepsilon$.
- 8. Using the uniform continuity, we show that a continuous function $f: J \to \mathbb{R}$ is integrable.
- 9. The following facts are proved as in the one dimensional case.
 - (a) The set of integrable functions on J is a real vector space and the integral $f: \mapsto \int_J f$ is linear.
 - (b) The integral is monotone: if $f \leq g$ on J, then $\int_J f \leq \int_J g$.
 - (c) If $m \leq f \leq M$ on J and if $g \colon [m, M] \to \mathbb{R}$ is continuous, then $g \circ f$ is integrable on J.
 - (d) If f is integrable on J, then so is |f| and we have $|\int_{J} f| \leq \int_{J} |f|$.
 - (e) If f and g are integrable on J, then so are f^2 and fg.
 - (f) If $f_k \to f$ uniformly on J and if each f_k is integrable on J, then so is f and we have $\int_J f = \lim \int_J f_k$.
- 10. For physical applications, it is important to know the original definition of Riemann integrability of a function. Let $f: J \to \mathbb{R}$ be bounded. Let P be partition of J. If I is a subinterval of partition, let $t_I \in I$ be a any point. Let $\mathbf{t} := \{t_I : I \text{ a subinterval of the partition } P\}$. Then the pair (P, \mathbf{t}) is called the tagged partition of J and t_I are called the tags.

The Riemann sum corresponding to the tagged partition is defined as

$$S(f, P, \mathbf{t}) := \sum_{I} f(t_{I})|I|$$

We say that f is Riemann integrable on J if there exists $A \in \mathbb{R}$ such that for a given $\varepsilon > 0$, there exists $\delta > 0$ such that for any partition P of J whose mesh is less than δ and for any set **t** of tags, we have

$$|S(f, P, \mathbf{t}) - A| < \varepsilon.$$

11. **Theorem.** A bounded function $f: J \to \mathbb{R}$ is integrable iff it is Riemann integrable.

12. We proved this in the one dimensional case, later adapted the argument to prove the n-dimensional case. We went through the proof as in a textbook and simplified the argument on the way.

Theorem 1 (Fubini). Let $J_1 \subset \mathbb{R}^m$ and $J_2 \subset \mathbb{R}^n$ be (closed and bounded) intervals. Let $J := J_1 \times J_2$ and $f: J \to \mathbb{R}$ be integrable. Let $f_x(y) := f(x, y)$ for $(x, y) \in J_1 \times J_2$. Then $g(x) := L(f_x, J_2)$, the lower integral of f_x on J_2 and $h(x) := U(f_x, J_2)$, the upper integral of f_x on J_2 and $h(x) := U(f_x, J_2)$, the upper integral of f_x on J_2 are integrable on J_1 and we have

$$\int_{J} f(x,y) \, dx \, dy = \int_{J_1} L(f_x, J_2) = \int_{J_1} \left(\underbrace{\int}_{-J_2} f(x,y) \, dy \right) \, dx \tag{1}$$

$$= \int_{J_1} U(f_x, J_2) = \int_{J_2} \left(\overline{\int}_{J_1} f(x, y) \, dy \right) \, dx. \tag{2}$$

In particular, if f is continuous on J, then we have

$$\int_{J} f(x,y) \, dx \, dy = \int_{J_1} \left(\int_{J_2} f(x,y) \, dy \right) \, dx = \int_{J_2} \left(\int_{J_1} f(x,y) \, dx \right) \, dy. \tag{3}$$

Proof. Given $\varepsilon > 0$, since f is integrable on J there exists a partition $P = (P_1, P_2)$ of J such that $U(f, P) - L(f, P) < \varepsilon$. Let $R = R_1 \times R_2$ be an arbitrary subinterval of the partition. Then we have, forr any fixed $x \in J_1$,

$$U(f, P) = \sum_{R} M_{f}(R)|R|$$

= $\sum_{R_{1}} \sum_{R_{2}} M_{R_{1} \times R_{2}}(f)|R_{2}||R_{1}|$
 $\geq \sum_{R_{1}} \left(\sum_{R_{2}} M_{R_{2}}(f_{x})|R_{2}| \right)|R_{1}|$
= $\sum_{R_{1}} U(f_{x}, P_{2})|R_{1}|$
 $\geq \sum_{R_{1}} U(f_{x}, J_{2})|R_{1}|.$

In particular, we have for any $x \in R_1$, $U(f, P) \ge \sum_{R_1} h(x)|R_1|$ so that by taking supremum over $x \in R_1$, we obtain

$$U(f, P) \ge \sum_{R_1} M_{R_1}(h) |R_1|$$

Hence $U(f, P) \ge U(h, P_1)$.

In a similar way, we obtain $L(f, P) \leq L(g, P_1)$. We now observe that

$$L(f, P) \le L(g, P_1) \le L(h, P_1) \le U(h, P_1) \le U(f, P).$$

Since the first and fifth terms are ε -close, it follows that $U(h, P_1) - L(h, P_1) < \varepsilon$, that is, h is integrable on J_1 . Consequently, (2) follows.

Theorem 2. Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^n$ be open sets. Let $\varphi \colon U \to V$ be a C^1 -diffeomorphism, that is, φ is bijective, C^1 and its inverse φ^- is also C^1 . Let $j(x) := |\det(D\varphi(x))|$ for $x \in U$. Let $f \colon V \to \mathbb{R}$ be a continuous function. Then

$$\int_{V} f(y) \, dy = \int_{U} f \circ \varphi(x) j(x) \, dx. \tag{4}$$

Proof. As we have seen earlier, if φ is the restriction of a nonsingular linear map A, then (4) is true. We shall make use of this in the sequel.

For estimating purpose, it is easier to use the following norms:

$$||x|| := ||x||_{\infty} \equiv \max\{|x_i| : 1 \le i \le n\} \text{ and } ||A|| := \max\left\{\sum_{k=1}^n |a_{ik}| : 1 \le i \le n\right\}.$$
 (5)

It is then easy to check that $||Ax|| \leq ||A|| ||x||$. The advantage of this norm lies in the fact that a cube (centered at *a* and side-length 2r) can be described as: $Q(a,r) := \{z \in \mathbb{R}^n : ||z-a|| \leq r\}$.¹

As usual, we write |E| to denote the *n*-dimensional volume of $E \subset \mathbb{R}^n$. Write $\varphi = (\varphi_1, \ldots, \varphi_n)$. Let $x \in Q(a, r)$. Then by mean value theorem applied to φ_i , we get

$$\varphi_i(x) - \varphi_i(a) = \sum_{k=1}^n \frac{\partial \varphi_i}{\partial x_k} (z_i)(x_k - a_k), \tag{6}$$

for some z_i in the line segment joining a and z. In view of our definitions of the norm on \mathbb{R}^n , we see that

$$|\varphi_i(x) - \varphi_i(a)| \le \sum_{k=1}^n \left| \frac{\partial \varphi_i}{\partial x_k}(z_i) \right| |(x_k - a_k)|.$$
(7)

Now in view of our definition of the norm of a matrix, we obtain

$$\|\varphi(x) - \varphi(a)\| \le r \max\{\|D\varphi(x)\| : x \in Q\}.$$
(8)

In particular, the image $\varphi(Q)$ is completely contained in the image of the cube defined by $\{z : ||z - \varphi(a)|| \le r \max\{j(x) : x \in Q\}$. Hence it follows that

$$|\varphi(Q)| \le \left(\max\{|Df(x)| : x \in Q\}\right)^n |Q|.$$
(9)

Let A be any nonsingular linear map. We apply (9) to the map $A^{-1}\varphi$ and make use of the earlier observation that $|A^{-1}(E)| = |\det(A^{-1})||E|$ for $E \subset \mathbb{R}^n$. We obtain

$$|\det(A^{-1})||\varphi(Q)| \le \left(\max\{A^{-1}Df(x) : x \in Q\}\right)^n |Q|.$$
 (10)

Hence we get, since $det(A^{-1}) = det(A)^{-1}$,

$$|\varphi(Q)| \le |\det(A)| \left(\max\{|A^{-1}Df(x)| : x \in Q\} \right)^n |Q|.$$
(11)

 $^{^1\}mathrm{See},$ in particular, the way the inequalities (7) and (8) are derived.

The idea now is the subdivide the cube Q into smaller ones and replace A by $Df(a_k)$, a_k being the centres of these subcubes. Let $\{Q_k : 1 \leq k \leq N\}$ be a 'partition' ² of Q into subcubes. Assume that the sides are of length at most δ . Let a_k be the center of Q_k . If we apply (11) to each of these cubes and if we replace A by $A_k := D\varphi(a_k)$, we obtain

$$|\varphi(Q)| \le \sum_{k=1}^{N} \det(A_k) \left(\max\{|A_k^{-1} Df(x)| : x \in Q_k\} \right)^n |Q_k|.$$
(12)

Since $x \mapsto D\varphi(x)$ is (uniformly) continuous on (the compact set) Q, we see that $D\varphi(x) \to D\varphi(a_k)$ if $x \to a$ in Q_k . Hence the matrix $D\varphi(a_k)^{-1}D\varphi(x)$ goes to the identity as $x \to a_k$. In particular, the determinant $|D\varphi(a_k)^{-1}D\varphi(x)| \to 1$ as $x \to a$. Given $\varepsilon > 0$, we may choose $\delta > 0$ in such a way that $|D\varphi(z)^{-1}Df(a_k)|^n \leq 1 + \varepsilon$. This yields

$$|\varphi(Q)| \le (1+\varepsilon) \sum_{k=1}^{N} |A_k| |Q_k| = \sum_{k=1}^{N} |j(a_k)| Q_k|.$$
(13)

The right side term of (13) is a Riemann sum which approaches the Riemann integral $\int_{\Omega} j(x) dx$, as the mesh $\delta \to 0$. Hence we arrive at the following inequality:

$$|\varphi(Q)| \le \int_Q j(x) \, dx. \tag{14}$$

Now let $f: V \to \mathbb{R}$ be any *non-negative* continuous function such that its support

Support
$$(f) :=$$
 Closure of $\{y \in V : f(y) \neq 0\} \subset L_{f}$

is a compact subset of V. Note that the support of $f \circ \varphi$ is $\varphi^{-1}(\text{Support}(f))$ is also compact, since φ is a homeomorphism.

Let \mathcal{Q} be a covering of U by means of a finite collection of cubes whose mesh is δ . Let $\{Q_k : 1 \leq k \leq N\}$ be those cubes of \mathcal{Q} which are contained in the support of f. Let S_N denote the complement of their union in U so that $U = S_N \cup (\bigcup_{k=1}^N Q_k)$. We set $b_k := \varphi(a_k)$ and $\alpha_k := f(\varphi(a_k)), 1 \leq k \leq N$. From (14), we get

$$\sum_{k=1}^{N} \alpha_k \int_{\varphi(Q_k)} dy \le \sum_{k=1}^{N} \alpha_k \int_{Q_k} j(x) \, dx.$$
(15)

We expect the term on the left side 'approximates' $\int_V f(y) dy$ and the one on the right 'approximates' $\int_U (f \circ \varphi) j(x) dx$.

Let
$$E := \int_V f(y) \, dy - \int_U (f \circ \varphi)(x) j(x) \, dx$$
. We then have, in view of (15)

$$E \le \left(\int_{V} f(y) \, dy - \sum_{k=1}^{N} \alpha_k \int_{\varphi(Q_k)}\right) + \left(\sum_{k=1}^{N} \alpha_k \int_{Q_k} j(x) \, dx - \int_{U} (f \circ \varphi)(x) j(x) \, dx\right). \tag{16}$$

²A partition of Q is a collection of subcubes such that their union is Q and any two distinct subcubes meet at most along their sides.

Since $\varphi(U) = \bigcup_{k=1}^{N} \varphi(Q_k) \cup \varphi(S_n)$,³ we have

$$E \leq \int_{\varphi(S_N)} f(y) \, dy + \sum_{k=1}^N \int_{\varphi(Q_k)} (f - \alpha_k) \, dy + \sum_{k=1}^N \int_{Q_k} (\alpha_k - f \circ \varphi) j(x) \, dx - \int_{S_N} (f \circ \varphi)(x) j(x) \, dx.$$

$$\tag{17}$$

Since φ is C^1 , it is Lipschitz on the support of f, that is, there exists L > 0 such that

$$\|\varphi(x_1) - \varphi(x_2)\| \le L \|x_1 - x_2\| \text{ on the support of } f.$$
(18)

Also, since the support of f is compact, f is uniformly continuous on U. Hence given $\varepsilon > 0$, we can choose the mesh $\delta > 0$ so small such that

$$|f \circ \varphi(x) - \alpha_k| < \varepsilon, \quad \text{for all } x \in Q_k, 1 \le k \le N.$$
 (19)

Using the Lipschitz nature of φ , by shrinking $\delta > 0$ is necessary, we may assume that

$$|f(y) - \alpha_k| < \varepsilon$$
 for all $y \in \varphi(Q_k), 1 \le k \le N.$ (20)

Hence it follows that

$$E \le \int_{\varphi(S_N)} f(y) \, dy - \int_{S_N} (f \circ \varphi)(x) j(x) \, dx + \varepsilon \left(|\varphi(S)| + |S| \right), \tag{21}$$

where S is the support of f.

Choose a mesh so that $|S_N| < \varepsilon$. It follows that $|\varphi(S_N)| \leq L^n \varepsilon$. If M is a bound for f, then we arrive at the following inequality:

$$E \le \varepsilon \left(ML^n + M + |\varphi(S)| + |S| \right).$$
(22)

Hence we conclude $D \leq 0$. Most importantly, we obtain

$$\int_{V} f(y) \, dy \le \int_{U} f(\varphi(x)) j(x) \, dx.$$
(23)

Replacing φ by φ^{-1} , we deduce from (23)

$$\int_{V} f(y) \, dy \leq \int_{U} f(\varphi(x)) j(x) \, dx \leq \int_{V} f(\varphi(\varphi^{-1}))(y) |D\varphi^{-1}(y)| |D\varphi(x)| \, dy = \int_{V} f(y) \, dy.$$

³Note that the union may not be pairwise disjoint. One can easily show using the Lipschitz nature of φ that the common intersections are of measure zero.