Summary of Real Analysis 2 – Semester 2 (2009-10)

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

An Important Note: I do not have a hand-written manuscript when I type these notes. Also, I rarely proof-read. Please bring typos/mistakes to my notice.

Reference Books:

- 1. M. Spivak, Calculus on Manifolds
- 2. J. Munkres, Analysis on Manifolds,
- 3. Tom Apostol, Mathematical Analysis, Narosa Publishing House.
- 4. W. Rudin, Principles of Mathematical Analysis, Wiley International.

Preliminaries

- 1. Linear Algebra is the foundation of Differential Calculus. We very briefly review some basic concepts.
- 2. Let V and W be (finite dimensional) real vector spaces. Let $\{v_i : 1 \le i \le m\}$ (resp. $\{w_j : 1 \le j \le n\}$) be a basis of V (resp. of W). Let $T: V \to W$ be a linear map. Then the matrix A of T w.r.t. to these bases is an $n \times m$ -matrix (a_{ij}) where the *i*-th column is the coefficients (a_{ij}) where $Tv_i = a_{1i}w_1 + a_{2v_i}w_2 + \cdots + a_{ni}w_n = \sum_{j=1}^n a_{ji}w_j$. Note the way the coefficients are indexed.
- 3. If $A = (a_{ij})$ is a real $n \times m$ matrix, then we have an associated linear map $T \colon \mathbb{R}^m \to \mathbb{R}^n$ given by $T \colon x \mapsto Ax$ where $x = (x_1, \ldots, x_m)^t \in \mathbb{R}^m$ and Ax is the product of an $n \times m$ matrix A with the $m \times 1$ matrix x. The matrix of T w.r.t. the standard bases of \mathbb{R}^m and \mathbb{R}^n is A. Note that Ae_i is the *i*-th column of A.

As a general rule, we write vectors in \mathbb{R}^n as a column vector (i.e., a matrix of size $n \times 1$). A 1×1 real matrix is identified with real number which is its unique entry.

- 4. As examples, we wrote down the matrices of the linear maps:
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^4$ given by T(x, y) = (2x + 3y, x + y, x y, y).
 - (b) $T: \mathbb{R}^n \to \mathbb{R}$ given by $T(x_1, \ldots, x_n) := \sum_i a_i x_i$.
- 5. Any linear map $T \colon \mathbb{R} \to \mathbb{R}$ is of the form Tx = cx where c = T(1).

- 6. Any linear map $T: \mathbb{R}^n \to \mathbb{R}$ is of the form $Tx = \sum_{i=1}^n c_i x_i$ where $c_i = T(e_i)$. *Hint:* Write $x = \sum_i x_i e_i$ and apply T to both sides.
- 7. We recalled the definition of an inner product on a **real** vector space. As an example, we looked at \mathbb{R}^n with the standard inner product $(x, y) \mapsto \sum_{i=1}^n x_i y_i$. It is also known as the Euclidean inner product or the standard dot product. Note that using our convention in Item 3, the dot product can be written as $x \cdot y = y^t x$, the product of matrices of type $1 \times n$ and $n \times 1$.
- 8. The result in Item 6 can be reformulated as follows: Any linear map $T : \mathbb{R}^n \to \mathbb{R}$ is of the form $T(x) = x \cdot c$ where the vector $c = (T(e_1), \ldots, T(e_n))$.
- 9. If (V, \langle , \rangle) is an inner product space, then $||x|| := \langle x, x \rangle^{1/2}$.
- 10. The most important inequality is the Cauchy-Schwarz inequality:

$$|\langle v, w \rangle| \le ||v|| ||w|| \text{ for all } v, w \in V.$$

$$\tag{1}$$

The equality holds iff one of the vectors is a scalar multiple of the other.

- 11. The norm $\| \| : V := \mathbb{R}^n \to \mathbb{R}$ has the following properties:
 - (a) $||x|| \ge 0$ and ||x|| = 0 iff x = 0.
 - (b) ||tx|| = |t| ||x|| for all $t \in \mathbb{R}$ and $x \in V$.
 - (c) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in V$.
- 12. Any function $\| \|: V \to \mathbb{R}$ from any real vector space to \mathbb{R} satisfying the properties listed in Item 11 is called a norm on V.
- 13. We showed the following are norms on \mathbb{R}^n :
 - (a) $x = (x_1, \dots, x_n) \mapsto \sqrt{(x_1^2 + \dots + x_n^2)}$. This is called the standard or Euclidean norm.
 - (b) $x \mapsto \sum_{i=1}^{n} |x_i|$. This is called the L^1 -norm and is denoted by $||x||_1$.
 - (c) $x \mapsto \max\{|x_i| : 1 \le i \le n\}$. This is called the max norm or L^{∞} -norm. It is denoted by $||x||_{\infty}$.
- 14. A norm on a vector space V gives rise to a metric on V as follows: d(x, y) := ||x y||. We checked that d is a metric on X.

The metrics on \mathbb{R}^n induced by the norms the standard $\| \|, \| \|_1$ and $\| \|_{\infty}$ will be denoted by d, d_1 and d_{∞} .

Whenever we talk of distances in \mathbb{R}^n , it will be with reference to the standard/Euclidean metric d.

Items 1-14 were done on 22 December 2009 (14:25 - 16:00).

15. Let V be a finite dimensional real vector space. Let $\{v_i : 1 \le i \le m\}$ be an orthonormal (O.N.) basis of V. Then any $v = \sum_{i=1}^{m} a_i v_i$, where $a_k = \langle v, v_k \rangle$. *Hint:* Take inner product of both sides with v_k .

16. Keep the notation of the last item. Let W be another inner product space with $\{w_j : 1 \le n\}$ as an O.N. basis.Let $T: V \to W$ be a linear map. Then the matrix $A = (a_{ij} \text{ of } T \text{ w.r.t.}$ to these O.N. bases can be explicitly written. We have $a_{rs} = \langle Tv_s, w_r \rangle$. Hint: Let $Tv_i = \sum_{j=1}^n a_{ji}w_j$. Take inner product of both sides with the vector w_r .

Items 15-16 were done on 18 December 2009 (14:00 - 15:00).

- 17. We defined open balls in a metric space (X, d). The open ball with centre $a \in X$ and radius r > 0 is defined as $B(a, r) := \{x \in X : d(x, a) < r\}$. We looked at B((a, b), r) in \mathbb{R}^2 .
- 18. We defined a sequence in a metric space (X, d). A sequence (x_n) in (X, d) converges to $x \in X$ if for each $\varepsilon > 0$, we can find $n_0 \in \mathbb{N}$ such that for all $n \ge n_0$, we have $d(x, n, x) < \varepsilon$, that is, $x_n \in B(x, \varepsilon)$.
- 19. We proved the uniqueness of the limit of convergent sequences in a metric space.
- 20. We looked at some examples:
 - (a) In any metric space, a constant sequence is always convergent.
 - (b) In \mathbb{R}^n , we saw that a sequence $\vec{x}_k := (x_{k1}, \ldots, x_{kn})$ is convergent to a vector $x = (x_1, \ldots, x_n)$ in any of the metrics d, d_1 or d_{∞} iff for each $1 \le i \le n$, the sequence (x_{ki}) of real numbers converge to x_i . Thus, $\vec{x}_k \to \vec{x}$ iff the sequence "converges coordinate-wise".

The reason for this fact about convergence is the 'equivalence of norms':

$$\frac{1}{n} \|x\|_1 \le \frac{1}{\sqrt{n}} \|x\|_2 \le \|x\|_{\infty} \le \|x\|_2 \le \|x\|_1.$$

- (c) We looked at some examples of convergent sequences and also some examples of non-convergent sequences in \mathbb{R}^2 .
- (d) If we fix a vector $a = (a_1, \ldots, a_n) \in \mathbb{R}^n$. Then the sequence $x_n := (1/n)a$ converges to the zero vector.
- 21. Let (x_k) , (y_k) be sequences in \mathbb{R}^n converging to x and y respectively. Let $c \in \mathbb{R}$. We proved the following:
 - (a) The sequence (z_k) where $z_k = x_k + y_k$ of vectors in \mathbb{R}^n converges to x + y (w.r.t. any one of the metrics d, d_1 and d_{∞}).
 - (b) The sequence (cx_k) converges to cx.
 - (c) The sequence $(x_k \cdot y_k)$ of real numbers converges to $x \cdot y$.
- 22. We say that that a function $f: (X, d) \to (Y, d)$ is continuous at a point $a \in X$ if for *every* sequence (x_n) in X converging to a, the sequence $(f(x_n)$ converges to f(a) in Y. The function f is said to be continuous on X if f is continuous at each point of X.
- 23. We looked at some examples of continuous functions.
 - (a) Fix $y_0 \in Y$. The the constant function $f(x) = y_0$ for $x \in X$ is continuous.
 - (b) The identity function f(x) = x is a continuous function from (X, d) to itself.

- (c) Given a metric space (X, d) (having at least two points), there exist non-constant real valued continuous functions. For example, fix $a \in X$ and look at f(x) := d(x, a).
- (d) Given a linear map $T: \mathbb{R}^m \to \mathbb{R}^n$ there exist a constant C > 0 such that $||Tx|| \le C ||x||$ for $x \in \mathbb{R}^m$. From this it followed that T is uniformly continuous. In fact, the proof showed the following: any linear map from a finite dimensional eulidean space \mathbb{R}^m to any vector space equipped with a norm is uniformly continuous.

Items 17-23 were done on 23 December 2009 (14:30 — 16:00).

- 24. We recalled the definition of uniform continuity of a function $f: (X, d) \to (Y, d)$. Given a continuous function $f: [a, b] \to \mathbb{R}$, while proving the Riemann integrability of f on [a, b], one needs the fact such an f is uniformly continuous on [a, b].
- 25. We proved that any linear map $T \colon \mathbb{R}^n \to V$ to any normed linear space (NLS, that is, a vector space equipped with a norm) is uniformly continuous.
- 26. The vector addition $(x, y) \mapsto x + y$ from $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous.
- 27. The dot product $(x, y) \mapsto x \cdot y$ from $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ is continuous.
- 28. We showed that if $f: (X, d) \to (Y, d)$ is continuous at $a \in X$ and if $g: (Y, d) \to (Z, d)$ is continuous at b := f(a), then the composite function $g \circ f$ is continuous at a.
- 29. Applications of the last item.
 - (a) The functions $x = (x_1, \ldots, x_n) \mapsto x_i$ from \mathbb{R}^n to \mathbb{R} is continuous. Hence any polynomial functions in the variables x_1, \ldots, x_n is continuous on \mathbb{R}^n .
 - (b) Let (X, d) be a metric space. Let $f, g: X \to \mathbb{R}^n$ be continuous. Then the map $f+g: X \to \mathbb{R}^n$ defined by (f+g)(x) := f(x)+g(x) is continuos. It is the composite of the maps $x \mapsto (f(x), g(x))$ and $(u, v) \mapsto u + v$.
 - (c) With the notation of the last item, the map $h(x) := f(x) \cdot g(x)$ from X to \mathbb{R} is continuous. It is the composite of the maps $x \mapsto (f(x), g(x))$ and $(u, v) \mapsto u \cdot v$.
 - (d) Two special cases of the last item: if f, g are real valued continuous functions on a metric space (X, d), then their sum f + g and the product fg are continuous. Hence the set $C(X, \mathbb{R})$ of all real valued continuous functions on a metric space Xis a real vector space and is a ring. (It is an algebra, if you know what this means.)
 - (e) Let $T: \mathbb{R}^m \to \mathbb{R}^n$ be linear. The map $(x, y) \mapsto Tx \cdot y$ from $\mathbb{R}^m \times \mathbb{R}^n$ to \mathbb{R} is continuous. It is the composite of the maps $(x, y) \mapsto (Tx, y)$ and $(u, v) \mapsto u \cdot v$.
 - (f) The map $x \mapsto ||x||$ from an NLS to \mathbb{R} is continuous. (We used the triangle inequality: $|||x|| ||y||| \le ||x y||$.) Also the map $x \mapsto 1/||x||$ is continuous from the set of nonzero vectors to \mathbb{R} . It is the composite of the map $x \mapsto ||x||$ and $t \mapsto 1/t$.
 - (g) If $f: (X, d) \to \mathbb{R}^*$ is a continuous function, then the function $g: X \to \mathbb{R}^*$ defined by g(x) := 1/f(x) is continuous.

- 30. Let $A \subset (X, d)$. A point $p \in X$ is said to be a cluster point of A if, for any r > 0, the intersection $B(p, r) \cap A$ contains a point other than p. The subset $\mathbb{Z} \subset \mathbb{R}$ has no cluster point. Any real number is a cluster point of the set $\mathbb{Q} \subset \mathbb{R}$.
- 31. Let (X, d) be a metric space. Let $a \in X$ be a cluster point of X. Let $f: X \setminus \{a\} \to (Y, d)$ be a function. (Note that a need not be in the domain of f, that is, f(a) may not be defined.) Then we say that $b \in Y$ is the limit of f as $x \to a$ in X if for any given $\varepsilon > 0$, there exists $\delta > 0$ such that for any $x \in B(a, \delta) \cap E$ with $x \neq a$, we have $f(x) \in B(b, \varepsilon)$, that is, $d(f(x), b) < \varepsilon$. Such a b, if exists, is unique (here we needed the fact that a is a cluster point of X) and is denoted by $\lim_{x\to a} f(x) = b$.
- 32. Let $f: (X, d) \to (Y, d)$ be a function. Assume that $a \in X$ be a cluster point of X. Then f is continuous at a iff (i) $\lim_{x\to a} f(x)$ exists, say, $b \in Y$ and (ii) b = f(a).
- 33. Let d be the absolute value metric on $\mathbb{Z} \subset \mathbb{R}$. Any convergent sequence in (\mathbb{Z}, d) is eventually constant. As a consequence, any function $f: (\mathbb{Z}, d) \to (Y, d)$ is continuous.
- 34. Let $M_{n \times m}(\mathbb{R}) \cong M_{n \times m}$ denote the vector space of all real matrices of size $n \times m$. We let $M(n, \mathbb{R}) := M_{n \times n}(\mathbb{R})$. The map

$$A = (a_{ij}) \mapsto (a_{11}, \dots, a_{1m}, a_{21}, \dots, a_{2m}, \dots, a_{n1}, \dots, a_{nm})$$

is a linear isomorphism of $M_{n \times m}$ with \mathbb{R}^{nm} . This isomorphism induces at least three natural norms on $M_{n \times m}$:

$$||A|| := \left(\sum_{ij} |a_{ij}|^2\right)^{1/2}, ||A|| := \max_{i,j} \{|a_{ij}|\}, ||A|| := \sum_{i,j} |a_{ij}|.$$

- 35. The matrix product $(A, B) \mapsto AB$ from $M_{n \times k} \times M_{k \times m} \to M_{n \times m}$ is continuous. In particular, the map $A \mapsto A^2$ from $M(n, \mathbb{R})$ to itself is continuous.
- 36. The map $A \mapsto \det(A)$ from $M(2,\mathbb{R})$ to \mathbb{R} is continuous. In fact, the map $A \mapsto \det A$ is continuous from $M(n,\mathbb{R})$ to \mathbb{R} . We used the Laplace expansion:

$$\det A = \sum_{\sigma \in S_n} \operatorname{sign}(\sigma) a_{1\sigma(1)} \cdots a_{n\sigma(n)}.$$

Observe that det: $M(n, \mathbb{R}) \to \mathbb{R}$ is a ploynomial function in the variables a_{ij} .

- 37. A function $f: (X, d) \to (Y, d)$ is continuous at $a \in X$ iff for any r > 0, the inverse image $f^{-1}(B(f(a), r))$ is open in X. It is continuous on X iff for every open set $V \subset Y$, the inverse image $f^{-1}(V)$ is open in X. (The proof was learnt in Real Analysis 1.)
- 38. The set $GL(n, \mathbb{R})$ of all invertible matrices is an open subset of $M(n, \mathbb{R})$. Hence the set of singular matrices of size $n \times n$ is closed in $M(n, \mathbb{R})$.

Items 24-38 were done on 29 December 2009 (14:30 - 16:00).

39. Given $f: \mathbb{R}^m \to \mathbb{R}^n$, we can write it as $f(x) = (f_1(x), \ldots, f_n(x))$ where f_i is the composite $\pi_i \circ f$. We proved that f is continuous iff each f_i is continuous. (You were asked to write the proof after I explained the proof and we 'jointly corrected' your writing!)

40. Given a linear map $A : \mathbb{R}^m \to \mathbb{R}^n$ or an $n \times m$ matrix A we define the operator norm ||A|| as follows:

$$||A|| := \inf\{C : C \ge 0 \text{ and } ||Ax|| \le C ||x|| \text{ for all } x \in \mathbb{R}^m\}.$$

Note that it makes sense, since the subset of real numbers on the right side is nonempty and bounded below by 0. Before we prove that this is a norm on the vector space $L(\mathbb{R}^m, \mathbb{R}^n)$ or on $M_{n \times m}$, we looked at some examples.

- 41. Operator norms of some linear maps or matrices:
 - (a) ||0|| = 0.
 - (b) $||I_{n \times n}|| = 1.$
 - (c) $||cI_{n \times n}|| = |c|.$
 - (d) If $A = \text{diag}(c_1, \dots, c_n)$ is the diagonal matrix, then $||A|| = \max\{|c_i| : 1 \le i \le n\}$.
 - (e) We shall prove later that if A is a real symmetric matrix, then ||A|| is the maximum of the absolute values of the eigenvalues of A. Note that the last item is a special case of this result.
- 42. We proved that the operator norm is indeed a norm on $L(\mathbb{R}^m, \mathbb{R}^n)$ and on $M_{n \times m}$. Unless otherwise specified, whenever we talk of norm of a linear map or of a matrix, it will refer to the operator norm.
- 43. The operator norm has an important property: $||B \circ A|| \leq ||B|| ||A||$, where $A \colon \mathbb{R}^m \to \mathbb{R}^n$ and $B \colon \mathbb{R}^n \to \mathbb{R}^k$ are linear or B is of type $k \times n$ and A is of type $n \times m$.

Strict inequality may occur: Consider a nonzero linear map A such that $A^2 = 0$.

Items 39-43 were done on 30 December 2009 (14:30 - 15:50).

44. We claim that a sequence (A_k) in $M(n, \mathbb{R})$ converges to A in the operator norm iff it converges 'entry-wise' or coordinate-wise. To see this, we show that $||A|| \leq \sqrt{n} ||A||_{\max}$:

$$\|Ax\|^{2} = \sum_{i} \left(\sum_{j} a_{ij} x_{j}\right)^{2} \le \sum_{i} \left(\sum_{j} |a_{ij}| |x_{j}|\right)^{2} \le \sum_{i} \|A\|_{\max}^{2} \|x\|^{2} = n \|A\|_{\max}^{2} \|x\|^{2}.$$

This inequality shows that if $A_k \to A$ coordinate-wise, then it converges in max norm and hence in operator norm also.

To see the other way, note that $||A_k e_i - Ae_i|| \leq ||A_k - A||$ so that $A_k e_i \to Ae_i$. In particular, their entries also converge.

45. Consider the map $A \mapsto A^{-1}$ from $GL(2, \mathbb{R})$ to itself. Since

$$A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix},$$

it is clear that the inversion map is continuous. The same result is true for $GL(n, \mathbb{R})$. One uses the formula for A^{-1} in terms of co-factors of A.

Differentiation

- 46. Given the sequences (1/n), $(1/n^2)$ and $(1/2^n)$, you guessed which goes (converges) to zero fastest. This notion was formulated precisely as follows: given two sequences (x_n) and (y_n) both converging to 0, we say (x_n) goes to zero much faster than (y_n) if $x_n/y_n \to 0$.
- 47. This led us to the following: if $f, g: (X, d) \to \mathbb{R}$ are such that $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$, then we say that f goes to zero much faster than g as $x \to a$ if $\lim_{x \to a} \frac{f(x)}{g(x)} = 0$.
- 48. In several variable calculus, when we talk of differentiability, the domain of the function is always assumed to be an open set in some \mathbb{R}^n . We shall see later the reason for this. (Compare this with the uniqueness part in Item 31.
- 49. Let $U \subset \mathbb{R}^m$ be open, $a \in U$. Let $f: U \to \mathbb{R}$ be given. Given $x \in U$, we may write x = a + h. Then h is called the increment in the independent variable and $f(x) - f(a) \equiv f(a+h) - f(a)$ is called the increment in the dependent variable. We say that f is differentiable at a if we can control the increment in the dependent variable by means of a linear map $A: \mathbb{R}^m \to \mathbb{R}: f(a+h) - f(a) \approx Ah$, read as f(a+h) - f(a)is approximately equal to Ah. Note that this is same as saying that for x near a, the value f(x) is approximately equal to f(a) + A(x-a). Whenever we approximate like this, we need to have a control on the error we are making. The error is E(h) :=f(a+h) - f(a) - Ah. An obvious first requirement is $E(h) \to 0$ as $h \to 0$.

Let us look at an example. Consider $f \colon \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^2$. Let $a \in \mathbb{R}$. Then we observe

$$f(a+h) - f(a) = 2ah + h^2.$$

Since we know all the linear maps from \mathbb{R} to itself, we defined Ah = 2ah so that $E(h) = h^2$ which goes to zero faster than h going to 0.

Going back to the general case, we require that E(h) goes to 0 much faster than h, that is, $\lim_{h\to 0} E(h) / ||h|| = 0$.

50. The discussion in the last item led us to the following definition. Let $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$. Let $a \in U$. We say that f is differentiable at a if there exists a linear map $A: \mathbb{R}^m \to \mathbb{R}^n$ such that for $x \in U$, if we write f(x) = f(a) + A(x-a) + E(x-a) then $\lim_{x \to a} \frac{\|E(x-a)\|}{\|x-a\|} = 0$.

Such a linear map, if it exists, is unique (to be proved later). It is denoted by Df(a) and called the (total or Frechet) derivative of f at a.

- 51. Examples:
 - (a) Consider $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^n$ where $n \in \mathbb{N}$. Key observation:

$$f(a+h) - f(a) = (a+h)^n - a^n = \binom{n}{1}a^{n-1}h + \binom{n}{2}a^{n-2}h^2 + \dots + \binom{n}{n}a^0h^n \le na^{n-1}h + h^2(\text{Constant}),$$

where we assumed that $|h| \leq 1$. Hence $Df(a)h = na^{n-1}h$.

(b) $f(x) = e^x$ for $x \in \mathbb{R}$. Key observation:

$$e^{a+h} - e^{a} = e^{a}(e^{h} - 1)$$

= $e^{a}([1 + \frac{h}{1!} + \frac{h^{2}}{2!} + \cdots] - 1)$
 $\leq e^{a}h + e^{a}h^{2}(\text{Constant}).$

Hence $Df(a)(h) = e^a h$.

(c) Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by f(x, y) = xy. Key observation:

$$f(a+h, b+k) - f(a, b) = ak + bh + hk.$$

Note that $\frac{\|hk\|}{\|(h,k)\|} \leq \frac{\|(h,k)\|\|(h,k)\|}{\|(h,k)\|}$ and we have Df(a,b)(h,k) := ak + bh.

- (d) Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by f(x, y) = x + y. You found that Df(a, b)(h, k) = h + k.
- (e) Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be linear. Then Df(a)(h) = f(h), that is, Df(a) = f. Note that the last example is a special case of this result.
- (f) Consider $f: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ given by $f(x, y)x \cdot y$. Key Observation:

$$f(a+h,b+k) - f(a,b) = a \cdot k + h \cdot b + h \cdot k.$$

Hence $DF(a,b)(h,k) = a \cdot k + b \cdot h$ as $\frac{\|h \cdot k\|}{\|(h,k)\|} \le \frac{\|h\| \|k\|}{\|(h,k)\|} \le \frac{\|(h,k)\|^2}{\|(h,k)\|}$.

- (g) Let $T : \mathbb{R}^m \to \mathbb{R}^n$ be linear. Consider $f : \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}$ defined by $f(x, y) = Tx \cdot y$. Then we have $Df(a, b) = Ta \cdot k + Th \cdot b$.
- 52. We now formulate the definition of differentiability at a point in terms of ε - δ . If we let $\varphi(h) := \frac{\|E(h)\|}{\|h\|}$, then $\lim_{h\to 0} \frac{\|E(h)\|}{\|h\|} = 0$ is same as saying that $\lim_{h\to 0} \varphi(h) = 0$. That is, given $\varepsilon > 0$, there exists a $\delta > 0$ such that for all $0 \neq h \in B(0, \delta)$, we must have $\varphi(h) \in (-\varepsilon, \varepsilon)$. Since $\varphi(h) \ge 0$, this is same as requiring that $\varphi(h) < \varepsilon$. This leads us to the following equivalent definition:

f is differentiable at a iff there exists a linear map $A \colon \mathbb{R}^m \to \mathbb{R}^n$ such that for each ε there exists $\delta > 0$ such that for $0 < \|h\| < \delta$, we must have $\|f(a+h) - f(a) - Ah\| < \varepsilon \|h\|$.

Items 45-52 were done on 31 December 2009 (14:30 - 16:05). Happy New Year!

53. Exercise:

- (a) Consider $f(x,y) := x^2 y$ for $(x,y) \in \mathbb{R}^2$. Then f is differentiable at (a,b) with $Df(a,b)(h,k) = 2abh + a^2k$.
- (b) Consider f(x,y) := (x, y, xy) from \mathbb{R}^2 to \mathbb{R}^3 . Then Df(a,b)(h,k) = (h,k,ak+bh).
- (c) Consider $f \colon \mathbb{R}^m \to \mathbb{R}$ defined by $f(x) = x \cdot x$. Then f is differentiable at a and $Df(a)(h) = 2a \cdot h$.
- (d) Let A be an $n \times n$ matrix. Let $f(x) := Ax \cdot x$ for (column) vectors $x \in \mathbb{R}^n$. Then $Df(a)(h) = Aa \cdot h + Ah \cdot a$. In particular, if A is symmetric, then $Df(a)(h) = 2Aa \cdot h$. The last item is a special case of this result.

- (e) Let $f: \mathbb{R}^m \times \mathbb{R}^n \to \mathbb{R}^k$ be a bilinear map. Then one finds Df(a,b)(h,k) = f(a,k) + f(h,b). Note that Items 51c, 51f and 51g are special cases of this result.
- (f) Consider $f(X) := X^2$ for $X \in M(n, \mathbb{R})$. Then f is differentiable at $A \in M(n, \mathbb{R})$ with Df(A)(H) = AH + HA.

You solved (a), (b) and (e) in the class.

- 54. We explained why we insisted on the domain being open.
- 55. We proved the uniqueness of the linear map in the definition of of differentiability. We saw how the set U being open was needed in the proof.
- 56. Let $J \subset \mathbb{R}$ be an open interval and $a \in J$. Then $f: J \to \mathbb{R}$ is differentiable at $a \in J$ iff the limit $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ exists. If f is differentiable, then we have Df(a)(1) = f'(a). (For a complete proof of the last two items, refer to my article "A conceptual Introduction to Multi-variable Calculus".)
- 57. Keep the notation of the last item. Then f is differentiable at a iff there exists $f_1: J \to \mathbb{R}$ such that (i) f_1 is continuous at a and (ii) $f(x) = f(a) + f_1(x)(x-a)$ for all $x \in J$.

We saw a couple of uses of this result. We arrived at the analogue of this result for the case of $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$: f is differentiable at $a \in U$ iff there exists $f_1: U \to L(\mathbb{R}^m, \mathbb{R}^n) \cong M_{n \times m}$ such that (i) f_1 is continuous at a and (ii) $f(x) = f(a) + f_1(x)(x-a)$. *Hint:* Consider

$$f_1(x) := \begin{cases} A + \frac{1}{\|x-a\|^2} E(x)(x-a)^t, & x \neq a \\ A, & x = a \end{cases}$$

where $E(x)(x-a)^t$ is the matrix product of the $n \times 1$ matrix E(x) with the $1 \times m$ matrix (x-a).

We shall prove it in the next class.

Items 53–57 were done on 1 January 2010 (14:30 - 16:00).

- 58. We proved the result of the last item. The next few items are some of the typical applications.
- 59. If f is differentiable at a, then f is continuous at a.
- 60. If $f, g: U \subset \mathbb{R}^m \to \mathbb{R}^n$ is differentiable at a, then f + g is differentiable at a with D(f+g)(a) = Df(a) + Dg(a).
- 61. If $f,g: U \subset \mathbb{R}^m \to \mathbb{R}$ is differentiable at a, then h = fg is differentiable at a with Dh(a) = f(a)Dg(a) + g(a)Df(a).
- 62. Chain Rule: Let $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$ be differentiable at $a \in U$. Let $g: V \subset \mathbb{R}^n \to \mathbb{R}^k$ be differentiable at $b = f(a) \in V$. Then $h := g \circ f$ is differentiable at a with $Dh(a) = Dg(b) \circ Df(a)$.
- 63. If $f: J \subset \mathbb{R} \to \mathbb{R}^n$ is differentiable, then we think of it as a (parametrized) curve in \mathbb{R}^n . In such a case, we use the notation γ or c in place of f. The point $\gamma(t)$ is a vector, usually denoted by $(x_1(t), \ldots, x_n(t))$ and is called the position vector of the point $\gamma(t)$. We may think of γ as the trajectory of a particle as it moves along the time interval J.
- 64. $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$ is differentiable at $a \in U$ iff each $f_i = \pi \circ f$ is differentiable at a. (Here π_i is the projection of \mathbb{R}^n on its *i*-th factor.) We have $Df_i(a) = \pi_i \circ Df(a)$.
- 65. Keep the notation of the last item. The matrix of the linear map $\pi_i \colon \mathbb{R}^n \to \mathbb{R}$ is the $1 \times n$ matrix $E_i := (0, \ldots, 0, 1, 0, \ldots, 0)$ where 1 is at the *i*-th place. Hence from the chain rule, if A_i is the $1 \times m$ matrix representing $Df_i(a)$ (of course w.r.t. the standard bases), then $A_i = E_i A$, that is, A_i is the *i*-th row of A.
- 66. The most important trick in several variable calculus is to reduce the problem to one variable calculus. The key observation is that if $a \in U$, then for any $v \in \mathbb{R}^M$, there exists $\eta > 0$ such that for $t \in (-\eta, \eta)$, the vector $a + tv \in U$. That is, the line segment $\{a+tv: |t| < \eta\} \subset U$. By restricting f to this open line segment gives rise to a function on $(-\eta, \eta)$ as follows:

$$g_v(t) = f(a+tv), \quad t \in (-\eta, \eta).$$

67. If f is differentiable at $a \in U$, then $g'_v(0)$ exists and we have $g'_v(0) = Df(a)(v)$. More explicitly, we have

$$\lim_{t \to 0} \frac{f(a+tv) - f(a)}{t} = Df(a)(v), \text{ for all } v \in \mathbb{R}^m.$$

The limit on the right side is called the directional derivative of f at a in the direction of v and is denoted by $D_v f(a)$. Hence, the displayed formula says $D_v f(a) = Df(a)(v)$. Loosely speaking, if f is differentiable at some point, then all its directional derivatives exist at that point.

68. A very important special case of the notion of directional derivatives is when we take $v = e_i$, *i*-th vector in the standard basis. In this case, the standard notation is $D_{e_i}f(a) = \frac{\partial f}{\partial x_i}(a)$, the *i*-th partial derivative.

69. Let $f: U \subset \mathbb{R}^m \to \mathbb{R}$ be differentiable at $a \in U$. We know that $Df(a)(h) = \sum_{i=1}^m c_i h_i$ where $c_i = Df(a)(e_i)$. In view of the last item, it follows that $c_i := \frac{\partial f}{\partial x_i}(a)$. The vector grad $f(a) := \left(\frac{\partial f}{\partial x_1}(a), \dots, \frac{\partial f}{\partial x_m}(a)\right)$ is known as the gradient of f at a. Note that we have

$$Df(a)(h) = \operatorname{grad} f(a) \cdot h$$

70. Let $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$ be differentiable at a. Putting the observations made in Items 64, 65, 69 we see that the *i*-th row of A = Df(a) is

$$A_i = Df_i(a) = \left(\frac{\partial f_i}{\partial x_1}(a), \dots, \frac{\partial f_i}{\partial x_m}(a)\right)$$

Hence, the matrix A is given by

$$\begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_m}(a) \\ \vdots & & \vdots \\ \frac{\partial f_i}{\partial x_1}(a) & \dots & \frac{\partial f_i}{\partial x_n}(a) \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1}(a) & \dots & \frac{\partial f_n}{\partial x_n}(a) \end{pmatrix},$$

and is known as the Jacobian matrix of f at a.

```
Items 58-70 were done on 5 January 2010 (14:30 - 16:00).
```

- 71. Exercise:
 - (a) The converse of Item 67 is not true in general. Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} \frac{x^2y}{x^4 + y^2} & (x,y) \neq (0,0) \\ 0 & \text{otherwise.} \end{cases}$$

Then all its directional derivatives at (0,0) exist. However, f is not even continuous at (0,0) (and hence is certainly not differentiable at (0,0)).

(b) Consider $f: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$f\begin{pmatrix} u\\v \end{pmatrix} = \begin{pmatrix} u+v\\u-v\\u^2-v^2 \end{pmatrix}$$

and $g: \mathbb{R}^3 \to \mathbb{R}$ given by $g(x, y, z) = x^2 + y^2 + z^2$. Find the Jacobian matrix of $D(g \circ f)$ at $\begin{pmatrix} a \\ b \end{pmatrix}$. (c) Let $f\begin{pmatrix} x\\ y\\ z \end{pmatrix} = \begin{pmatrix} r\cos\theta\\ r\sin\theta\\ r \end{pmatrix}$ and $w = g(x, y, z) = \sqrt{x^2 + y^2 + z^2}$. Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial \theta}$

using the chain rule. Check the result by direct substitution.

- (d) Let $f, g: (a, b) \to \mathbb{R}^n$ be differentiable. Let $\phi(t) := \langle f(t), g(t) \rangle$. Compute $\phi'(t)$.
- (e) Let $f: \mathbb{R}^m \to \mathbb{R}^k$ and $g: \mathbb{R}^n \to \mathbb{R}^k$ be differentiable. Let $\phi(x, y) := \langle f(x), g(y) \rangle$. Show that ϕ is differentiable on $\mathbb{R}^m \times \mathbb{R}^n$.
- (f) Let $c: (a, b) \to \mathbb{R}^n$ be differentiable. We think of c as a curve in \mathbb{R}^n . Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Prove that $g(t) := f \circ c(t)$ is differentiable and $g'(t) = \langle \text{grad } f(c(t)), c'(t) \rangle$. Here $c'(t) = \begin{pmatrix} c'_1(t) \\ \vdots \\ c'_n(t) \end{pmatrix} = Dc(t)(1)$ is the tangent vector

to c at t. Note that $g'(t) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(c(t)) \cdot c'_i(t)$.

(g) A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be homogeneous of degree k if $f(tx) = t^k x$ for all $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$. Let f be homogeneous of degree k and differentiable on \mathbb{R}^n . Show that

$$D_x f(x) = \langle x, \text{grad } f(x) \rangle = \sum x_i \frac{\partial f}{\partial x_i}(x) = k f(x).$$

This is known as Euler's theorem. Prove also the converse. *Hint for both:* Consider g(t) = f(tx) for the first part and $t^{-k}g(t)$ for the converse.

- (h) Find the derivatives of the following functions:
 - (1) $f(x,y) = x^y$.

 - (1) $f(x, y) = \sin(xy).$ (3) $f(x, y) = \int_{a}^{x+y} g.$ (4) $f(x, y) = \int_{a}^{xy} g.$ (5) $f(x, y) = \int_{x}^{y} g.$

In (3) to (5), assume that $g: \mathbb{R} \to \mathbb{R}$ is continuous.

- (i) Compute the Jacobian matrix of the following functions:
 - (1) $(x, y) \mapsto (e^x \cos y, e^x \sin y).$
 - (2) $(x, y) \mapsto (x + y, xy, x y).$
 - (3) $x \in \mathbb{R}^n \mapsto \langle Ax, x \rangle$ where $A \colon \mathbb{R}^n \to \mathbb{R}^n$ is linear.
- (j) Let $c: (a, b) \to \mathbb{R}^n$ be differentiable such that ||c(t)|| = 1 for $t \in (a, b)$. Prove that c'(t) is perpendicular to c(t) for $t \in (a, b)$. Interpret this result geometrically in terms of spheres and tangent planes.
- (k) Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Let 0 be a value of f so that $f^{-1}(0)$ is non-empty. Let $c: (a, b) \to \mathbb{R}^n$ be a differentiable curve such that $c(t) \in f^{-1}(0)$ for all $t \in (a, b)$. Show that $\langle c'(t), \operatorname{grad} f(c(t)) \rangle = 0$. Specialize to $f: \mathbb{R}^3 \to \mathbb{R}$ and understand the geometry behind this exercise.
- 72. We brought Item 71a to your attention.
- 73. We gave two more applications of the principle stated in Item 66.
- 74. Given $f: U \subset \mathbb{R}^m \to \mathbb{R}$, a point $a \in U$ is said to be a local maximum if there exists r > 0 such that (i) $B(a, r) \subset U$ and (ii) for all $x \in B(a, r)$, we have $f(x) \leq f(a)$. A local minimum is defined similarly.
- 75. Let $f: U \subset \mathbb{R}^m \to \mathbb{R}, a \in U$. Assume that all the directional derivatives of f at a exist. Assume further that f has a local maximum/minimum at a. Then $D_v f(a) = 0$ for $v \in \mathbb{R}^m$. In particular, if f is differentiable at a, then Df(a) = 0. Hint: Fix v. Consider g(t) := f(a + tv).

76. Given a real vector space V, and points $x, y \in V$, we defined the line segment

$$[x,y] := \{x + t(y - x) : 0 \le t \le 1\} \equiv \{(1 - t)x + ty : 0 \le t \le 1\}$$

- 77. We defined a convex subset in a normed linear space. Any open (or closed) ball in such a space is convex.
- 78. The obvious formulation for the mean value theorem would be: Let $U \subset \mathbb{R}^m$ be convex. Let $f: U \to \mathbb{R}^n$ be differentiable. For any $x, y \in U$, there exists z in the line segment joining x and y such that f(y) - f(x) = DF(z)(y - x) is false. Example: Consider $f: \mathbb{R} \to \mathbb{R}^2$ given by $f(t) = (\cos t, \sin t)$. Look at $f(2\pi) - f(0)$.
- 79. The third application of the principle of Item 68 is the following form of the **mean** value theorem:

Let $U \subset \mathbb{R}^m$ be convex. Let $f: U \to \mathbb{R}^n$ be differentiable. Let $v \in \mathbb{R}^n$. Then there exists $z \in [x, y]$ such that

$$\langle f(y) - f(x), v \rangle = \langle Df(x)(y - x), v \rangle.$$
⁽²⁾

Hint: Consider $g(t) := \langle f(x + t(y - x), v \rangle$. It is the composite of $t \mapsto x + t(y - x)$, f and $y' \mapsto \langle y', v \rangle$. Mean value theorem of one variable calculus can be applied to g to get $g(1) - g(0) = g'(t_0)(1 - 0)$. Use chain rule to find g'(t).

80. In several variable calculus, more useful than the mean value theorem is the following mean value inequality:

Keep the notation of the last item. Then

$$\|f(y) - f(x)\| \le \sup_{0 \le t \le 1} \|Df(x + t(y - x))\| \|y - x\|,$$
(3)

assuming the supremum exists. To arrive at it, observe that in an inner product space $||x|| = \sup\{\langle x, u \rangle : ||u|| = 1\}.$

- 81. As an application of the mean value inequality, we proved that if $f: U \subset \mathbb{R}^n$ has zero derivative on U, then f is locally constant on U, that is, for each $x \in U$, there exists $r_x > 0$ such $B(x, r_x) \subset U$ and f is a constant on $B(x, r_x)$.
- 82. The derivative of a function being zero does **not** imply the function is a constant. Let $U := (-\infty, -1) \cup (1, \infty)$. Then U is an open set in \mathbb{R} . The function $f: U \to \mathbb{R}$ defined as f(x) = -1 if x < -1 and f(x) = 1 if x > 1 is differentiable with zero derivative.

A subset of a (metric) space is said to be connected if any locally constant function is a constant. (This is equivalent to the standard definition you will learn in your topology course.)

Hence we conclude if the domain of f is *connected*, then f is a constant.

83. Exercise: Let $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$ be differentiable. Assume that there exists M > 0 such that $\|Df(x)\| \leq M$ for $x \in U$. Then f is uniformly continuous on U. *Hint:* Use the mean value inequality.

Items 72–83 were done on 6 January 2010 (14:00 - 15:00).

- 84. We went through some of the items of the last two classes again.
 - (a) Mean Value Theorem; especially mean value inequality as many did not understand the right side of (3).
 - (b) Many wanted to understand Item 82. We considered $U := (-\infty, -1) \cup (1, \infty)$ and f(x) = -1 if $x \in (-\infty 1)$ and f(x) = 1 if $x \in (1, \infty)$. I explained why U is open, the continuity of f, the differentiability of f and that the derivative is zero.

Item 84 was done on 7 January 2010 (14:30 - 16:00).

- 85. A powerful tool in calculus is the chain rule. We looked at some typical applications.
- 86. Let $f, g: \mathbb{R}^n \to \mathbb{R}$ be differentiable. Then h := fg is the composite of $x \mapsto (f(x), g(x)) \mapsto f(x)g(x)$. We obtain grad fg(a) = f(a) grad g(a) + g(a) grad f(a).
- 87. More generally, if $f, g: \mathbb{R}^m \to \mathbb{R}^n$ are differentiable, then $h(x) := \langle f(x), g(x) \rangle$ is the composite of $x \mapsto (f(x), g(x)) \mapsto \langle f(x), g(x) \rangle$. As we have already computed the derivatives of these functions, chain rule can be applied to obtain $Dh: \mathbb{R}^m \to \mathbb{R}$.
- 88. Let $\gamma: J \subset \mathbb{R} \to \mathbb{R}^n$ and $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable. If $g(t) := f \circ \gamma(t)$, then $g'(t) = \operatorname{grad} f(\gamma(t)) \cdot \gamma'(t)$.
- 89. Consider $f: GL(n, \mathbb{R}) \to GL(n, \mathbb{R})$ given by $f(X) = X^{-1}$. Because of the formula for A^{-1} in terms of the cofcators of A, we know f is differentiable. To find its derivative, we applied chain rule to the map $x \mapsto XX^{-1} = I$. This is composite of the maps $X \mapsto (X, X^{-1})$ and $(X, Y) \mapsto XY$.
- 90. Let A be an $n \times n$ symmetric matrix. Consider $f: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ given by $f(x) = \frac{Ax \cdot x}{x \cdot x}$.
- 91. Let $f: \mathbb{R}^m \to \mathbb{R}^n$ be differentiable. Then to find Df(a), it suffices to find Df(a)(v)for any $v \in \mathbb{R}^m$. But the later is $D_v f(a)$. Let now $\gamma: (-\varepsilon, \varepsilon) \to \mathbb{R}^m$ be differentiable with two *initial* conditions: (i) $\gamma(0) = a$ and $\gamma'(0) = v$. (Recall that if $\gamma(t) = (x_1(t), \ldots, x_m(t), \text{then } \gamma'(t) = D\gamma(t)(1) = (Dx_1(t)(1), \ldots, Dx_m(t)(1)) = (x'_1(t), \ldots, x'_m(t)).)$ Then $D_v f(a) = f \circ \gamma'(0)$. Thus to compute the directional derivative $D_v f(a)$, we can use any curve γ which satisfies the initial conditions! $\gamma'(t)$ is the tangent (or velocity) vector at t to the curve γ . Note that $c := f \circ \gamma$ is a differentiable curve in \mathbb{R}^n such that c(0) = f(a). Hence the directional derivative $D_v f(a)$ is the tangent vector to the curve c at 0.

This yields the following geometric interpretation of the derivative map. Df(a) maps to the tangent vectors at a to the tangent vectors at f(a).

Items 85-91 were done on 8 January 2010 (14:30 - 16:00).

92. Let $f: \mathbb{R}^{\ell} \times \mathbb{R}^m \to \mathbb{R}^n$ be a bilinear map. Let $(a, b) \in \mathbb{R}^{\ell} \times \mathbb{R}^m$. Then Df(a, b)(h, k) = f(a, k) + f(h, b). The error term $E(h, k) = f(h, k) = \sum_{i,j} h_i k_j f(u_i, v_j)$ where $\{u_i : 1 \leq i \leq \ell\}$ and $\{v_j : 1 \leq j \leq m\}$ are standard bases of \mathbb{R}^{ℓ} and \mathbb{R}^m resp. Hence

$$||f(h,k)|| \le \sum_{i,j} ||h|| ||k|| M$$
, where $M = \max\{||f(u_i, v_j)||\}$

93. More generally, if $f: \mathbb{R}^{n_1} \times \cdots \otimes \mathbb{R}^{n_k} \to \mathbb{R}^n$ is a k-linear map, then

$$Df(a_1,\ldots,a_k)(h_1,\ldots,h_k) = \sum_{i=1}^k f(a_1,\ldots,a_{i-1},h_i,a_{i+1},\ldots,a_k).$$

- 94. We used the last item to compute the derivative of the determinant function $f: M(n, \mathbb{R}) \to \mathbb{R}$ given by $f(X) = \det X$. We found that $Df(I)(H) = \operatorname{Tr}(H)$.
- 95. Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ have continuous partial derivatives on U. Then f is differentiable on U.
- 96. We say that $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is continuously differentiable or C^1 on U if $x \mapsto Df(x)$ as a map from $U \to L(\mathbb{R}^n, \mathbb{R})$ is continuous. Since the matrix of Df(x) is $\left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right)$, this is equivalent to saying that the partial derivatives of f exist and are continuous on U. (We used Items 69 and Item ??
- 97. More generally, we say f is C^k if all its partial derivatives of order less than or equal to k exist and are continuous, that is, $\frac{\partial^k f}{\partial x_{i_1} \dots \partial x_{i_k}}$ exist for $i_1, \dots, i_k \in \{1, \dots, n\}$. Just to make sure you get it right, you were asked to write all partial derivatives of f where n = 2 and k = 3.
- 98. We proved the following result:

Let $f: U \subseteq \mathbb{R}^2 \to \mathbb{R}$. Assume that D_1f , D_2f , D_1D_2f and D_2D_1f exist and are continuous. Then $D_1D_2f = D_2D_1f$. Here $D_if = D_{e_i}f$ are the partial derivatives. *Hint:* Consider $g_1(x) = f(x, y+k) - f(x, y)$ and $g_2(y) = f(x+h, y) - f(x, y)$. Apply mean value theorem to $g_1(x+h) - g_1(x)$ and once again to the result which is a function of y. Carry out a similar approach to $g_2(y+k) - g_2(y)$ and use continuity of D_1D_2f and D_2D_1f .

- 99. More generally, if $f \colon \mathbb{R}^n \to \mathbb{R}$ is C^2 , then $\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$ for any i, j.
- 100. Still more generally, if $f: \mathbb{R}^n \to \mathbb{R}$ is C^k , then any partial derivative of order, say, $r \leq k$ can be written of the form $\frac{\partial^r f}{\partial x_1^{i_1} \cdots \partial x_n^{i_n}}$ where $i_1 + \cdots + i_n = r$.

Items 92-100 were done on 11 January 2010 (14:30 - 16:00).

- 101. We recalled that the function $f(t) = \begin{cases} 0 & \text{for } t \leq 0 \\ \exp(-1/t) & \text{for } t > 0, \end{cases}$ is C^{∞} . Since $f^{(n)}(0) = 0$ for all $n \geq 0$, its Taylor expansion at t = 0 is 0. Thus this is a smooth (C^{∞}) function whose Taylor series converges but NOT to the function. We also drew the graph of f.
- 102. Let f be as in the last item. Let $\varepsilon > 0$ be given. Define $g_{\varepsilon}(t) := f(t)/(f(t) + f(\varepsilon t))$ for $t \in \mathbb{R}$. Then g_{ε} is C^{∞} , $0 \le g_{\varepsilon} \le 1$, $g_{\varepsilon}(t) = 0$ iff $t \le 0$ and $g_{\varepsilon}(t) = 1$ iff $t \ge \varepsilon$. What is the graph of g_{ε} ?

103. Let f, g be as in the last two items. For r > 0 and $x \in \mathbb{R}^n$, define $\varphi(x) := 1 - g_{\varepsilon}(||x|| - r)$. Then φ is smooth (Why is φ smooth at 0?) and has the following properties: (i) $0 \le \varphi \le 1$, (ii) $\varphi(x) = 1$ iff $||x|| \le r$ and $\varphi(x) = 0$ iff $||x|| \ge r + \varepsilon$.

In particular, if 0 < r < R, there exist smooth functions f such that f = 1 on B(a, r) and 0 outside B(a, R).

Can you visualize the graph of such functions?

104. We reviewed the Taylor expansion for real valued functions of a real variable. If $f: J \subset \mathbb{R} \to \mathbb{R}$ is C^k , then

$$f(x) = f(a) + \sum_{j=1}^{k-1} \frac{f^{(j)}}{j!}(a)(x-a)^j + \frac{f^{(k)}}{k!}(y).$$
(4)

The most important fact we should know about the remainder term $R_k(x)$ is that $\lim_{x\to a} \frac{R_k(x)}{(x-a)^{k-1}} = 0.$

105. Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ be C^k . We get a Taylor expansion for f by considering g(t) = f(a + th). (This is again an instance of our principle of reduction to one-dimensional case.) To keep the notation simple, we shall assume that $a = 0 \in U$. We use x in place of h.

Then g is the composite of $t \mapsto tx \mapsto f(tx)$. Hence

$$g'(t) = \operatorname{grad} f(tx) \cdot x = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(tx) x_i$$
$$g''(t) = \sum_{i=1}^{n} \operatorname{grad} \frac{\partial f}{\partial x_i}(tx_j) x_j x_i$$
$$= \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}(tx) x_i x_j,$$

and so on.

106. In particular, if f is C^2 , then

$$f(x) = f(0) + \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(tx)x_i + \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}(t_0 x)x_i x_j,$$
(5)

for some $0 \le t_0 \le 1$.

- 107. We reviewed the proof of sufficient conditions for the local extrema of functions $f : \mathbb{R} \to \mathbb{R}$. The proof suggested the following item.
- 108. If 0 is a local minimum of f, then for all x in a neighbourhood of 0, we must have $\sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_i \partial x_i}(t_0 x) x_i x_j > 0$. Analogous condition for a local maximum.
- 109. Since we want the condition on the derivatives of f at 0, we arrive at the following sufficient conditions: Let $f: U \to \mathbb{R}$ be C^2 . Assume that (i) Df(a) = 0 and (ii)

 $\sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}(a) x_i x_j > 0 \text{ for all } x \text{ with } \|x\| \text{ sufficiently small. Then } a \text{ is a local minimum of } f.$

Similar result for a local maximum.

- 110. We need to modify the proof of the sufficient condition in the one-dimensional case, as the t_0 of Item 106 will depend on the x and hence we may not be able to find a $\delta > 0$ which will say that for all x with $||x|| < \delta$, we have $f(a + x) \ge f(a)$. This is explained in the next class. See Item 115.
- 111. Let $A = (a_{ij})$ be an $n \times n$ symmetric matrix. We say that A is positive definite if $Ax \cdot x > 0$ for $x \in \mathbb{R}^n$ with $x \neq 0$.

There are two well-known criteria for the positive definiteness of a symmetric matrix $A = (a_{ij})$. (i) All the eigenvalue values of A are positive. (ii) All the matrices $(a_{ij})_{1 \le i,j \le k}$ for $1 \le k \le n$ have positive determinants.

The proofs of the second criterion for n = 2 and the first criterion for all n are easy.

112. One defines similarly negative definiteness of symmetric matrices. The second condition for negative definiteness reads as follows: the determinants of the principal minors alternate in sign beginning with negative.

Items 101-112 were done on 12 January 2010 (14:30 - 16:00).

- 113. Let $A = (a_{ij})$ be an $n \times n$ symmetric matrix. The function $f: x \mapsto Ax \cdot x$ is continuous (we proved this in two ways!). The unit sphere $S := \{x \in \mathbb{R}^n : ||x|| = 1\}$ is a closed and bounded subset of \mathbb{R}^n and hence by Heine-Borel theorem, S is compact. Hence, the function f attains its maxima and minima on S.
- 114. Assume that A (of the last item) is positive definite. Then $m := \min_{x \in S} f(x) > 0$. We use this information to solve the problem raised in Item 110.
- 115. Keep the notation of Items 105-106. Let $A := \left(\frac{\partial^2 f}{\partial x_i x_j}(a)\right)$ be the Hessian matrix. Let m be as in the last item.

$$f(a+h) = f(a) + 0 + \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}(a) h_i h_j + \left(\sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}(a+t_0h) - \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}\right) h_i h_j.$$
(6)

Given $\varepsilon := m/2$, by the continuity of the second order partial derivatives, there exists $\delta > 0$ such that the operator norm $\left\| \left(\frac{\partial^2 f}{\partial x_i x_j} (a + t_0 h) \right) - A \right\| < \varepsilon$. Using this information in (6), we see that the sign of

Using this information in (6), we see that the sign of

$$\sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}(a) h_i h_j + \left(\sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}(a+t_0h) - \sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}\right) h_i h_j$$

is the same as that of $\sum_{i,j=1}^{n} \frac{\partial^2 f}{\partial x_j \partial x_i}(a) h_i h_j$ for $||h|| < \delta$.

This proves the sufficiency of the conditions for the local minimum at a. Similarly, one proves the sufficiency of the conditions for the local maximum at a.

- 116. Note that the above conditions are sufficient conditions and not necessary conditions. For example, look at $f(x) = x^4$ for $x \in \mathbb{R}$. Clearly x = 0 is a point of locally (and also global) minimum for f, but f'(0) = 0 = f''(0).
- 117. We then made a digression. Keeping the notation of Item 113, we proved that m is an eigenvalue of A and the point $v \in S$ at which f attains this value is an eigenvector of A. The proof was a cocktail of linear algebra, analysis, calculus and geometry. Reference for this is my book on linear algebra.

Items 113-117 were done on 13 January 2010 (14:30 - 16:00).