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Preliminaries

1. Linear Algebra is the foundation of Differential Calculus. We very briefly review some
basic concepts.

2. Let V and W be (finite dimensional) real vector spaces. Let {vi : 1 ≤ i ≤ m} (resp.
{wj : 1 ≤ j ≤ n}) be a basis of V (resp. of W ). Let T : V →W be a linear map. Then
the matrix A of T w.r.t. to these bases is an n×m-matrix (aij) where the i-th column
is the coefficients (aij) where Tvi = a1iw1 + a2viw2 + · · · + aniwn =

∑n
j=1 ajiwj . Note

the way the coefficients are indexed.

3. If A = (aij) is a real n×m matrix, then we have an associated linear map T : Rm → Rn
given by T : x 7→ Ax where x = (x1, . . . , xm)t ∈ Rm and Ax is the product of an n×m
matrix A with the m × 1 matrix x. The matrix of T w.r.t. the standard bases of Rm
and Rn is A. Note that Aei is the i-th column of A.

As a general rule, we write vectors in Rn as a column vector (i.e., a matrix of size n×1).
A 1× 1 real matrix is identified with real number which is its unique entry.

4. As examples, we wrote down the matrices of the linear maps:

(a) T : R2 → R4 given by T (x, y) = (2x+ 3y, x+ y, x− y, y).

(b) T : Rn → R given by T (x1, . . . , xn) :=
∑

i aixi.

5. Any linear map T : R→ R is of the form Tx = cx where c = T (1).
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6. Any linear map T : Rn → R is of the form Tx =
∑n

i=1 cixi where ci = T (ei). Hint:
Write x =

∑
i xiei and apply T to both sides.

7. We recalled the definition of an inner product on a real vector space. As an example, we
looked at Rn with the standard inner product (x, y) 7→

∑n
i=1 xiyi. It is also known as the

Euclidean inner product or the standard dot product. Note that using our convention
in Item 3, the dot product can be written as x ·y = ytx, the product of matrices of type
1× n and n× 1.

8. The result in Item 6 can be reformulated as follows: Any linear map T : Rn → R is of
the form T (x) = x · c where the vector c = (T (e1), . . . , T (en)).

9. If (V, 〈 , 〉) is an inner product space, then ‖x‖ := 〈x, x〉1/2.

10. The most important inequality is the Cauchy-Schwarz inequality:

| 〈v, w〉 | ≤ ‖v‖ ‖w‖ for all v, w ∈ V. (1)

The equality holds iff one of the vectors is a scalar multiple of the other.

11. The norm ‖ ‖ : V := Rn → R has the following properties:

(a) ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0.

(b) ‖tx‖ = |t| ‖x‖ for all t ∈ R and x ∈ V .

(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

12. Any function ‖ ‖ : V → R from any real vector space to R satisfying the properties
listed in Item 11 is called a norm on V .

13. We showed the following are norms on Rn:

(a) x = (x1, . . . , xn) 7→
√(

x21 + · · ·+ x2n
)
. This is called the standard or Euclidean

norm.

(b) x 7→
∑n

i=1 |xi|. This is called the L1-norm and is denoted by ‖x‖1.
(c) x 7→ max{|xi| : 1 ≤ i ≤ n}. This is called the max norm or L∞-norm. It is denoted

by ‖x‖∞.

14. A norm on a vector space V gives rise to a metric on V as follows: d(x, y) := ‖x− y‖.
We checked that d is a metric on X.

The metrics on Rn induced by the norms the standard ‖ ‖, ‖ ‖1 and ‖ ‖∞ will be
denoted by d, d1 and d∞.

Whenever we talk of distances in Rn, it will be with reference to the standard/Euclidean
metric d.

Items 1–14 were done on 22 December 2009 (14:25 — 16:00).

15. Let V be a finite dimensional real vector space. Let {vi : 1 ≤ i ≤ m} be an orthonormal
(O.N.) basis of V . Then any v =

∑m
i=1 aivi, where ak = 〈v, vk〉. Hint: Take inner

product of both sides with vk.
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16. Keep the notation of the last item. Let W be another inner product space with {wj :
1 ≤ n} as an O.N. basis.Let T : V → W be a linear map. Then the matrix A = (aij of
T w.r.t. to these O.N. bases can be explicitly written. We have ars = 〈Tvs, wr〉. Hint:
Let Tvi =

∑n
j=1 ajiwj . Take inner product of both sides with the vector wr.

Items 15–16 were done on 18 December 2009 (14:00 — 15:00).

17. We defined open balls in a metric space (X, d). The open ball with centre a ∈ X and
radius r > 0 is defined as B(a, r) := {x ∈ X : d(x, a) < r}. We looked at B((a, b), r) in
R2.

18. We defined a sequence in a metric space (X, d). A sequence (xn) in (X, d) converges
to x ∈ X if for each ε > 0, we can find n0 ∈ N such that for all n ≥ n0, we have
d(x,n , x) < ε, that is, xn ∈ B(x, ε).

19. We proved the uniqueness of the limit of convergent sequences in a metric space.

20. We looked at some examples:

(a) In any metric space, a constant sequence is always convergent.

(b) In Rn, we saw that a sequence ~xk := (xk1, . . . , xkn) is convergent to a vector
x = (x1, . . . , xn) in any of the metrics d, d1 or d∞ iff for each 1 ≤ i ≤ n, the
sequence (xki) of real numbers converge to xi. Thus, ~xk → ~x iff the sequence
“converges coordinate-wise”.

The reason for this fact about convergence is the ‘equivalence of norms’:

1

n
‖x‖1 ≤

1√
n
‖x‖2 ≤ ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 .

(c) We looked at some examples of convergent sequences and also some examples of
non-convergent sequences in R2.

(d) If we fix a vector a = (a1, . . . , an) ∈ Rn. Then the sequence xn := (1/n)a converges
to the zero vector.

21. Let (xk), (yk) be sequences in Rn converging to x and y respectively. Let c ∈ R. We
proved the following:

(a) The sequence (zk) where zk = xk + yk of vectors in Rn converges to x + y (w.r.t.
any one of the metrics d, d1 and d∞).

(b) The sequence (cxk) converges to cx.

(c) The sequence (xk · yk) of real numbers converges to x · y.

22. We say that that a function f : (X, d) → (Y, d) is continuous at a point a ∈ X if for
every sequence (xn) in X converging to a, the sequence (f(xn) converges to f(a) in Y .
The function f is said to be continuous on X if f is continuous at each point of X.

23. We looked at some examples of continuous functions.

(a) Fix y0 ∈ Y . The the constant function f(x) = y0 for x ∈ X is continuous.

(b) The identity function f(x) = x is a continuous function from (X, d) to itself.
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(c) Given a metric space (X, d) (having at least two points), there exist non-constant
real valued continuous functions. For example, fix a ∈ X and look at f(x) :=
d(x, a).

(d) Given a linear map T : Rm → Rn there exist a constant C > 0 such that ‖Tx‖ ≤
C ‖x‖ for x ∈ Rm. From this it followed that T is uniformly continuous.

In fact, the proof showed the following: any linear map from a finite dimensional
eulidean space Rm to any vector space equipped with a norm is uniformly contin-
uous.

Items 17–23 were done on 23 December 2009 (14:30 — 16:00).

24. We recalled the definition of uniform continuity of a function f : (X, d)→ (Y, d). Given
a continuous function f : [a, b] → R, while proving the Riemann integrability of f on
[a, b], one needs the fact such an f is uniformly continuous on [a, b].

25. We proved that any linear map T : Rn → V to any normed linear space (NLS, that is,
a vector space equipped with a norm) is uniformly continuous.

26. The vector addition (x, y) 7→ x+ y from Rn × Rn → Rn is continuous.

27. The dot product (x, y) 7→ x · y from Rn × Rn → R is continuous.

28. We showed that if f : (X, d)→ (Y, d) is continuous at a ∈ X and if g : (Y, d)→ (Z, d) is
continuous at b := f(a), then the composite function g ◦ f is continuous at a.

29. Applications of the last item.

(a) The functions x = (x1, . . . , xn) 7→ xi from Rn to R is continuous. Hence any
polynomial functions in the variables x1, . . . , xn is continuous on Rn.

(b) Let (X, d) be a metric space. Let f, g : X → Rn be continuous. Then the map
f+g : X → Rn defined by (f+g)(x) := f(x)+g(x) is continuos. It is the composite
of the maps x 7→ (f(x), g(x)) and (u, v) 7→ u+ v.

(c) With the notaion of the last item, the map h(x) := f(x) · g(x) from X to R is
continuous. It is the composite of the maps x 7→ (f(x), g(x)) and (u, v) 7→ u · v.

(d) Two special cases of the last item: if f, g are real valued continuous functions on
a metric space (X, d), then their sum f + g and the product fg are continuous.

Hence the set C(X,R) of all real valued continuous functions on a metric space X
is a real vector space and is a ring. (It is an algebra, if you know what this means.)

(e) Let T : Rm → Rn be linear. The map (x, y) 7→ Tx · y from Rm × Rn to R is
continuous. It is the composite of the maps (x, y) 7→ (Tx, y) and (u, v) 7→ u · v.

(f) The map x 7→ ‖x‖ from an NLS to R is continuous. (We used the triangle inequal-
ity: | ‖x‖ − ‖y‖ | ≤ ‖x− y‖.) Also the map x 7→ 1/ ‖x‖ is continuous from the
set of nonzero vectors to R. It is the composite of the map x 7→ ‖x‖ and t 7→ 1/t.

(g) If f : (X, d) 7→ R∗ is a continuous function, then the function g : X → R∗ defined
by g(x) := 1/f(x) is continuous.
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30. Let A ⊂ (X, d). A point p ∈ X is said to be a cluster point of A if, for any r > 0, the
intersection B(p, r)∩A contains a point other than p. The subset Z ⊂ R has no cluster
point. Any real number is a cluster point of the set Q ⊂ R.

31. Let (X, d) be a metric space. Let a ∈ X be a cluster point of X. Let f : X \{a} → (Y, d)
be a function. (Note that a need not be in the domain of f , that is, f(a) may not be
defined.) Then we say that b ∈ Y is the limit of f as x→ a in X if for any given ε > 0,
there exists δ > 0 such that for any x ∈ B(a, δ)∩E with x 6= a, we have f(x) ∈ B(b, ε),
that is, d(f(x), b) < ε. Such a b, if exists, is unique (here we needed the fact that a is a
cluster point of X) and is denoted by limx→a f(x) = b.

32. Let f : (X, d)→ (Y, d) be a function. Assume that a ∈ X be a cluster point of X. Then
f is continuous at a iff (i) limx→a f(x) exists, say, b ∈ Y and (ii) b = f(a).

33. Let d be the absolute value metric on Z ⊂ R. Any convergent sequence in (Z, d) is
eventually constant. As a consequence, any function f : (Z, d)→ (Y, d) is continuous.

34. Let Mn×m(R) ∼= Mn×m denote the vector space of all real matrices of size n ×m. We
let M(n,R) := Mn×n(R). The map

A = (aij) 7→ (a11, . . . , a1m, a21, . . . , a2m, . . . , an1, . . . , anm)

is a linear isomorphism of Mn×m with Rnm. This isomorphism induces at least three
natural norms on Mn×m:

‖A‖ :=

∑
ij

|aij |2
1/2

, ‖A‖ := max
i,j
{|aij |}, ‖A‖ :=

∑
i,j

|aij | .

35. The matrix product (A,B) 7→ AB from Mn×k ×Mk×m → Mn×m is continuous. In
particular, the map A 7→ A2 from M(n,R) to itself is continuous.

36. The map A 7→ det(A) from M(2,R) to R is continuous. In fact, the map A 7→ detA is
continuous from M(n,R) to R. We used the Laplace expansion:

detA =
∑
σ∈Sn

sign (σ)a1σ(1) · · · anσ(n).

Observe that det : M(n,R)→ R is a ploynomial function in the variables aij .

37. A function f : (X, d)→ (Y, d) is continuous at a ∈ X iff for any r > 0, the inverse image
f−1(B(f(a), r)) is open in X. It is continuous on X iff for every open set V ⊂ Y , the
inverse image f−1(V ) is open in X. (The proof was learnt in Real Analysis 1.)

38. The set GL(n,R) of all invertible matrices is an open subset of M(n,R). Hence the set
of singular matrices of size n× n is closed in M(n,R).

Items 24–38 were done on 29 December 2009 (14:30 — 16:00).

39. Given f : Rm → Rn, we can write it as f(x) = (f1(x), . . . , fn(x)) where fi is the com-
posite πi ◦ f . We proved that f is continuous iff each fi is continuous. (You were asked
to write the proof after I explained the proof and we ‘jointly corrected’ your writing!)
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40. Given a linear map A : Rm → Rn or an n ×m matrix A we define the operator norm
‖A‖ as follows:

‖A‖ := inf{C : C ≥ 0 and ‖Ax‖ ≤ C ‖x‖ for all x ∈ Rm}.

Note that it makes sense, since the subset of real numbers on the right side is non-
empty and bounded below by 0. Before we prove that this is a norm on the vector
space L(Rm,Rn) or on Mn×m, we looked at some examples.

41. Operator norms of some linear maps or matrices:

(a) ‖0‖ = 0.

(b) ‖In×n‖ = 1.

(c) ‖cIn×n‖ = |c|.
(d) If A = diag (c1, . . . , cn) is the diagonal matrix, then ‖A‖ = max{|ci| : 1 ≤ i ≤ n}.
(e) We shall prove later that if A is a real symmetric matrix, then ‖A‖ is the maximum

of the absolute values of the eigenvalues of A. Note that the last item is a special
case of this result.

42. We proved that the operator norm is indeed a norm on L(Rm,Rn) and on Mn×m. Unless
otherwise specified, whenever we talk of norm of a linear map or of a matrix, it will
refer to the operator norm.

43. The operator norm has an important property: ‖B ◦A‖ ≤ ‖B‖ ‖A‖, where A : Rm →
Rn and B : Rn → Rk are linear or B is of type k × n and A is of type n×m.

Strict inequality may occur: Consider a nonzero linear map A such that A2 = 0.

Items 39–43 were done on 30 December 2009 (14:30 — 15:50).

44. We claim that a sequence (Ak) in M(n,R) converges to A in the operator norm iff it
converges ‘entry-wise’ or coordinate-wise. To see this, we show that ‖A‖ ≤

√
n ‖A‖max:

‖Ax‖2 =
∑
i

∑
j

aijxj

2

≤
∑
i

∑
j

|aij ||xj |

2

≤
∑
i

‖A‖2max ‖x‖
2 = n ‖A‖2max ‖x‖

2 .

This inequality shows that if Ak → A coordinate-wise, then it converges in max norm
and hence in operator norm also.

To see the other way, note that ‖Akei −Aei‖ ≤ ‖Ak −A‖ so that Akei → Aei. In
particular, their entries also converge.

45. Consider the map A 7→ A−1 from GL(2,R) to itself. Since

A−1 =
1

ad− bc

(
d −b
−c a

)
,

it is clear that the inversion map is continuous. The same result is true for GL(n,R).
One uses the formula for A−1 in terms of co-factors of A.
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Differentiation

46. Given the sequences (1/n), (1/n2) and (1/2n), you guessed which goes (converges)
to zero fastest. This notion was formulated precisely as follows: given two sequences
(xn) and (yn) both converging to 0, we say (xn) goes to zero much faster than (yn) if
xn/yn → 0.

47. This led us to the following: if f, g : (X, d) → R are such that limx→a f(x) = 0 and
limx→a g(x) = 0, then we say that f goes to zero much faster than g as x → a if

limx→a
f(x)
g(x) = 0.

48. In several variable calculus, when we talk of differentiability, the domain of the function
is always assumed to be an open set in some Rn. We shall see later the reason for this.
(Compare this with the uniqueness part in Item 31.

49. Let U ⊂ Rm be open, a ∈ U . Let f : U → R be given. Given x ∈ U , we may
write x = a + h. Then h is called the increment in the independent variable and
f(x)−f(a) ≡ f(a+h)−f(a) is called the increment in the dependent variable. We say
that f is differentiable at a if we can control the increment in the dependent variable
by means of a linear map A : Rm → R: f(a+ h)− f(a) ≈ Ah, read as f(a+ h)− f(a)
is approximately equal to Ah. Note that this is same as saying that for x near a, the
value f(x) is approximately equal to f(a) + A(x − a). Whenever we approximate like
this, we need to have a control on the error we are making. The error is E(h) :=
f(a+ h)− f(a)−Ah. An obvious first requirement is E(h)→ 0 as h→ 0.

Let us look at an example. Consider f : R→ R defined by f(x) = x2. Let a ∈ R. Then
we observe

f(a+ h)− f(a) = 2ah+ h2.

Since we know all the linear maps from R to itself, we defined Ah = 2ah so that
E(h) = h2 which goes to zero faster than h going to 0.

Going back to the general case, we require that E(h) goes to 0 much faster than h, that
is, limh→0E(h)/ ‖h‖ = 0.

50. The discussion in the last item led us to the following definition. Let f : U ⊂ Rm → Rn.
Let a ∈ U . We say that f is differentiable at a if there exists a linear map A : Rm → Rn

such that for x ∈ U , if we write f(x) = f(a)+A(x−a)+E(x−a) then limx→a
‖E(x−a)‖
‖x−a‖ =

0.

Such a linear map, if it exists, is unique (to be proved later). It is denoted by Df(a)
and called the (total or Frechet) derivative of f at a.

51. Examples:

(a) Consider f : R→ R defined by f(x) = xn where n ∈ N. Key observation:

f(a+ h)− f(a) = (a+ h)n − an =

(
n

1

)
an−1h+

(
n

2

)
an−2h2 + · · ·+

(
n

n

)
a0hn

≤ nan−1h+ h2(Constant),

where we assumed that |h| ≤ 1. Hence Df(a)h = nan−1h.
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(b) f(x) = ex for x ∈ R. Key observation:

ea+h − ea = ea(eh − 1)

= ea([1 +
h

1!
+
h2

2!
+ · · · ]− 1)

≤ eah+ eah2(Constant).

Hence Df(a)(h) = eah.

(c) Consider f : R2 → R given by f(x, y) = xy. Key observation:

f(a+ h, b+ k)− f(a, b) = ak + bh+ hk.

Note that |hk|
‖(h,k)‖ ≤

‖(h,k)‖‖(h,k)‖
‖(h,k)‖ and we have Df(a, b)(h, k) := ak + bh.

(d) Consider f : R2 → R given by f(x, y) = x + y. You found that Df(a, b)(h, k) =
h+ k.

(e) Let f : Rm → Rn be linear. Then Df(a)(h) = f(h), that is, Df(a) = f . Note that
the last example is a special case of this result.

(f) Consider f : Rn × Rn → R given by f(x, y)x · y. Key Observation:

f(a+ h, b+ k)− f(a, b) = a · k + h · b+ h · k.

Hence DF (a, b)(h, k) = a · k + b · h as |h·k|
‖(h,k)‖ ≤

‖h‖‖k‖
‖(h,k)‖ ≤

‖(h,k)‖2
‖(h,k)‖ .

(g) Let T : Rm → Rn be linear. Consider f : Rm×Rn → R defined by f(x, y) = Tx · y.
Then we have Df(a, b) = Ta · k + Th · b.

52. We now formualte the definition of differentiability at a point in terms of ε-δ. If we let

ϕ(h) := ‖E(h)‖
‖h‖ , then limh→0

‖E(h)‖
‖h‖ = 0 is same as saying that limh→0 ϕ(h) = 0. That

is, given ε > 0, there exists a δ > 0 such that for all 0 6= h ∈ B(0, δ), we must have
ϕ(h) ∈ (−ε, ε). Since ϕ(h) ≥ 0, this is same as requiring that ϕ(h) < ε. This leads us
to the following equivalent defintion:

f is differentiable at a iff there exists a linear map A : Rm → Rn such that for each ε there
exists δ > 0 such that for 0 < ‖h‖ < δ, we must have ‖f(a+ h)− f(a)−Ah‖ < ε ‖h‖.

Items 45–52 were done on 31 December 2009 (14:30 — 16:05). Happy New Year!

53. Exercise:

(a) Consider f(x, y) := x2y for (x, y) ∈ R2. Then f is differentiable at (a, b) with
Df(a, b)(h, k) = 2abh+ a2k.

(b) Consider f(x, y) := (x, y, xy) from R2 to R3. Then Df(a, b)(h, k) = (h, k, ak+ bh).

(c) Consider f : Rm → R defined by f(x) = x · x. Then f is differentiable at a and
Df(a)(h) = 2a · h.

(d) Let A be an n× n matrix. Let f(x) := Ax · x for (column) vectors x ∈ Rn. Then
Df(a)(h) = Aa·h+Ah·a. In particular, if A is symmetric, then Df(a)(h) = 2Aa·h.
The last item is a special case of this result.
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(e) Let f : Rm×Rn → Rk be a bilinear map. Then one finds Df(a, b)(h, k) = f(a, k)+
f(h, b). Note that Items 51c, 51f and 51g are special cases of this result.

(f) Consider f(X) := X2 for X ∈ M(n,R). Then f is differentiable at A ∈ M(n,R)
with Df(A)(H) = AH +HA.

You solved (a), (b) and (e) in the class.

54. We explained why we insisted on the domain being open.

55. We proved the uniqueness of the linear map in the definition of of differentiability. We
saw how the set U being open was needed in the proof.

56. Let J ⊂ R be an open interval and a ∈ J . Then f : J → R is differentiable at a ∈ J iff

the limit limh→0
f(a+h)−f(a)

h exists. If f is differentiable, then we have Df(a)(1) = f ′(a).

(For a complete proof of the last two items, refer to my article “A conceptual Introduc-
tion to Multi-variable Calculus”.)

57. Keep the notation of the last item. Then f is differentiable at a iff there exists f1 : J → R
such that (i) f1 is continuous at a and (ii) f(x) = f(a) + f1(x)(x− a) for all x ∈ J .

We saw a couple of uses of this result. We arrived at the analogue of this result for
the case of f : U ⊂ Rm → Rn: f is differentiable at a ∈ U iff there exists f1 : U →
L(Rm,Rn) ∼= Mn×m such that (i) f1 is continuous at a and (ii) f(x) = f(a)+f1(x)(x−a).

Hint: Consider

f1(x) :=

{
A+ 1

‖x−a‖2E(x)(x− a)t, x 6= a

A, x = a
.

where E(x)(x − a)t is the matrix product of the n × 1 matrix E(x) with the 1 × m
matrix (x− a).

We shall prove it in the next class.

Items 53–57 were done on 1 January 2010 (14:30 — 16:00).
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58. We proved the result of the last item. The next few items are some of the typical
applications.

59. If f is differentiable at a, then f is continuous at a.

60. If f, g : U ⊂ Rm → Rn is differentiable at a, then f + g is differentiable at a with
D(f + g)(a) = Df(a) +Dg(a).

61. If f, g : U ⊂ Rm → R is differentiable at a, then h = fg is differentiable at a with
Dh(a) = f(a)Dg(a) + g(a)Df(a).

62. Chain Rule: Let f : U ⊂ Rm → Rn be differentiable at a ∈ U . Let g : V ⊂ Rn → Rk
be differentiable at b = f(a) ∈ V . Then h := g ◦ f is differentiable at a with Dh(a) =
Dg(b) ◦Df(a).

63. If f : J ⊂ R→ Rn is differentiable, then we think of it as a (parametrized) curve in Rn.
In such a case, we use the notation γ or c in place of f . The point γ(t) is a vector,
usually denoted by (x1(t), . . . , xn(t)) and is called the position vector of the point γ(t).
We may think of γ as the trajectory of a particle as it moves along the time interval J .

64. f : U ⊂ Rm → Rn is differentiable at a ∈ U iff each fi = π ◦ f is differentiable at a.
(Here πi is the projection of Rn on its i-th factor.) We have Dfi(a) = πi ◦Df(a).

65. Keep the notation of the last item. The matrix of the linear map πi : Rn → R is the
1 × n matrix Ei := (0, . . . , 0, 1, 0, . . . , 0) where 1 is at the i-th place. Hence from the
chain rule, if Ai is the 1×m matrix representing Dfi(a) (of course w.r.t. the standard
bases), then Ai = EiA, that is, Ai is the i-th row of A.

66. The most important trick in several variable calculus is to reduce the problem to one
variable calculus. The key observation is that if a ∈ U , then for any v ∈ RM , there
exists η > 0 such that for t ∈ (−η, η), the vector a+ tv ∈ U . That is, the line segment
{a+ tv : |t| < η} ⊂ U . By restricting f to this open line segment gives rise to a function
on (−η, η) as follows:

gv(t) = f(a+ tv), t ∈ (−η, η).

67. If f is differentiable at a ∈ U , then g′v(0) exists and we have g′v(0) = Df(a)(v). More
explicitly, we have

lim
t→0

f(a+ tv)− f(a)

t
= Df(a)(v), for all v ∈ Rm.

The limit on the right side is called the directional derivative of f at a in the direction
of v and is denoted by Dvf(a). Hence, the displayed formula says Dvf(a) = Df(a)(v).

Loosely speaking, if f is differentiable at some point, then all its directional derivatives
exist at that point.

68. A very important special case of the notion of directional derivatives is when we take
v = ei, i-th vector in the standard basis. In this case, the standard notation is Deif(a) =
∂f
∂xi

(a), the i-th partial derivative.

10



69. Let f : U ⊂ Rm → R be differentiable at a ∈ U . We know that Df(a)(h) =
∑m

i=1 cihi
where ci = Df(a)(ei). In view of the last item, it follows that ci := ∂f

∂xi
(a). The vector

grad f(a) :=
(
∂f
∂x1

(a), . . . , ∂f
∂xm

(a)
)

is known as the gradient of f at a. Note that we

have
Df(a)(h) = grad f(a) · h.

70. Let f : U ⊂ Rm → Rn be differentiable at a. Putting the observations made in Items 64,
65, 69 we see that the i-th row of A = Df(a) is

Ai = Dfi(a) =

(
∂fi
∂x1

(a), . . . ,
∂fi
∂xm

(a)

)
.

Hence, the matrix A is given by

∂f1
∂x1

(a) . . . ∂f1
∂xm

(a)
...

...
∂fi
∂x1

(a) . . . ∂fi
∂xn

(a)
...

...
∂fn
∂x1

(a) . . . ∂fn
∂xn

(a)


,

and is known as the Jacobian matrix of f at a.

Items 58–70 were done on 5 January 2010 (14:30 — 16:00).

71. Exercise:

(a) The converse of Item 67 is not true in general. Consider f : R2 → R given by

f(x, y) =

{
x2y
x4+y2

(x, y) 6= (0, 0)

0 otherwise.

Then all its directional derivatives at (0, 0) exist. However, f is not even continuous
at (0, 0) (and hence is certainly not differentiable at (0, 0)).

(b) Consider f : R2 → R3 given by

f(

(
u
v

)
) =

 u+ v
u− v
u2 − v2


and g : R3 → R given by g(x, y, z) = x2 + y2 + z2. Find the Jacobian matrix of

D(g ◦ f) at

(
a
b

)
.

(c) Let f

xy
z

 =

r cos θ
r sin θ
r

 and w = g(x, y, z) =
√
x2 + y2 + z2. Find ∂w

∂r and ∂w
∂θ

using the chain rule. Check the result by direct substitution.
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(d) Let f, g : (a, b)→ Rn be differentiable. Let φ(t) := 〈f(t), g(t)〉. Compute φ′(t).

(e) Let f : Rm → Rk and g : Rn → Rk be differentiable. Let φ(x, y) := 〈f(x), g(y)〉.
Show that φ is differentiable on Rm × Rn.

(f) Let c : (a, b) → Rn be differentiable. We think of c as a curve in Rn. Let
f : Rn → R be differentiable. Prove that g(t) := f ◦ c(t) is differentiable and

g′(t) = 〈grad f(c(t)), c′(t)〉. Here c′(t) =

c
′
1(t)
...

c′n(t)

 = Dc(t)(1) is the tangent vector

to c at t. Note that g′(t) =
∑n

i=1
∂f
∂xi

(c(t)) · c′i(t).
(g) A function f : Rn → R is said to be homogeneous of degree k if f(tx) = tkx for all

x ∈ Rn and t ∈ R. Let f be homogeneous of degree k and differentiable on Rn.
Show that

Dxf(x) = 〈x, grad f(x)〉 =
∑

xi
∂f

∂xi
(x) = kf(x).

This is known as Euler’s theorem. Prove also the converse. Hint for both: Consider
g(t) = f(tx) for the first part and t−kg(t) for the converse.

(h) Find the derivatives of the following functions:
(1) f(x, y) = xy.
(2) f(x, y) = sin(xy).
(3) f(x, y) =

∫ x+y
a g.

(4) f(x, y) =
∫ xy
a g.

(5) f(x, y) =
∫ y
x g.

In (3) to (5), assume that g : R→ R is continuous.

(i) Compute the Jacobian matrix of the following functions:
(1) (x, y) 7→ (ex cos y, ex sin y).
(2) (x, y) 7→ (x+ y, xy, x− y).
(3) x ∈ Rn 7→ 〈Ax, x〉 where A : Rn → Rn is linear.

(j) Let c : (a, b)→ Rn be differentiable such that ‖c(t)‖ = 1 for t ∈ (a, b). Prove that
c′(t) is perpendicular to c(t) for t ∈ (a, b). Interpret this result geometrically in
terms of spheres and tangent planes.

(k) Let f : Rn → R be differentiable. Let 0 be a value of f so that f−1(0) is non-empty.
Let c : (a, b)→ Rn be a differentiable curve such that c(t) ∈ f−1(0) for all t ∈ (a, b).
Show that 〈c′(t), grad f(c(t))〉 = 0. Specialize to f : R3 → R and understand the
geometry behind this exercise.

72. We brought Item 71a to your attention.

73. We gave two more applications of the principle stated in Item 66.

74. Given f : U ⊂ Rm → R, a point a ∈ U is said to be a local maximum if there exists
r > 0 such that (i) B(a, r) ⊂ U and (ii) for all x ∈ B(a, r), we have f(x) ≤ f(a).

A local minimum is defined similarly.

75. Let f : U ⊂ Rm → R, a ∈ U . Assume that all the directional derivatives of f at a
exist. Assume further that f has a local maximum/minimum at a. Then Dvf(a) = 0
for v ∈ Rm. In particular, if f is differentiable at a, then Df(a) = 0. Hint: Fix v.
Consider g(t) := f(a+ tv).
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76. Given a real vector space V , and points x, y ∈ V , we defined the line segment

[x, y] := {x+ t(y − x) : 0 ≤ t ≤ 1} ≡ {(1− t)x+ ty : 0 ≤ t ≤ 1}.

77. We defined a convex subset in a normed linear space. Any open (or closed) ball in such
a space is convex.

78. The obvious formulation for the mean value theorem would be: Let U ⊂ Rm be convex.
Let f : U → Rn be differentiable. For any x, y ∈ U , there exists z in the line segment
joining x and y such that f(y)− f(x) = DF (z)(y − x) is false.

Example: Consider f : R→ R2 given by f(t) = (cos t, sin t). Look at f(2π)− f(0).

79. The third application of the principle of Item 68 is the following form of the mean
value theorem:

Let U ⊂ Rm be convex. Let f : U → Rn be differentiable. Let v ∈ Rn. Then there
exists z ∈ [x, y] such that

〈f(y)− f(x), v〉 = 〈Df(x)(y − x), v〉 . (2)

Hint: Consider g(t) := 〈f(x+ t(y − x), v〉. It is the composite of t 7→ x + t(y − x), f
and y′ 7→ 〈y′, v〉. Mean value theorem of one variable calculus can be applied to g to
get g(1)− g(0) = g′(t0)(1− 0). Use chain rule to find g′(t).

80. In several variable calculus, more useful than the mean value theorem is the following
mean value inequality:

Keep the notation of the last item. Then

‖f(y)− f(x)‖ ≤ sup
0≤t≤1

‖Df(x+ t(y − x))‖ ‖y − x‖ , (3)

assuming the supremum exists. To arrive at it, observe that in an inner product space
‖x‖ = sup{〈x, u〉 : ‖u‖ = 1}.

81. As an application of the mean value inequality, we proved that if f : U ⊂ Rn has zero
derivative on U , then f is locally constant on U , that is, for each x ∈ U , there exists
rx > 0 such B(x, rx) ⊂ U and f is a constant on B(x, rx).

82. The derivative of a function being zero does not imply the function is a constant. Let
U := (−∞,−1) ∪ (1,∞). Then U is an open set in R. The function f : U → R defined
as f(x) = −1 if x < −1 and f(x) = 1 if x > 1 is differentiable with zero derivative.

A subset of a (metric) space is said to be connected if any locally constant function is a
constant. (This is equivalent to the standard definition you will learn in your topology
course.)

Hence we conclude if the domain of f is connected, then f is a constant.

83. Exercise: Let f : U ⊂ Rm → Rn be differentiable. Assume that there exists M > 0 such
that ‖Df(x)‖ ≤ M for x ∈ U . Then f is uniformly continuous on U . Hint: Use the
mean value inequality.

Items 72–83 were done on 6 January 2010 (14:00 – 15:00).
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84. We went through some of the items of the last two classes again.

(a) Mean Value Theorem; especially mean value inequality as many did not understand
the right side of (3).

(b) Many wanted to understand Item 82. We considered U := (−∞,−1)∪ (1,∞) and
f(x) = −1 if x ∈ (−∞− 1) and f(x) = 1 if x ∈ (1,∞). I explained why U is open,
the continuity of f , the differentiability of f and that the derivative is zero.

Item 84 was done on 7 January 2010 (14:30 – 16:00).

85. A powerful tool in calculus is the chain rule. We looked at some typical applications.

86. Let f, g : Rn → R be differentiable. Then h := fg is the composite of x 7→ (f(x), g(x)) 7→
f(x)g(x). We obtain grad fg(a) = f(a) grad g(a) + g(a) grad f(a).

87. More generally, if f, g : Rm → Rn are differentiable, then h(x) := 〈f(x), g(x)〉 is the com-
posite of x 7→ (f(x), g(x)) 7→ 〈f(x), g(x)〉. As we have already computed the derivatives
of these functions, chain rule can be applied to obtain Dh : Rm → R.

88. Let γ : J ⊂ R → Rn and f : Rn → R be differentiable. If g(t) := f ◦ γ(t), then
g′(t) = grad f(γ(t)) · γ′(t).

89. Consider f : GL(n,R) → GL(n,R) given by f(X) = X−1. Because of the formula for
A−1 in terms of the cofcators of A, we know f is differentiable. To find its derivative,
we applied chain rule to the map x 7→ XX−1 = I. This is composite of the maps
X 7→ (X,X−1) and (X,Y ) 7→ XY .

90. Let A be an n×n symmetric matrix. Consider f : Rn \ {0} → R given by f(x) = Ax·x
x·x .

91. Let f : Rm → Rn be differentiable. Then to find Df(a), it suffices to find Df(a)(v)
for any v ∈ Rm. But the later is Dvf(a). Let now γ : (−ε, ε) → Rm be differen-
tiable with two initial conditions: (i) γ(0) = a and γ′(0) = v. (Recall that if γ(t) =
(x1(t), . . . , xm(t), then γ′(t) = Dγ(t)(1) = (Dx1(t)(1), . . . , Dxm(t)(1)) = (x′1(t), . . . , x

′
m(t)).)

Then Dvf(a) = f ◦ γ′(0). Thus to compute the directional derivative Dvf(a), we can
use any curve γ which satisfies the initial conditions! γ′(t) is the tangent (or velocity)
vector at t to the curve γ. Note that c := f ◦ γ is a differentiable curve in Rn such that
c(0) = f(a). Hence the directional derivative Dvf(a) is the tangent vector to the curve
c at 0.

This yields the following geometric interpretation of the derivative map. Df(a) maps
to the tangent vectors at a to the tangent vectors at f(a).

Items 85–91 were done on 8 January 2010 (14:30 – 16:00).

92. Let f : R` × Rm → Rn be a bilinear map. Let (a, b) ∈ R` × Rm. Then Df(a, b)(h, k) =
f(a, k) + f(h, b). The error term E(h, k) = f(h, k) =

∑
i,j hikjf(ui, vj) where {ui : 1 ≤

i ≤ `} and {vj : 1 ≤ j ≤ m} are standard bases of R` and Rm resp. Hence

‖f(h, k)‖ ≤
∑
i,j

‖h‖ ‖k‖M, where M = max{‖f(ui, vj)‖}.
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93. More generally, if f : Rn1 × · · ·Rnk → Rn is a k-linear map, then

Df(a1, . . . , ak)(h1, . . . , hk) =
k∑
i=1

f(a1, . . . , ai−1, hi, ai+1, . . . , ak).

94. We used the last item to compute the derivative of the determinant function f : M(n,R)→
R given by f(X) = detX. We found that Df(I)(H) = Tr(H).

95. Let f : U ⊂ Rn → R have continuous partial derivatives on U . Then f is differentiable
on U .

96. We say that f : U ⊂ Rn → R is continuously differentiable or C1 on U if x 7→ Df(x) as

a map from U → L(Rn,R) is continuous. Since the matrix of Df(x) is
(
∂f
∂x1

, . . . , ∂f∂xn

)
,

this is equivalent to saying that the partial derivatives of f exist and are continuous on
U . (We used Items 69 and Item ??

97. More generally, we say f is Ck if all its partial derivatives of order less than or equal

to k exist and are continuous, that is, ∂kf
∂xi1 ...∂xik

exist for i1, . . . , ik ∈ {1, . . . , n}. Just

to make sure you get it right, you were asked to write all partial derivatives of f where
n = 2 and k = 3.

98. We proved the following result:
Let f : U ⊆ R2 → R. Assume that D1f , D2f , D1D2f and D2D1f exist and are
continuous. Then D1D2f = D2D1f . Here Dif = Deif are the partial derivatives.
Hint: Consider g1(x) = f(x, y + k) − f(x, y) and g2(y) = f(x + h, y) − f(x, y). Apply
mean value theorem to g1(x+h)−g1(x) and once again to the result which is a function
of y. Carry out a similar approach to g2(y + k) − g2(y) and use continuity of D1D2f
and D2D1f .

99. More generally, if f : Rn → R is C2, then ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

for any i, j.

100. Still more generally, if f : Rn → R is Ck, then any partial derivative of order, say, r ≤ k
can be written of the form ∂rf

∂x
i1
1 ···∂x

in
n

where i1 + · · ·+ in = r.

Items 92–100 were done on 11 January 2010 (14:30 – 16:00).

101. We recalled that the function f(t) =

{
0 for t ≤ 0

exp(−1/t) for t > 0,
is C∞. Since f (n)(0) = 0

for all n ≥ 0, its Taylor expansion at t = 0 is 0. Thus this is a smooth (C∞) function
whose Taylor series converges but NOT to the function.

We also drew the graph of f .

102. Let f be as in the last item. Let ε > 0 be given. Define gε(t) := f(t)/(f(t) + f(ε− t))
for t ∈ R. Then gε is C∞, 0 ≤ gε ≤ 1, gε(t) = 0 iff t ≤ 0 and gε(t) = 1 iff t ≥ ε.
What is the graph of gε?
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103. Let f, g be as in the last two items. For r > 0 and x ∈ Rn, define ϕ(x) := 1−gε(‖x‖−r).
Then ϕ is smooth (Why is ϕ smooth at 0?) and has the following properties: (i)
0 ≤ ϕ ≤ 1, (ii) ϕ(x) = 1 iff ‖x‖ ≤ r and ϕ(x) = 0 iff ‖x‖ ≥ r + ε.

In particular, if 0 < r < R, there exist smooth functions f such that f = 1 on B(a, r)
and 0 outside B(a,R).

Can you visualize the graph of such functions?

104. We reviewed the Taylor expansion for real valued functions of a real variable. If f : J ⊂
R→ R is Ck, then

f(x) = f(a) +
k−1∑
j=1

f (j)

j!
(a)(x− a)j +

f (k)

k!
(y). (4)

The most important fact we should know about the remainder term Rk(x) is that

limx→a
Rk(x)

(x−a)k−1 = 0.

105. Let f : U ⊂ Rn → R be Ck. We get a Taylor expansion for f by considering g(t) =
f(a + th). (This is again an instance of our principle of reduction to one-dimensional
case.) To keep the notation simple, we shall assume that a = 0 ∈ U . We use x in place
of h.

Then g is the composite of t 7→ tx 7→ f(tx). Hence

g′(t) = grad f(tx) · x =
n∑
i=1

∂f

∂xi
(tx)xi

g′′(t) =
n∑
i=1

grad
∂f

∂xi
(txj)xjxi

=

n∑
i,j=1

∂2f

∂xj∂xi
(tx)xixj ,

and so on.

106. In particular, if f is C2, then

f(x) = f(0) +

n∑
i=1

∂f

∂xi
(tx)xi +

n∑
i,j=1

∂2f

∂xj∂xi
(t0x)xixj , (5)

for some 0 ≤ t0 ≤ 1.

107. We reviewed the proof of sufficient conditions for the local extrema of functions f : R→
R. The proof suggested the following item.

108. If 0 is a local minimum of f , then for all x in a neighbourhood of 0, we must have∑n
i,j=1

∂2f
∂xj∂xi

(t0x)xixj > 0. Analogous condition for a local maximum.

109. Since we want the condition on the derivatives of f at 0, we arrive at the following
sufficient conditions: Let f : U → R be C2. Assume that (i) Df(a) = 0 and (ii)
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∑n
i,j=1

∂2f
∂xj∂xi

(a)xixj > 0 for all x with ‖x‖ sufficiently small. Then a is a local minimum

of f .

Similar result for a local maximum.

110. We need to modify the proof of the sufficient condition in the one-dimensional case, as
the t0 of Item 106 will depend on the x and hence we may not be able to find a δ > 0
which will say that for all x with ‖x‖ < δ, we have f(a+ x) ≥ f(a). This is explained
in the next class. See Item 115.

111. Let A = (aij) be an n × n symmetric matrix. We say that A is positive definite if
Ax · x > 0 for x ∈ Rn with x 6= 0.

There are two well-known criteria for the positive definiteness of a symmetric matrix
A = (aij). (i) All the eigenvalue values of A are positive. (ii) All the matrices
(aij)1≤i,j≤k for 1 ≤ k ≤ n have positive determinants.

The proofs of the second criterion for n = 2 and the first criterion for all n are easy.

112. One defines similarly negative definiteness of symmetric matrices. The second condition
for negative definiteness reads as follows: the determinants of the principal minors
alternate in sign beginning with negative.

Items 101–112 were done on 12 January 2010 (14:30 – 16:00).

113. Let A = (aij) be an n× n symmetric matrix. The function f : x 7→ Ax · x is continuous
(we proved this in two ways!). The unit sphere S := {x ∈ Rn : ‖x‖ = 1} is a closed
and bounded subset of Rn and hence by Heine-Borel theorem, S is compact. Hence,
the function f attains its maxima and minima on S.

114. Assume that A (of the last item) is positive definite. Then m := minx∈S f(x) > 0. We
use this information to solve the problem raised in Item 110.

115. Keep the notation of Items 105-106. Let A := ( ∂2f
∂xixj

(a)) be the Hessian matrix. Let m

be as in the last item.

f(a+h) = f(a)+0+
n∑

i,j=1

∂2f

∂xj∂xi
(a)hihj+

 n∑
i,j=1

∂2f

∂xj∂xi
(a+ t0h)−

n∑
i,j=1

∂2f

∂xj∂xi

hihj .

(6)

Given ε := m/2, by the continuity of the second order partial derivatives, there exists

δ > 0 such that the operator norm
∥∥∥( ∂2f

∂xixj
(a+ t0h))−A

∥∥∥ < ε.

Using this information in (6), we see that the sign of

n∑
i,j=1

∂2f

∂xj∂xi
(a)hihj +

 n∑
i,j=1

∂2f

∂xj∂xi
(a+ t0h)−

n∑
i,j=1

∂2f

∂xj∂xi

hihj

is the same as that of
∑n

i,j=1
∂2f

∂xj∂xi
(a)hihj for ‖h‖ < δ.

This proves the sufficiency of the conditions for the local minimum at a. Similarly, one
proves the sufficiency of the conditions for the local maximum at a.
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116. Note that the above condtions are sufficient condtions and not necessary condtions. For
example, look at f(x) = x4 for x ∈ R. Clearly x = 0 is a point of locally (and also
global) minimum for f , but f ′(0) = 0 = f ′′(0).

117. We then made a digression. Keeping the notation of Item 113, we proved that m is an
eigenvalue of A and the point v ∈ S at which f attains this value is an eigenvector of A.
The proof was a cocktail of linear algebra, analysis, calculus and geometry. Reference
for this is my book on linear algebra.

Items 113–117 were done on 13 January 2010 (14:30 – 16:00).
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