Riesz-Fredholm-Schauder Theory

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Lemma 1. Let X be a Banach space. Assume that $T \in BL(X)$ is compact and that $\lambda \in \mathbb{C}^*$ is not an eigenvalue of T. Then there exists $C > 0$ such that for all $x \in X$ we have

$$
||(T - \lambda I)x|| \ge C ||x|| \text{ for } x \in X.
$$
 (1)

Proof. If no such C exists, then there exists a sequence (x_n) of unit vectors such that $Tx_n \lambda x_n \to 0$. Since T is compact there exists a subsequence of $(T x_n)$ which is convergent. After re-indexing, let us assume that $Tx_n \to y$. Let $y_n := Tx_n$ so that $y_n \to y$. Observe that

$$
(T - \lambda I)Tx_n = T(T - \lambda I)x_n \to 0.
$$

That is, $(T - \lambda I)y_n \to 0$. Since $y_n \to y$, it follows that $Ty_n - \lambda y_n \to 0$ or $Ty - \lambda y = 0$. Hence λ has an eigenvector, provided y is nonzero. Can y be zero? If it is, the facts that $Tx_n \to 0$ and that $Tx_n - \lambda x_n \to 0$ imply $\lambda x_n \to 0$. That is, $|\lambda| = |\lambda| \|x_n\| \to 0$. This contradicts our assumption that $\lambda \neq 0$. \Box

Corollary 2. Keep the notation of the last lemma. Then the range $R(T - \lambda I)$ is closed.

Proof. Let $(T - \lambda I)x_n \to y$. From (1), it follows that (x_n) is Cauchy. Since X is complete, (x_n) converges to some x. Clearly, $(T - \lambda I)x = y$. \Box

Theorem 3 (Fredholm Alternative). Let X be a Banach space and $T \in BL(X)$ compact. Let $\lambda \in \mathbb{C}^*$. Then exactly one of the following is true. (i) λ is an eigenvalue of T so that ker(T – λI) is nonzero. (ii) $T - \lambda I$ is a topological isomorphism, that is, $(T - \lambda I)^{-1} \in BL(X)$.

Proof. Assume that λ is not an eigenvalue of T. In view of BIT, it suffices to show that $(T - \lambda I)$ is bijective. It is one-one thanks to (1). So, we need only establish that $(T - \lambda I)$ is onto. Assume that this does not happen.

Let $X_1 := (T - \lambda I)X$. Observe that (1) shows that $(T - \lambda I)$ is one-one. Since by the last corollary, X_1 is closed and hence complete. Thus, $T - \lambda I$ is a continuous linear bijection of the Banach space X onto the Banach space X_1 . Hence by BIT, $T - \lambda I$ is a topological linear isomorphism of X onto X_1 . Let $X_{n+1} := (T - \lambda I)X_n$, $n \geq 1$. Then by the argument above, we see that (i) each X_{n+1} is a proper closed linear subspace of X_n and that $T - \lambda I$ is a topological linear isomorphism of X_n onto its proper closed subspace X_{n+1} . Hence by Riesz lemma, there exist a unit vector $x_n \in X_n$ such that $d(x_n, X_{n+1}) \equiv \inf \{ ||x_n + y|| : y \in X_{n+1} \} \ge 1/2$.

We now claim that the sequence $(T x_n)$ cannot a convergent subsequence. For, since $(T - \lambda I)x_n \in X_{m+1}$ and $(T - \lambda I)x_m \in X_{m+1}$, we obtain

$$
Tx_n - \lambda x_n - (Tx_m - \lambda x_m) \in X_{m+1}
$$
 so that $Tx_n - Tx_m \in -\lambda x_m + (\lambda x_n + X_{m+1}) = -\lambda x_m + X_{m+1}$.

Since $d(x_m, X_{m+1}) = ||x_m + X_{m+1}|| \ge 1/2$, it follows that $||-\lambda x_m + X_{m+1}|| \ge \frac{|\lambda|}{2}$. Therefore, $||Tx_n - Tx_m|| \geq \frac{|\lambda|}{2}$. The claim is proved. This contradicts out assumption that T is compact. \Box