Cardinality and Countability

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

The primitive idea of "counting" a set is to set up a bijection with a known set. The words 'calculus' and 'calculation' have their origin with such a correspondence with a pile of stones!

Definition 1. We say that two sets A and B have the *same cardinality* if there is a bijection from one onto the other. (Intuitively, this means that A and B "have the same number of elements." Because of this we may even say that A and B are *equinumerous*.) Note that "having the same cardinality" is "an equivalence relation."

Example 2. (i) \mathbb{N} and $2\mathbb{N}$, the set of even positive integers have the same cardinality.

(ii) Any two closed intervals [a, b] and [c, d] have the same cardinality.

(iii) Any two open intervals (a, b) and (c, d) have the same cardinality.

(iv) (-1, 1) and \mathbb{R} have the same cardinality. *Hint:* Consider the map is the map $f: (-1, 1) \to \mathbb{R}$ given by $f(x) := \frac{x}{1-|x|}$. Its inverse is given by $g(t) := \frac{t}{1+|t|}$. Or, observe that $\tan: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ is a bijection.

(v) \mathbb{Z} and \mathbb{N} have the same cardinality.

(vi) \mathbb{R} and $(0, \infty)$ have the same cardinality.

(vii) (0,1) and $(1,\infty)$ have the same cardinality.

Lemma 3 (Knaster). Let $F: P(X) \to P(X)$ be a map. Assume that it is increasing in the sense that if $A \subseteq B$, then $F(A) \subseteq F(B)$. Then F has a fixed point, that is, there exists $S \subset X$ such that F(S) = S.

Hint: Consider the set $C := \{C \subseteq X : C \subseteq F(C)\}$. Let S be the union of all members of C. Then F(S) = S.

The next theorem is very useful. See Example 5.

Theorem 4 (Schroeder-Bernstein). Let A and B be sets. Assume that $f: A \to B$ and $g: B \to A$ be one-one. Then there exists a bijection $h: A \to B$.

Hint: Consider $F: P(A) \to P(A)$ given by $F(C) := A \setminus g(B \setminus f(C))$. Apply the last lemma.

Example 5. (i) $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} have the same cardinality. *Hint:* The map $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given by $f(m, n) := 2^m 3^n$ is one-one. For an explicit bijection, see Example 10.

(ii) The set \mathbb{Q} of rational numbers and \mathbb{N} have the same cardinality. Look at $\mathbb{Q} \to \mathbb{Z} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N} \to \mathbb{N}$.

(iii) There exists a bijection between the intervals [a, b] and (c, d). *Hint:* The interval [a, b] and a closed subinterval of (c, d) have the same cardinality by Example 2.

(iv) The sets A := (0, 1) and $B := A \times A$ have the same cardinality. *Hint:* Use non-recurring decimal expansion to get a one-map of B into A. For example, consider $g(0.x_1x_2..., 0.y_1y_2...) := 0.x_1y_1x_2y_2...$

For any $n \in \mathbb{N}$, let I_n denote the subset $\{k : 1 \leq k \leq n\}$ of \mathbb{N} .

Definition 6. A set A is said to be *finite* if either $A = \emptyset$ or there is a bijection $f: A \to I_n$ for some $n \in \mathbb{N}$.

A set which is not finite is said to be *infinite*.

Theorem 7. Let A be a finite set. Let $f: A \to I_m$ and $g: A \to I_n$ be bijections. Then m = n.

Definition 8. If A is finite with $f: A \to I_n$ is a bijection, then n is unique by the last theorem. (Note that f need not be unique.) We say that A has n elements. If A is empty, we say that A has zero elements.

Definition 9. A set A is said to be countable if either A is finite or if there exists a bijection $f: A \to N$. A set of the latter type is said to be *countably infinite*.

A set which is not countable is said to be *uncountable*.

Example 10. (i) \mathbb{Z}_+ , \mathbb{Z} are countably infinite.

(ii) Any infinite subset of \mathbb{N} is countably infinite.

(iii) $\mathbb{N} \times \mathbb{N}$ is countably infinite. *Hint:* Consider the map $f(m, n) := \frac{(m+n-1)(m+n-2)}{2} + n$. How did one arrive at this map? What is the inverse of this map?

The inverse is given by $m \mapsto \left(\frac{n(n-1)}{2} - m + 1, m - \frac{(n-1)(n-2)}{2}\right)$ where $\frac{(n-2)(n-1)}{2} < m \leq \frac{n(n-1)}{2}$. Choose ℓ so that $\frac{\ell(\ell+1)}{2} < k \leq \frac{(\ell+1)(\ell+2)}{2}$. Then $f(\ell+1,1) = \frac{\ell(\ell+1)}{2}$. Choose n such that $\frac{\ell(\ell+1)}{2} + n = k$. Choose m so that $m + n = \ell + 2$. Then f(m,n) = k.

(iv) The set of rational numbers is countably infinite.

Proposition 11. Let A be a set. The following are equivalent.

(i) A is countable.

(ii) There is a one-one map of A into \mathbb{N} .

(iii) There is an onto map from \mathbb{N} onto A.

Corollary 12. (i) A subset of a countable set is countable.

(ii) Let I be a countable set and let A_i be countable for each $i \in I$. Then $A := \bigcup_{i \in I} A_i$ is countable, that is, a countable union of countable sets is countable. (iii) A finite product of countable sets is countable.

Ex. 13. Show that \mathbb{Q} is countable. *Hint:* Let $q \in \mathbb{N}$. Let A_q be the set of rational numbers whose denominator is q. Then A_q is countable and \mathbb{Q} is the union of A_q 's.

Ex. 14. Show that the set $F(\mathbb{N})$ consisting of finite subsets of \mathbb{N} is countable.

Ex. 15. Let $f: X \to Y$ be onto. Prove that if X is countable so is Y.

Example 16. A complex number is said to be an *algebraic number* if it is a root of a polynomial with integer coefficients. The set of algebraic numbers is countable. *Hint:* Show that the set of polynomials with integer coefficient is countable.

Theorem 17 (Cantor). Let X be any set and P(X), the power set of X. There is no onto function from X onto P(X).

Ex. 18. Show that $P(\mathbb{N})$ is not countable.

Ex. 19. Let X be any set. Show that there exists no one-one function from P(X) to X.

Ex. 20. The set of functions from \mathbb{N} to $\{0,1\}$ is not countable. *Hint:* The set under question is bijective with $P(\mathbb{N})$.

Example 21. \mathbb{R} is uncountable. *Hint:* Enough to show that [0, 1] is uncountable. Use Nested interval theorem. Also, diagonal trick can be used.

Ex. 22. The set of irrational numbers is uncountable.

Ex. 23. The set \mathbb{C} of complex numbers and \mathbb{R} have the same cardinaliy.

A complex number is *transcendental* if it is not algebraic.

Corollary 24. The set of transcendental numbers is uncountable.

Remark 25. Why is the last result historically important?

Ex. 26. Show that the set $F(\mathbb{N}, \mathbb{N}) := \{f : \mathbb{N} \to \mathbb{N}\}$ is uncountable. *Hint:* Diagonal trick.

Theorem 27. The following are equivalent for a set X.

(i) The set X is infinite.

(ii) There exists a countably infinite subset S of X.

(iii) There exists a proper subset Y of X such that X and Y have the same cardinality. \Box

Ex. 28. Let X be uncountable. Show that there exists a countably infinite subset $A \subset X$ such that X and $X \setminus A$ have the same cardinality.

Ex. 29. Let X be uncountable and $A \subset X$ a countable subset. Show that $X \setminus A$ is uncountable. More precisely, show that X and $X \setminus A$ have the same cardinality.

Reference:

J.R. Munkres, Topology, especially Sections 1.6, 1.7 and 1.9