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Abstract

The aim of this article is to rewrite the proof of the theorem of the title (found in
Rudin’s book) taking into account that the target audience has already undergone a
course in Lebesgue Measure and Integral and hence is not averse to the concept of outer
measure and the σ-algebra of measurable sets, using Cartheodary’s definition. Footnotes
are points to reflect upon.

Let X denote a locally compact Hausdorff space. Let f be a real valued continuous
function on X. The support of f is the subset

Supp (f) := Closure of {x ∈ X : f(x) 6= 0}.

We say that f has compact support if the support of f is a compact subset set. Note that
this is same as saying that f is zero outside a compact set. We let Cc(X) denote the vector
space1 of all compactly supported real valued continuous functions on X.

A linear functional Λ: Cc(X) → R is said to be positive if Λ(f) ≥ 0 for any f ∈ Cc(X)
with f ≥ 0. A trivial example: Fix p ∈ X and define Λ(f) := f(p) for f ∈ Cc(X).

Let B denote the sigma algebra of Borel subsets of X. (Recall that B is the smallest
σ-algebra containing the open subset of X.) A measure µ on (X,B) is said to be a Borel
measure if µ(K) <∞ for any compact subset K ⊂ X.

If µ is a Borel measure, then we have an associated positive linear functional Λ on Cc(X)
defined as follows:2

Λ(f) :=

∫
X
f dµ for f ∈ Cc(X).

We then say µ represents the functional Λ. (The trivial example above is a special case where
µ is the Dirac measure based at p ∈ X.)

We say that a Borel measure3 µ on X is regular if it satisfies the following two conditions:

(i) µ(B) = inf{µ(V ) : B ⊂ V, V is open} for each Borel set B ∈ B.
(ii) µ(V ) = sup{µ(K) : K ⊂ V,K is compact} for each open set V .

The theorem of the title can now be stated.
1Why is Cc(X) a vector space?
2Why does Λ(g) make sense?
3Our definition is slightly different from Rudin’s.
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Theorem 1 (Riesz-Markov). Let X be a localy compact Hausdorff space and Λ: Cc(X)→ R
be positive linear functional. Then there exists a unique regular Borel measure µ on X such
that

Λ(f) =

∫
X
f dµ for each f ∈ Cc(X).

We introduce some notation which has become standard now. If V is open and f ∈ Cc(X)
is such that 0 ≤ f ≤ 1 on X and Supp (f) ⊂ V, we denote this by the symbol f ≺ V . 4If K
is compact and f ∈ Cc(X) is such that 0 ≤ f ≤ 1 on X and if f = 1 on K, then we denote it
by K ≺ f . The symbol K ≺ f ≺ V stands for K ≺ f and f ≺ V .

We need the following two results from topology. Proofs can be found in Rudin’s Real
and Complex Analysis, Chapter 2.

Lemma 2. Let X be a locally compact Haudorff space. Let K be a compact subset and U an
open set U such that K ⊂ U . Then there exists an open set V such that (i) V is compact and
K ⊂ V ⊂ V ⊂ U .

Theorem 3 (Finite Partition of Unity). Let X be a locally compact Hausdorff space, K ⊂ X
a compact set. Let {Vi : 1 ≤ i ≤ n} be a finite open cover of K. Then there exist fi ∈ Cc(X)
such that fi ≺ Vi for each i and

∑
i fi = 1 on K.

Given a positive linear functional Λ on Cc(X), the strategy is first to define an outer
measure on P (X). In analogy with Lebesgue measure, we define the outer measure of open
sets and use it to define the outer measure on P (X).

Let Λ be a positive linear functional on Cc(X). Given an open set V ⊂ X, we define5

µ(V ) := sup{Λ(f) : f ≺ V }.

Clearly, 0 ≤ µ(V ) ≤ ∞. Also, if V,W are open sets with V ⊂ W , then µ(V ) ≤ µ(W ). This
allows us to define µ(A) for any A ⊂ X as follows: 6

µ(A) := inf{µ(V ) : A ⊂ V and V is open in X}. (1)

Note that if A is an open set, the apparently two definitions coincide.

An obvious guess and a hope is that µ is an outer measure on P (X).

Lemma 4. µ defined as in (1) is an outer measure on P (X).

Proof. 7 It is clear that if A ⊂ B ⊂ X, then µ(A) ≤ µ(B). We need only establish the
countable subadditivity. Let (An) be a countable family subsets of X. If

∑
n µ(An) = ∞,

the subadditivity is trivial. So we assume that the infinite series is convergent. In particular,
µ(An) <∞ for each n. Let ε > 0 be given. For each n, there exists an open set Vn such that
µ(Vn) < µ(An) + 2−nε. Let V := ∪nVn. Then V is an open set with A := ∪nAn ⊂ V . Choose
an f ∈ Cc(X) such that f ≺ V . Let K := Supp (f). Then the compact set K ⊂ V = ∪nVn.

4In particular, f ≤ χV .
5Draw pictures to see the motivation for this definition.
6Why is this natural?
7This proof is analogous to the one seen in the theory of Lebesgue outer measure.
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Hence there exists N such that K ⊂ ∪Nk=1Vk. By Theorem 3, there exist fk ∈ Cc(X) such

that (i) fk ≺ Vk for 1 ≤ k ≤ N and (ii)
∑N

k=1 fk = 1 on K. Clearly, f ≤
∑N

k=1 fk. Using the
monotonicity of Λ we obtain

Λ(f) ≤ Λ

(
N∑
k=1

fk

)
=

N∑
k=1

Λ(fk) ≤
N∑
k=1

µ(Vk) ≤
∞∑
k=1

µ(Vk) ≤
∞∑
k=1

µ(Ak) + ε.

This is true for each f ≺ V so that we get µ(V ) ≤
∑∞

k=1 µ(Ak) + ε8. It follows by taking
infimum (over the open sets V ⊃ A) that µ(A) ≤

∑∞
k=1 µ(Ak) + ε for each ε > 0.

Let (X,P (X), µ) be the outer measure constructed above. We say that a subset E ⊂ X is
measurable if for any set A ⊂ X, we have µ(A) = µ(A∩E)+µ(A\E). In view of subadditivity,
to establish the measurability of E, it is enought to show that µ(A) ≥ µ(A ∩ E) + µ(A \ E).
It is well-known that the class A of measurable subsets is a σ-algebra. (The proof is verbatim
the same as the one used to show that the class of Lebesgue measurable subsets of R is a
σ-algebra.)

Theorem 5. The σ-algebra of µ-measurable subsets contains B. Moreover, µ restricted to B
is a regular Borel measure.

Proof. The proof is broken into seven claims each of which is relatively easy.

Step 1. For each compact set K ⊂ X, we have µ(K) <∞.

Proof. Let K ⊂ X be compact. Let V be an open set such that K ⊂ V and V is compact.
Then there exists g ∈ Cc(X) such that V ≺ g. If f ∈ Cc(X) is such that f ≺ V , then clearly
f ≤ g. Hence Λ(f) ≤ Λ(g). It follows that

µ(K) ≤ µ(V ) ≤ sup{Λ(f) : f ≺ V } ≤ Λ(g) <∞.

Step 2. For any E ⊂ X, µ(E) := inf{µ(V ) : E ⊂ V, V is open.}.

This is just the definition of µ.

Step 3. For any open set V , we have

µ(V ) := sup{µ(K) : K is compact and K ⊂ V }.

Proof. Let r < µ(V ). By the definition of supremum, there exists f ∈ Cc(X) such that f ≺ V
and Λ(f) > r. Let K := Supp (f). Then K ⊂ V is compact. Let W be any open set with
K ⊂W . Clearly, f ≺W and hence µ(W ) ≥ Λ(f) > r. We now get

µ(V ) ≥ µ(K) = inf{µ(W ) : W open and K ⊂W} ≥ Λ(f) > r.

Since this holds true for each r < µ(V ), the result follows.

8V is special here. What happens when W is any open set containing A?
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Step 4. If A and B are disjoint compact subsets, then µ(A ∪B) = µ(A) + µ(B).

Proof. Let K = A ∪ B. In view of countable subadditivity, it suffices to show that µ(K) ≥
µ(A) + µ(B).

Let ε > 0 be given. Let W be an open set such that K ⊂ W and µ(W ) < µ(K) + ε. To
get a handle on µ(A) and µ(B), we need to ‘create’ open sets containing the compact sets A
and B to exploit the definition of µ(A) and µ(B). Since A is compact, it is closed and its
complement V = W \A is an open set containing B. Hence, there exists an open set V2 such
that B ⊂ V2 ⊂ V2 ⊂ V with V2 compact. Now if we set V1 := W \ V2, then V1 is an open set
which is disjoint9 from V2. Observe that A ⊂ V1 and B ⊂ V2.

Consider two functions f1, f2 ∈ Cc(X) such that fi ≺ V ∩ Vi, i = 1, 2 with the property
that µ(V1) < Λ(f1) + ε and µ(V2) < Λ(f2) + ε. Since V1 ∩ V2 = ∅, we see that f1 + f2 ≺ W .
We now have

µ(A) + µ(B) ≤ µ(V1) + µ(V2)

≤ Λ(f1) + ε+ Λ(f2) + ε

= Λ(f1 + f2) + 2ε

≤ µ(W ) + 2ε

≤ (µ(K) + ε) + 2ε, by our choice of W.

Thus, we obtain µ(A) + µ(B) ≤ µ(A ∪B) + 3ε for all ε > 0. The result follows.

Step 5. If V is an open and K is compact such that V ∩K = ∅, then µ(V ∪K) = µ(V )+µ(K).

Proof. Easy consequence of Step 3 and Step 4: If L ⊂ V is compact, then K ∩ L = ∅ so that
µ(K ∪ L) = µ(K) + µ(L) by Step 4. Hence sup{µ(K) + µ(L)} = µ(K) + µ(V ) by Step 3,
where the sup is takne over all compact subsetsof V .

Step 6. Any open subset V is meaurable.

Proof. Let V be open. We shall establish µ(A) ≥ µ(A∩V ) +µ(A \V ) for the case when A is
open. Since A ∩ V is open, we want to make use of Step 5. Let K ⊂ A ∩ V be compact. We
now want to exploit Step 5. An obvious choice is W := A\K. Note that10 A\V ⊂ A\K = W .
Hence we observe that

µ(K) + µ(A \ V ) ≤ µ(K) + µ(A \K) = µ(A), by Step 5.

Taking the supremum of the left side on all compact subsets K ⊂ A ∩ V , and using Step 3,
we get the desired inequality.

Now let A be arbitrary. If W is an open set with A ⊂ W , then by the last observation,
we have

µ(A ∩ V ) + µ(A \ V ) ≤ µ(W ∩ V ) + µ(W \ V ) ≤ µ(W ).

Taking the infimum over open sets W ⊃ A, and using Step 2, we get the result.

9Draw pictures.
10Draw pictures.
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Step 7. Every Borel set B ∈ B is µ-measurable.

Proof. Since the class A of µ-measurable sets is a σ-algebra, and all open sets lie A, it follows
that B, the smallest σ-algebra generated by the class open sets, is contained A.

Step 7 shows that µ is a masure on B. Step 1 shows it is a Borel measure. Step 2 (applied
to Borel sets) and Step 3 show that µ is regular. Hence we conlcude that µ is a regular Borel
measure on B.

Proof. We now begin the proof of the existence part of the Riesz-Markov Theorem. Given a
positive linear functional Λ on Cc(X), let µ be the regular Borel measure associated with Λ
as in Theorem 5. We wish to prove that Λ(f) =

∫
X f dµ, for f ∈ Cc(X).

Let f ∈ Cc(X) be given. Let M > 0 such that |f | ≤M on X. Let K := Supp (f). Let V
be an open set such that K ⊂ V and µ(V ) <∞. 11

Let 1 > ε > 0 be given. ChooseN ∈ N such that (2M/N) < ε. Let us partition the interval
[−M,M ] into N subintervals of equal length. Let the vertices be given by yk := −M + k 2M

N .
Let, for 1 ≤ k ≤ N ,

Ak := K ∩ f−1((yk, yk+1]) = {x ∈ K : yk < f(x) ≤ yk+1}
Uk := V ∩ f−1(yk − ε, yk + ε) = {x ∈ V : yk − ε < f(x) < yk+1 + ε}

Then Ak ∈ B (Why?) and Uk is an open set containing Ak, 1 ≤ k ≤ N . Note also that
Ak’s are pairwise disjoint and ∪kAk = K.

Using the regularity of the measure µ, we can find open sets Vk such that Ak ⊂ Vk ⊂ Uk

with µ(Vk)− µ(Ak) < ε/N for 1 ≤ k ≤ N . Note that K ⊂ ∪kVk ⊂ V . By Theorem 3, there
exist gk ∈ Cc(X) such that gk ≺ Vk and such that

∑
k gk = 1 on K. We rewrite f using

the partiton of unity gk as f =
∑

k fgk. We split the integral over K as a sum of integrals
over Ak’s and use the obvious estimates f ≤ yk + ε on Vk for 1 ≤ k ≤ N to show that
Λ(f)−

∫
f dµ < Cε for some constant C = C(K,M). The details follow. 12

Λ(f)−
∫
X
f dµ =

∑
k

Λ(fgk)−
∑
k

∫
Ak

f dµ

≤
∑
k

(yk + ε)Λ(gk)−
∑
k

(yk − ε)µ(Ak)

≤
∑
k

(yk + ε)µ(Vk)−
∑
k

(yk − ε)µ(Ak)

=
∑
k

(yk + ε) (µ(Vk)− µ(Ak)) + 2ε
∑
k

µ(Ak)

≤
∑
k

(M + ε)
ε

N
+ 2εµ(K)

≤ ε (M + 1 + 2µ(K)) .

11Why is this possible?
12You may now go ahead on your own and fix the details.
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Since ε > 0 is arbitrary, it follows that Λ(f)−
∫
f dµ ≤ 0. Same argument with −f in place

of f yields Λ(f)−
∫
f dµ ≥ 0. Hence we obtain Λ(f) =

∫
f dµ.

We now attend to the uniqueness part of the theorem. Let µ and ν be two regular Borel
measures that represent Λ. We claim that µ(K) = ν(K) for any compact subset K ⊂ X.
Let ε > 0 be given. By the regularity of µ, there exists an open set V ⊃ K such that
µ(V ) < µ(K) + ε. There exists f ∈ Cc(X) such that K ≺ f ≺ V . Note that χK ≤ f ≤ χV .
Using the monotonicty (positivity) of Λ, we obtain

ν(K) =

∫
X
χK dν ≤

∫
X
f dν =

∫
X
f dµ ≤

∫
X
χV dµ = µ(V ) < µ(K) + ε.

This being true for all ε > 0, it follows that ν(K) ≤ µ(K). Interchanging µ and ν in the
argument above, we get µ(K) ≤ ν(K). Hence the claim follows. The regularity of µ and ν
leads us to conclude13 that µ(A) = ν(A) for all A ∈ B.

Remark 6. Recall that a measure µ on a σ-algebra (X,A) is said to be complete if whenever
E ∈ A with µ(E) = 0 and if A ⊂ E, then A ∈ A. Note that µ(A) is necessarily zero.

It is trivial exercise to show that a measure arising out of an outer measure is always
complete. In particular, the measure µ on X corresponding to the postive linear functional
Λ on Cc(X) is complete.

13Supply the details.
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