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We give three proofs of the result which says that the roots of a polynomial depend
“continuously” on the coefficients of the polynomial. The first proof uses Rouche’s theorem.
The second proof is quite elementary. The third (if written) will justify what is in the quotes
and is a highbrow proof.

Theorem 1. Let f(z) :=
∑n

k=0 akz
k = an

p∏
j=1

(z − zj)mj , an 6= 0 and g(z) := (a0 + ε0)z +

· · · + (an−1 + εn−1)z
n−1 + anz

n. Let 0 < rk ≤ minj 6=k |zk − zj |. Then there exists an ε > 0
such that if |εi| ≤ ε, then g has precisely mk zeros in B(zk, rk) =: Bk.

Proof. Note that on Bk, h := g−f , h(z) =
∑n−1

i=0 εiz
i satisfies |h(z)| ≤

∑
εi (|zi|+ ri)

i ≤Mkε,
where Mk :=

∑
[|zi|+ ri]

i. But, on ∂Bk, we have

|f(z)| = |an|
∏
j

|z − zj |mj = |an||z − zk|mk
∏
j 6=k
|z − zj |mj ≥ |an|rmk

k

∏
j 6=k

(|zj − zk| − rk)mj .

Call the right hand side of the last inequality as δk. So, if we choose

ε < min

{
δk
Mk

, 1 ≤ k ≤ n
}
,

we then have |h(z)| < |f(z)| on ∂Bk. This means by Rouche’s theorem that f and f + h = g
have the same number of zeroes in Bk. By our choice of rk, the only zeroes of f in Bk is zk
with multiplicity mk. Hence the result.

Theorem 2. Let

f(z) = zn + an−1z
n−1 + · · ·+ a0 =

∏
(z − λi)

g(z) = zn + αn−1z
n−1 + · · ·+ α0 =

∏
(z − µi).

Let λ be a root of f with multiplicity m and ε > 0 be given. Then for |ai − αi| sufficiently
small for each i, g has at least m roots within an ε-distance of λ.
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Proof. Suppose not. Then there exists a sequence {fk} of polynomials which converge to f
such that fk has fewer than m roots in B(λ, ε). Since the coefficients {aki }k converge, the set

{(a(k)0 , . . . , a
(k)
n−1 | k ∈ N} is bounded in Cn.

Let fk(z) = (x− λ(k)1 ) · · · (x− λ(k)n ). Then {(λ(k)1 ) . . . λ
(k)
n ) | k ∈ N} is a bounded subset of

Cn. (For, if λ is a root of f , then |λ| ≤ max{1,
∑n

i=1 |ai|}.) It, therefore, has a convergent
subsequence. Without loss of generality, assume λki → µi for each i.

Now, since λki → µi, fk(z) = (z − λ(k)1 ) · · · (z − λ(k)N ) converge to h(z) = (z − µ1) · · · (z −
µn). But then, by uniqueness of limits, h(z) = f(z). Hence, m of µi’s must equal λ, a
contradiction.

Remark 3. By repeated application of the theorem to all distinct roots λi with multiplicity
mi, we see that in the statement we can conclude g must have precisely m roots within an
ε-distance of λ.

Third Proof

We assume that all polynomials P of degree n are normalized so that P (z) = zn +
a1z

n−1 + · · · + an. We identify the polynomial P with the vector (a1, . . . , an) ∈ Cn. By the
fundamental theorem of algebra we can factorize P as follows: P (z) =

∏n
j=1(z − ξj) for a

finite set of elements ξj ∈ C. We also know that the coefficients aj are symmetric polynomials
of the roots ξj :

ak = σk(ξ1, . . . , ξn) =
∑

ξj1 · · · ξjk
where the sum is over all possible k subsets {j1, . . . , jk} of {1, . . . , n}. Define σ : C → C be
the map σ(ξ) := (σ1(ξ), . . . , σn(ξ)). Then σ is continuous and σ is onto, by the fundamental
theorem of algebra. However, σ is not one-one.

Let Sn, the symmetric group on n symbols act on Cn by µ(z1, . . . , zn) := (zµ(1), . . . , zµ(n)).
This induces an equivalence relation ∼ so that the equivalence classes are the orbits under
the group action. Let Cn/ ∼ be the quotient space and π : Cn → Cn/ ∼ be the quotient map.
Now let σ̃ be the unique map σ̃ : Cn/ ∼→ Cn such that σ̃ ◦π = σ. Using the standard results
from the theory of quotient spaces, one shows easily that σ̃ is a continuous bijection. (At this
point, it is very tempting to think of the result which says that a bijective continuous map of
a compact space onto a Hausdorff space is a homeomorphism. See Remark 6 at the end.

Proposition 4. The map σ̃ : Cn/ ∼→ Cn is a homeomorphism.

Proof. We define a metric on Cn/ ∼ which induces the quotient topology as follows:

d(π(z), π(w)) := min{|z′ − w′| : z′ ∈ π(z), w′ ∈ π(w)}.

Note that
d(π(z), π(w)) := min{|z − w′| : w′ ∈ π(w)}.

Given z, v, w ∈ Cn, choose v′ ∈ π(v) so that d(π(z), π(v)) = |z − v′|. For each w′ ∈ π(w), we
then have |z − w′| ≤ |z − v′|+ |v′ − w′|. Hence,
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d(π(z), π(w)) ≤ min{|z − v′|+ |v′ − w′| : w′ ∈ π(w)}
= d(π(z), π(v)) + d(π(v), π(w)).

It follows that π : Cn → (Cn/ ∼, d) is continuous.

We now claim that d induces the quotient topology. Since π : C → (Cn/ ∼, d) is a
continuous bijection, it is enough to show that π is open. Let U ⊂ C be open. Let [α] ∈
π(U). We assume without loss of generality that α ∈ U . Then there exists r > 0 such that
B(α, r) ⊂ U . We claim that B([α], r) ⊂ π(U). Let [β] ∈ B([α], r). We can find β ∈ [β] such
that d([α], [β]) = d(α, β). The result follows form this. (Alternative proof of the Claim: For
any set A ⊂ Cn, we have π−1(π(A)) is open (closed) if A is open (closed). Thus π is an open
and closed map. Hence the claim.)

Let B(0, R) denote the open ball in Cn/ ∼. We claim that σ̃ is a homeomorphism of
B(0, R) onto its image. It is enough to show that σ̃ is closed. Let K ⊂ B(0, R) be closed. Then
π−1(K) is a closed and bounded subset of Cn and hence is compact. Thus, σ̃(K) = σ(π−1(K))
is compact and hence closed in Cn.

We complete the proof by showing that σ̃ : Cn/ ∼→ Cn is open. Let U be open subset of
Cn/ ∼ and x ∈ U . Choose ε > 0 and R > 0 such that B(x, ε) ⊂ U and B(x, ε) ⊂ B(0, R).
Since σ̃ is open on B(0, R), it follows that σ̃(x) lies in the interior of σ̃(B(x, ε)). Since x was
arbitrary, this completes the proof.

Theorem 5. Suppose

P (z) = zn + a1z
n−1 + · · ·+ an =

k∏
j=1

(z − ξj)mj

for distinct ξ1, . . . , ξk. Let ε > 0 be given such that for i 6= j, we B(ξi, ε)∩B(ξj , ε) = ∅. Then
there exists δ > 0 so that b ∈ B(a, δ) implies that the polynomial

Q(z) := zn + b1z
n−1 + · · ·+ bn

has exactly mj roots (counted with multiplicity) in B(ξj , ε).

Proof. Let τ : Cn → Cn/ ∼ be inverse of σ̃. Given a ∈ Cn, the coefficients of P , by the last
proposition, there exists a δ > 0 such that τ(B(a, δ)) ⊂ B(τ(a), ε). Spell this out in terms of
the metrics on Cn and Cn/ ∼ to arrive at the theorem.

Remark 6. It is tempting to introduce some projective notions to “simplify” the proof of
the proposition conceptually.
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