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1 Definitions and Examples

The idea behind differential calculus is to approximate the functions f : U ⊂ Rm → Rn at
x ∈ U by an affine function of the type ϕ(y) = A(y−x) + f(x). The derivative of f at x is to
be thought of as the first order linear approximation of the given function in a neighbourhood
of x. The first few exercises will make these vague ideas clear.

Definition 1. Let f : U ⊆ Rm → Rn be a map with U open. We say f is differentiable at
x ∈ U if there exists a linear map A : Rm → Rn such that for any ε > 0, there is a δ > 0 with
the property that if ‖h‖ < δ, then

‖f(x+ h)− f(x)−Ah‖ ≤ ε ‖h‖ .

Ex. 2. Prove that if f is differentiable at x, then such an A as above is unique. Hint: Let A
and B both do the job, consider for any unit vector v consider

‖A(tv)−B(tv)‖ ≤ ‖f(x+ tv)− f(x)−A(tv)‖+ ‖f(x+ tv)− f(x)−B(tv)‖ ≤ 2ε|t|

for all t with |t| < ε.

Remark 3. Notice that we make crucial use of the fact that U is open in proving Ex. 2.

This A is called the (Frechet or total) derivative of f at x. It is denoted by Df(x).

Ex. 4. Compute the derivative of the constant map f(x) = c, c a fixed vector in Rn.

Ex. 5. Compute the derivative of f where f is the restriction to an open set U of a linear
map A : Rm → Rn.

Ex. 6. In the notation of Def. 1, prove that f is differentiable at x iff there exists a linear
map A : Rm → Rn such that

lim
h→0

‖f(x+ h)− f(x)−Ah‖
‖h‖

= 0.

The meaning of Ex. 6 is that if we have a candidate A for the derivative Df(x) an consider
the “error term” f(x + h) − f(x) − Ah then this error term goes to zero in Rn much faster
than h as h→ 0 in Rm. One usually uses Landau’s notation to formulate this more precisely.
See at the end of this section.
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Ex. 7. Let f : R→ R be defined by f(x) = xn for n ∈ N. Find Df(x). Hint: Consider

f(x+ h)− f(x) = (x+ h)n − xn

= nxh+

n∑
k=1

(
n

k

)
xn−khk

= nxh+ h · a bounded function

for |h| ≤ 1. Thus Df(x)h = nxh.

Ex. 8. Compute the derivative Df(x) where f : R→ R is given by f(x) = ex. Hint: Use the
series definition of ex and the fact that ex+y = exey.

More generally, solve:

Ex. 9. Let f : (a, b) ⊆ R → R be a function. Then f is differentiable with respect to the
above definitions iff f is differentiable in the calculus sense (that is, f ′(x) exists) and we have

Df(x)h = f ′(x)h,

where f ′(x) = limh→0
f(x+h)−f(x)

h is the “usual” derivative.

Ex. 10. Let f : M(n,R) → M(n,R) be given by f(X) = X2. Compute Df(X)H Hint:
Expand f(X +H)− f(X) and collect terms “linear in H”.

Ex. 11. Do the same as above for f(X) = Xk for k ∈ N.

Ex. 12. Let f : M(n,R)×M(n,R) be given by f(X,Y ) = XY , the matrix product. Compute
the derivative Df(A,B).

Ex. 13. Let f : Rn → R be given by f(x) = 〈x, x〉. Compute the derivative Df(x). [Hint:
Expand f(x+ h)− f(x) and collect the “linear terms” in h.]

Ex. 14. Let f : Rn → R be given by f(x) = 〈Ax, x〉, where A : Rn → R is a linear map.
Compute Df(x).

The essence of following proposition is that the concept of differentiablity of f at x and
the derivative Df(x) remain the same even if we change the norms on the domain and/or on
the range.

Proposition 15. Let the notation be as in Def. 1. Let | · | be any norms on Rm and Rn. Then
f : U ⊂ (Rm, ‖ ‖) → (Rn, ‖ ‖) is differentiable at x with derivative A iff f : U ⊂ (Rm, ||) →
(Rn, ||) with derivative B and A = B.

Proof. We are supposed to show that

lim
‖h‖→0

‖f(x+ h)− f(x)−Ah‖
‖h‖

= 0 iff lim
|h|→0

|f(x+ h)− f(x)−Ah|
|h|

= 0.

Since any norm on Rk is equivalent to the euclidean norm there exist constant Ci and C ′i,
(i = 1, 2), such that the following hold:

C1|x| ≤ ‖x‖ ≤ C2|x| for all x ∈ Rm

C ′1|y| ≤ ‖y‖ ≤ C2|y| for all y ∈ Rn.
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The result follows from the following observation:

C ′1|f(x+ h)− f(x)−Ah|
C2|h|

≤ ‖f(x+ h)− f(x)−Ah‖
‖h‖

≤ C ′2|f(x+ h)− f(x)−Ah|
C1|h|

.

Ex. 16. Let f : Rk → Rm × Rn be given. Write f(x) = (f1(x), f2(x)) ∈ Rm × Rn in an
obvious notation. Prove that f is differentiable at x iff fi are differentiable at x and we have

Df(x)h =

(
Df1(x)h
Df2(x)h

)
.

In particular, f : Rm → Rn is differentiable iff each fi is differentiable and

Df(x)h =

Df1(x)h
...

Dfn(x)h

 .

Here f = (f1, . . . , fn).

Ex. 17. Compute the derivative of f(x, y) = 〈Ax,By〉 where A : Rm → Rk and B : Rn → Rk
are linear.

Ex. 18. Let B : Rn × Rm → Rk be a bilinear map, that is, x 7→ B(x, y0 and y 7→ B(x0, y)
are linear on Rm and Rn respectively. Compute DB(x, y)(h, k). Hint: B(x + h, y + k) −
B(x, y) = B(x, k) + B(h, y) + B(h, k). The first two terms are “linear” in h, k and so we
define DB(x, y)(h, k) := B(x, k) + B(h, y). To show B(h, k) goes to zero much faster than
(h, k) as (h, k)→ 0, write B in terms of a basis.

Ex. 19. Extend the last exercise to multi-linear maps: f : Rn1 × · · · × Rnk → Rm.

Ex. 20. Compute the derivative of f : M(n,R)→ R, where f(X) = detX at the identity I.
Hint: Think of det as a multi-linear map on the space of column vectors of X ∈M(n,R).

Ex. 21. Let f, g : Rm → R be differentiable at x ∈ Rm. Show that φ(y) = f(y)g(y) is
differentiable at y = x.

Ex. 22. If f : U ⊆ Rm → R is differentiable at x, then f is continuous at x. More precisely,
show that f is locally Lipschitz at x. That is, prove that there exists a constant c > 0 and a
δ > 0 such that if ‖y − x‖ < δ, then ‖f(y)− f(x)‖ < c ‖x− y‖.

Ex. 23. Let f : Rn → R be a function such that |f(x)| ≤ ‖x‖2. Show that f is differentiable
at 0.

Three Very Special Cases

There are three very special cases of the set-up f : U ⊂ Rm → Rn which one should be
thoroughly familiar with. They are

1. m = 1 = n. This case has been successfully dealt with in Ex. 9. In this case the Frechet
derivative Df(x) and the classical (calculus) derivative are related by Df(x)h = f ′(x)h.
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2. m = 1 and n arbitrary. In this case we think of f as a differentiable curve in Rn joining
the points f(s) and f(t) for s, t ∈ U . As a mnemonic we use the letter c in place of f . In
this case there is a notion of tangent vector (or the velocity vector) c′(t) at the point t to the
curve c given by c′(t) := (c′1(t), . . . , c

′
n(t)). Note that

c′(t) = lim
h→0

c(t+ h)− c(t)
h

.

How are Dc(t) and c′(t) related? We leave it to the reader to show c′(t) = Dc(t)(1).
3. n = 1 and m arbitrary. In this case the map Df(x) is a linear map from Rm → R.

We know any such linear map ϕ : Rm → R arises as the inner product with a fixed vector
u := (ϕ(e1), . . . , vfi(em)): ϕ(x) = 〈x, v〉. Thus Df is represented by a unique vector, denoted
by ∇f(x) or grad f(x), so that Df(x)(h) = 〈h,∇f(x)〉.

It is very essential that the reader understands these three special cases very well as they
will be repeatedly used in the sequel.

2 Directional and Partial Derivatives

The single most important trick in calculus of several variables is to reduce the problems to
one-variable setup.

Definition 24. Fix any v ∈ Rm, x ∈ U . We claim that there exists ε > 0 such that
x + tv ∈ U for |t| < ε. For, since U is open there exists r > 0 such that B(x, r) ⊂ U . If
we take ε := r/ ‖v‖ (which is ∞ if v = 0) then the claim follows. Let f : U ⊆ Rm → R be
a map. Consider the one-variable function g(t) := f(x + tv) for t ∈ (−ε, ε). The basic trick
in several variable calculus is to reduce the problem to this function whenever feasible. Note
that g(0) = f(x). We may ask whether this function g is differentiable at 0. That is, whether
the limit

lim
t→0

f(0 + t)− g(0)

t

exists. This is the same as requiring that limt→0
f(x+tv)−f(x)

t exists. If the limit exists, we
denote it by Dvf(x) and call it the directional derivative of f at x in the direction of v. A
particular choice of v is any standard basis vector ei of Rm. In this case Deif(x) is usually
denoted by ∂f

∂xi
(x) or Dif(x) and called the i-th partial derivative of f at x.

The geometric meaning behind this definition is as follows. Let f : R2 → R be a function
with directional directive at Dvf(x) at x. The geometric interpretation of Dvf(x) is that is
the slope of the tangent line at (x, f(x)) to the curve formed by the intersection of the graph
of f with the plane that contains x and x+ v and parallel to the z-axis.

Proposition 25. Let f : U ⊂ Rm → Rn be differentiable at x. Then f has directional
derivatives at x in all directions and Dvf(x) is given by

Dvf(x) = Df(x)(v). (1)

Proof.
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Ex. 26. The converse of the above proposition is not true in general. Consider f : R2 → R
given by

f(x, y) =

{
x2y
x4+y2

(x, y) 6= (0, 0)

0 otherwise.

Then all its directional derivatives at (0, 0) exist. However, f is not even continuous at (0, 0)
(and hence is certainly not differentiable at (0, 0)). [Hint: Approach (0, 0) along the parabola
y = x2.]

Ex. 27. Find the directional derivative Dvf(x) of the functions as indicated.
(i) f(x, y, z) = xyz where x = (1, 0, 0) and v = (cosα sinβ, sinα sinβ, cosβ).
(ii) f(x, y) = ex sin y where x = (1, 0) and v = (cosα, sinα).

Ex. 28. Prove the Chain Rule: Let f : : U ⊆ Rm → Rn and g : V ⊆ Rn → Rk be
differentiable at x ∈ U and y = f(x) ∈ V . Prove that φ = g ◦ f : U → Rk is differentiable
and Dφ(x) = Dg(y) ◦Df(x). [Hint: Let A = Df(x), B = Dg(y).

‖g ◦ f(x+ h)− g ◦ f(x)−B ◦Ah‖
≤ ‖g(f(x+ h))− g(f(x))−B(f(x+ h)− f(x))‖

+ ‖B[f(x+ h)− f(x)−Ah]‖ .

You need Ex. ?? and Ex. 22 and the fact that ‖Tv‖ ≤ ‖T ‖ · ‖v‖ for a linear map T .

Ex. 29. Use the chain rule to prove the differentiability of x 7→ ‖x‖ on Rn \ {0}.

Ex. 30. Let f, g : R2 → R be given by f : (x, y) 7→ x + y and g : (x, y) 7→ xy. Compute the
derivatives of f and g.

Ex. 31. Do Ex. 21 using Ex. 30 and the chain rule.

Ex. 32. Let f : U ⊆ Rm → R be differentiable at x. Then Df(x) : Rm → R is a linear
map. Hence by Riesz representation theorem, there exists a unique vector u ∈ Rm such that
Df(x)v = 〈v, u〉 for all v ∈ Rm. This u has coordinates φ(ei):

u =
m∑
i=1

φ(ei)ei =

φ(e1)
...

φ(em)

 ∈ Rm.

Prove that this vector, generally denoted by grad f(x) and called the gradient of fat x, is
given by

grad f(x) =


∂f
∂x1

(x)
...

∂f
∂xm

(x).


Hence Df(x)(v) =

∑m
i=1 vi

∂f
∂xi

(x) = 〈v, grad f(x)〉.
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Ex. 33 (An interpretation of Ex. 32). Since Df(x) is linear, we can write it as a (1 ×m)-
matrix with respect to the standard basis of Rm. Thus Df(x) = ( ∂f1∂x1

(x), . . . , ∂fm∂xm
(x)) (as

matrices). This matrix is called the Jacobian of f at x. We have

Df(x)h = (
∂f

∂x1
(x), . . . ,

∂f

∂xm
(x))

h1
...
hm

 =

m∑
i=1

∂f

∂xi
(x)hi.

Ex. 34. Find the gradient of each of the following functions at the indicated points:
(i) f(x) = ‖x‖2 for an arbitrary x ∈ Rn.
(ii) f(x) = ‖x‖α for 0 6= x ∈ Rn.
(iii) f(x, y) = x+ y + z at x = (1, 2, 3).

Ex. 35. We generalise the previous exercise: Let f = (f1, . . . , fn) : U ⊆ Rm → Rn be
differentiable at x. Show that Df(x) has the following matrix representation with respect to
the standard basis of Rm and Rn:

Df(x) =


∂f1
∂x1

(x) · · · ∂f1
∂xm

(x)
...

. . .
...

∂fn
∂x1

(x) · · · ∂fn
∂xm

(x)

 =
(
∂fi
∂xj

(x)
)

1 ≤ i ≤ m
1 ≤ j ≤ n

Hint: Either imitate the proof of the earlier two exercises or recall that

Df(x)(h) = (Df1(x)h, . . . ,Dfn(x)h).

This matrix is known as the Jacobian matrix of f at x.

Ex. 36. The matrix form of the chain rule is as follows: Let f : Rm → Rn be given by

f(x1, . . . , xn) = (y1, . . . , yn) = (y1(x1, . . . , xm), . . . , yn(x1, . . . , xm)) and

g(y1, . . . , yn) = (z1(y1, . . . , yn), . . . , zk(y1, . . . , yn)).

Then the Jacobian matrix J(g ◦ f) of D(g ◦ f) is J(g) ◦ J(f) and symbolically written as

∂zi
∂xj

=
∑
r

∂zi
∂yr
· ∂yr
∂xj

.

Ex. 37. Consider f : R2 → R3 given by

f(

(
u
v

)
) =

 u+ v
u− v
u2 − v2


and g : R3 → R given by g(x, y, z) = x2 + y2 + z2. Find the Jacobian matrix of D(g ◦ f) at(
a
b

)
.

Ex. 38. Let f

xy
z

 =

r cos θ
r sin θ
r

 and w = g(x, y, z) =
√
x2 + y2 + z2. Find ∂w

∂r and ∂w
∂θ

using the chain rule. Check the result by direct substitution.
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Ex. 39. Let f, g : (a, b)→ Rn be differentiable. Let φ(t) := 〈f(t), g(t)〉. Compute φ′(t). (Do
you recognize this as a special case of something we did earlier on?)

Ex. 40. Let f : Rm → Rk and g : Rn → Rk be differentiable. Let φ(x, y) := 〈f(x), g(y)〉.
Show that φ is differentiable on Rm × Rn.

Ex. 41. Let c : (a, b)→ Rn be differentiable. We think of c as a curve in Rn. Let f : Rn → R
be differentiable. Prove that g(t) := f ◦ c(t) is differentiable and g′(t) = 〈grad f(c(t)), c′(t)〉.

Here c′(t) =

c
′
1(t)
...

c′n(t)

 = Dc(t)(1) is the tangent vector to c at t. Note that g′(t) =

∑n
i=1

∂f
∂xi

(c(t)) · c′i(t).

Ex. 42. A function f : Rn → R is said to be homogeneous of degree k if f(tx) = tkx for all
x ∈ Rn and t ∈ R. Let f be homogeneous of degree k and differentiable on Rn. Show that

Dxf(x) = 〈x, grad f(x)〉 =
∑

xi
∂f

∂xi
(x) = kf(x).

This is known as Euler’s theorem. Prove also the converse. Hint for both: Consider g(t) =
f(tx) for the first part and t−kg(t) for the converse.

Ex. 43. Find the derivatives of the following functions:
(1) f(x, y) = xy.
(2) f(x, y) = sin(xy).
(3) f(x, y) =

∫ x+y
a g.

(4) f(x, y) =
∫ xy
a g.

(5) f(x, y) =
∫ y
x g.

In (3) to (5), assume that g : R→ R is continuous.

Ex. 44. Compute the Jacobian matrix of the following functions:
(1) (x, y) 7→ (ex cos y, ex sin y).
(2) (x, y) 7→ (x+ y, xy, x− y).
(3) x ∈ Rn 7→ 〈Ax, x〉 where A : Rn → Rn is linear. Compare the result with Ex. 14.

Ex. 45. Let c : (a, b) → Rn be differentiable such that ‖c(t)‖ = 1 for t ∈ (a, b). Prove that
c′(t) is perpendicular to c(t) for t ∈ (a, b). Interpret this result geometrically in terms of
spheres and tangent planes.

Ex. 46. Let f : Rn → R be differentiable. Let 0 be a value of f so that f−1(0) is non-empty.
Let c : (a, b) → Rn be a differentiable curve such that c(t) ∈ f−1(0) for all t ∈ (a, b). Show
that 〈c′(t), grad f(c(t))〉 = 0. Specialize to f : R3 → R and understand the geometry behind
this exercise.

3 Mean Value Theorem

Ex. 47. Let f : R→ R2 be defined by f(t) = (cos t, sin t). Prove that the mean value theorem
in the form f(y) − f(x) = Df(z)(y − x) for some z ∈ (x, y) cannot hold when x = 0 and
y = 2π.
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Ex. 48. Prove the mean value theorem in the following form: Let f : U ⊆ Rm → Rn be
differentiable. Let x, y ∈ U be such that the line joining x, y is contained in U . That is,
x + t(y − x) ∈ U for t ∈ [0, 1]. Hence observe that x + t(y − x) ∈ U for (−ε, 1 + ε) for some
ε > 0. Let a ∈ Rn be fixed. Show that there exists t ∈ [0, 1) such that 〈f(y)− f(x), a〉 =
〈Df(x+ t(y − x))(y − x), a〉. Hint: Define g(t) := 〈a, f(x+ t(y − x))〉. Apply the mean value
of one-variable calculus.

Ex. 49. Let U be open and convex in Rn. Let f : U ⊆ Rm → Rn be differentiable. Assume
that supz∈U ‖Df(z)‖ < c < ∞ for some c > 0. Then show that f is Lipschitz on U . Hint:
For x ∈ Rn, ‖x‖ = sup‖a‖=1 | 〈x, a〉 |.

Ex. 50. An important special case of Ex. 49 is when f continuously differentiable. That is,
when x 7→ Df(x) as a map from U into L(Rm,Rn) ∼= Mn×m(R) is continuous. Let K be a
compact convex set in U . Then there exists a c > 0 such that ‖f(x)− f(y)‖ ≤ c ‖x− y‖ for
x, y ∈ K.

Ex. 51. Let U be open and f : U → Rn be differentiable. Let Df(x) = 0 for all x ∈ U . Show
that f is locally constant on U . hence, if we further assume that U is connected, conclude
that f is a constant.

Ex. 52. Give an example to show that connectedness of U is necessary in Ex. 51.

Ex. 53. Compute the Jacobian matrix of the map f : R2 → R2 given by f(r, θ) = (r cos θ, r sin θ).

Ex. 54. Let f : U ⊆ Rm → Rn be continuously differentiable. Let x ∈ U be such that Df(x)
is one-one. Show that there exists a neighborhood of x in U on which f is one-one. What is
the significance of Ex. 53 for the present exercise?

Ex. 55. Let f : U ⊆ R2 → R be such that ∂f
∂x and ∂f

∂y exist and are continuous on U .

Show that Df(x) exists on U and that x 7→ Df(x) is continuous. Thus f is continuously
differentiable. Hint: Estimate∥∥∥∥f(x+ h, y + k)− f(x, y)− ∂f

∂x
h− ∂f

∂y
k

∥∥∥∥
=

∥∥∥∥f(x+ h, y + k)− f(x, y + k)− ∂f

∂x
(x, y + k)

∥∥∥∥
+

∥∥∥∥ ∂f∂x (x, y + k)− ∂f

∂x
(x, y)

∥∥∥∥+ other terms.

Ex. 56. This is extension of Ex. 55 and included here for records’ sake. We say f : U ⊆
Rn → R is C1 if all its partial derivatives exists and are continuous. Then f is continuously
differentiable on U .

Ex. 57. This is the most general form of Ex. 55 and Ex. 56. Let f : U ⊆ Rm → Rn be such
that ∂fi

∂xj
exist and are continuous on U for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then f is continuously

differentiable on U .

Ex. 58. Let f : U ⊆ Rm → Rn be differentiable. Let p ∈ U and c : (−ε, ε) → U be a
differentiable curve such that c(0) = p and c′(0) = v. (One such curve is c(t) = p+ tv.) Show
that if g(t) := f ◦ c(t), then

g′(0) =
d

dt
f ◦ c(t)|t=0 = Dvf(p) = Df(p)v.
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The moral of this exercise is that to compute Df(p) it is enough to know Df(p)v for all
v ∈ Rm and to know that we can use any curve c with initial data c(0) = p and c′(0) = v.

Ex. 59. Let f : M(n,R)×M(n,R)→M(n,R) given by f(A,B) = AB. Find Df(A,B).

Ex. 60. Let f : R→M(n,R) be given by f(t) = etA for a fixed A ∈M(n,R). Find Df(t).

Ex. 61. To illustrate the use of Ex. 58, find the derivative of f : GL(n,R)→ GL(n,R) given
by f(X) = X−1 in three ways:

(1) Use “binomial” type expansion for f(X +H) = (X +H)−1.
(2) Use the chain rule for the map X 7→ (X,X−1)→ I.
(3) Use Df(A)H = DHf(A) = d

dt(Ae
tA−1H) as c(t) = AetA

−1H has the required initial data
c(0) = A and c′(0) = H.

Ex. 62. Given F : Rn → Rn, the problem of finding a function f : Rn → R such that
grad f = F is equivalent to solving the following system of equations for f :

∂f

∂x1
= F1, . . . ,

∂f

∂xn
= Fn.

(i) For n = 2, this system has a solution f , then f must have both of the forms:

f(x, y) =

∫
F1(x, y)dx+ c1(y)

f(x, y) =

∫
F2(x, y)dy + c2(x).

(ii) Find f , if grad f(x, y) = (x2 + 2xy, 2xy + x2).

Ex. 63. Let f : U ⊆ R2 → R. Assume that D1f , D2f , D1D2f and D2D1f exist and are
continuous. Then D1D2f = D2D1f . Here Dif = Deif are the partial derivatives. Hint:
Consider g1(x) = f(x, y + k) − f(x, y) and g2(y) = f(x + h, y) − f(x, y). Apply mean value
theorem to g1(x+ h)− g1(x) and g2(y+ k)− g2(y) and use continuity of D1D2f and D2D1f .

Ex. 64. (i) If f(x, y) = log(x2 + y2), show that ∂2f
∂x2

+ ∂2f
∂y2

= 0.

(ii) Let f(x) = 1
‖x‖ on R3 \ {0}. Show that ∂2f

∂x2
+ ∂2f

∂y2
+ ∂f

∂z2
= 0.

(iii) More generally, if f(x) = ‖x‖(n−2)/n, then
∑ ∂2f

∂x2i
= 0, for n ≥ 3.

Ex. 65. Let

f(x, y) =

{
xy x

2−y2
x2+y2

(x, y) 6= (0, 0)

0 (x, y) = (0, 0).

Compute D1f , D2f , D1D2f , D2D1f at (0, 0).

Ex. 66. Find the partial derivatives of the following functions: (i) f(x, y) = exy. (ii)
f(x, y) =

∫ x+y
x g(t)dt, g : R → R continuous. (iii) f(x, y) =

∫ xy
a g(t)dt, g : R → R

continuous. (iv) f(x, y) = f1(x)f2(y), fi differentiable. (v) f(x, y) = g(xy).

Ex. 67. Let f : R2 → R be given. If D1f = 0, show that f is independent of the first
variable. If D1f = 0 = D2f , show that f is a constant.

9



Ex. 68. We say that f : U ⊆ Rm → R is Ck for k ∈ N if all its partial derivatives of order less
than or equal to k exist and are continuous. Thus f is C2 on R2 if D1f , D2f , D1D2f , D2D1f ,
D2

1f , D2
2f all exist and are continuous. It follows from earlier exercises that if f : Rm → R is

Ck, then “all the mixed partial derivatives of same type” are the same. (This exercise is more
for the record than for solving!)

Definition 69. f : U ⊆ Rm → Rn is Ck if each coordinate function fi is Ck for 1 ≤ i ≤ n.

Ex. 70. Let f : U ⊆ Rm → R be Ck and let x ∈ U , v ∈ Rm and c(t) := x+ tv. Show that if
g is given by g(t) = f ◦ c(t), then g is defined in an interval around 0 in R and that it is Ck.
Compute g′(t), g′′(t) and more generally, g(r)(t) for 0 ≤ r ≤ k.

4 Taylor’s Theorem

Ex. 71. Let f : [a, b] → R be such that f (n+1) exists and is continuous on [a, b]. That is, f
is C(n+1) on [a, b]. Then for x ∈ [a, b], we have

f(x) = f(a) +

n∑
1

f (k)(a)

k!
(x− a)k +Rn(x) (2)

where Rn(x) = 1
n!

∫ x
a f

(n+1)(t)(x− t)ndt. Hint: Use induction and integration by parts. Eq. 2
is known as Taylor’s expansion.

Ex. 72. Write the Taylor expansion for the following functions: (i) log x at a = 1. (ii)√
1− x at a = 0. (iii) ex, sinx, cosx at a = 0.

Ex. 73. Let f : [a, b] → R be continuous and g : [a, b] → R be Riemann integrable on [a, b]
with g(x) ≥ 0 for all x ∈ [a, b]. Then there exists a c ∈ [a, b] such that∫ b

a
f(x)g(x) = f(c)

∫ b

a
g(x)dx.

This is known as the first mean value theorem of Riemann integration.

Ex. 74. Let the notation be as in Ex. 71. Use the first mean value theorem of Riemann
integration to conclude that there exists c ∈ [a, x] such that

f(x) = f(a) +

n∑
1

f (k)(a)

k!
(x− a)k +Rn(x).

where

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1.

Ex. 75. You may also prove Ex. 74 directly as follows: Consider

F (t) = f(t) +

n∑
1

f (k)(t)

k!
(x− t)k +M(x− t)n+1

where M is chosen so that F (a) = f(x). This is possible for x 6= a. Observe that F (x) = F (a)
and and apply Rolle’s theorem.
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Ex. 76. For α = (α1, . . . , αn) ∈ Zn+, and x ∈ Rn, let |α| = α1 + · · ·+αn and α! := α1! · · ·αn!
and xα := xα1

1 · · ·xαn
n . We let

Dα := Dα
1 · · ·Dαn

n =
∂α1+···+αn

∂xα1
1 · · · ∂x

αn
n

=
∂|α|

∂xα1
1 · · · ∂x

αn
n
.

Given α1, . . . , αn with |α| = N , show that there are N !/α! different N -tuples (i1, . . . , iN ) in
which 1 occurs α1-times, 2 occurs α2 times etc.

Ex. 77. We rewrite the remainder term Rn(x) in Ex. 71. Assume a = 0. In the integral,
change the variable: t = ux and get

Rn(x) =
xn+1

n!

∫ 1

0
f (n+1)(ux)(1− u)ndt.

Ex. 78. Let f be a CN+1 function on an open convex neighborhood of 0 in Rn. Then

f(x) =
∑
|α|≤N

1

k!
Dαf(0)xα +RN (x)

where

RN (x) = (N + 1)
∑

|α|=N+1

xα

α!

∫ 1

0
Dαf(tx)(1− t)Ndt.

Hint: Consider g(t) = f(tx) and use Ex. 70, Ex. 77 and Ex. 76.

Ex. 79. Let f : U ⊆ Rn → R be CN−1 (i.e., N − 1 times continuously differentiable). Let
a ∈ U . Show that we can write

f(a+ h) = f(a) +
N∑
k=1

f (k)(a)

k!
(h) +

1

N !
f (N+1)(x)(h)

where f (k)(a)h =
∑n

i1···ik=1Di1Di2 · · ·Dikf(a)hi1 · · ·hik and h ∈ [a, a + h), the line joining a
and a+ h. (We assume [a, a+ h] ⊆ U). Hint: Consider g(t) := f(a+ th) and apply the one
variable Taylor’s theorem as in Ex. 74.

Ex. 80. Let f be Ck in a neighbourhood of the origin in Rn such that f(0) = 0. Then
there exist Ck−1 functions fi for 1 ≤ i ≤ n (in a possibly small neighbourhood) such that
f(x) =

∑
i xifi(x).

Ex. 81. Let the notation be as above. Let

TN (x) = f(x) +

N∑
k=1

f (k)(a)

k
h.

We call TN the N -th Taylor polynomial of T at x. It has the property that

lim
y→x

f(y)− TN (y)

‖y − x‖N
= 0.
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Ex. 82. Show that the N -th Taylor polynomial of a CN+1 function f at a is unique. Hint:
Note that if T and S are such polynomials then

lim
y→x

Ty − Sy
‖y − x‖N

= 0

Write Ty − Sy = Pk(y) + R(y), where Pk is the polynomial consisting of terms of lowest
degree k that actually occurs in T − S. Observe that

lim
t→0

Pk(ty0) +R(ty0)

|ty0|k
= 0

for y0 with Pk(y0) 6= 0.

Ex. 83. Write the polynomial x2y + x3 + y3 in powers of (x− 1) and (y + 1).

Ex. 84. Find the Taylor expansion of f(x) = (
∑
xi)

N at x = 0.

Ex. 85. Find the best second degree approximation to the function f(x, y) = xey at (2, 0).

Ex. 86. Find the Taylor expansion of f(x, y) = exy sin(x + y) at (0, 0) (i) by computing
derivatives. (ii) by using Taylor expansion of exy and sin(x+ y).

Ex. 87. Write the second order Taylor expansion of a C2 function as follows:

f(a+ h)− f(a) = 〈grad f(a), h〉+
1

2
D2f(x)h

= 〈grad f(a), h〉+
1

2
D2f(a)h+ ‖h‖2E(h)

where

‖h‖2E(h) =
1

2
[D2f(x)h−D2f(a)h]

=
1

2

n∑
i,j=1

[DiDjf(x)−DiDjf(a)]hihj .

Conclude that |E(h)| → 0 as ‖h‖ → 0.

5 Maxima and Minima

Definition 88. Let f : U ⊂ Rn → R be function. A point a ∈ U is said to be a local maximum
if there exists an open set B containing a such that f(a) ≥ f(x) for al x ∈ B.

A local minimum is similarly defined.

Ex. 89. Let f : U ⊆ Rm → R be differentiable and x be a point of local maximum or local
minimum. Show that Dvf(x) = 0 for all v ∈ Rm. Hence conclude that grad f(x) = 0. Hint:
Consider g(t) := f(x+ tv) and apply the one variable result.
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Ex. 90. Let f : U ⊆ Rm → R be differentiable. Show that in the direction v in which f has
the maximum absolute value, the directional derivative at x is along grad f(x). Use this to
understand the geometry behind Ex. 89.

Ex. 91. Consider f(x, y) = x2 + y2. Then grad f(0, 0) = 0. So there is no indication of a
direction of maximum increase of f at (0, 0). Is this reasonable? What happens at (0, 0)?
Carry out similar exercise when f(x, y) = xy and f(x, y) = x2 − y2.

Definition 92. e say a point a in the domain of a differentiable (real valued) function is a
critical point if the gradient of f at a is zero.

Ex. 93. Any point of local maximum or local minimum is a critical point. Give an example
of a critical point which is neither a local maximum or a local minimum.

Ex. 94. Find the critical points of the following functions:

(a) (x+ y)e−xy (d) y2 − x3 (g) x sin y

(b) xy + xz (e) e−‖x‖
2

(h) (x− y)4.
(c) x2 + y2 + z2 (f) x2y2 (i) x2 + y2 + z2 + xy.

Ex. 95. Let f : U ⊆ Rn → R be C2. Assume that a ∈ U is a critical point of f . Let

Q(h) :=
1

2

〈
D2f(a)h, h

〉
=

1

2

∑
i,j

DiDjf(a)hihj .

(i) IfQ(h) > 0 for all h 6= 0, then f has a local minimum at a. (ii) IfQ(h) < 0 for all h 6= 0,
then f has a local maximum at a. (iii) If Q(h) is indefinite, then a is said to be a saddle
point of f . In a neighborhood of a, we can find points x, y such that f(x) < f(a) < f(y).

Definition 96. The matrix D2f(a) =
(

∂2f
∂xi∂xj

(a)
)

of a C2 function f is called the Hessian

of f at a. A symmetric matrix A = (aij) is said to be positive definite (negative definite) iff
〈Ax, x〉 > 0 (respectively 〈Ax, x〉 < 0) for x 6= 0. Thus a critical point a of f is a point of
local minimum (maximum) if the Hessian Hf (a) of f at a is positive (respectively negative)
definite.

Ex. 97. There are two well-known criteria for the positive definiteness of a symmetric matrix
A = (aij). (i) All the eigen values of A are positive. (ii) All the matrices (aij)1≤i,j≤k for
1 ≤ k ≤ n have positive determinants.

Prove the second criterion for n = 2 and the first criterion for all n.

Ex. 98. Classify the critical points of Ex. 94 as maximum, minimum, or neither.

Ex. 99. ind and classify the critical points of the following functions: (a) f(x, y) :=
x2 − xy + y2. (b) f(x, y) := x3 − 3x2 + y2.

Definition 100. critical point of a C2-function is said to be nondegenerate if the Hessian
D2f(a) := (DiDjf(a)) of f at a is nonsingular.

Ex. 101. Show that a nondegenerate critical point a of a C2-function is isolated, that is, a
has a open ball U around it in which there are no critical points of f other than a. Hint: Let
x be another critical point in U . Apply mean value theorem to Dif to find

0 =
∑
j

DjDif(yi)(xj − aj), 1 ≤ i ≤ n, (3)
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where yj ∈ U . Show that if U is small enough det(DiDjf(yi)) 6= 0 and consequently the
system of linear equations Eq. 3 has only one solution x− a = 0.

6 Smooth Functions with Compact Support

Definition 102. The support of a function f on U is defined to be the closure of the set
{x ∈ U : f(x) 6= 0}.

Ex. 103. Let f : [a, b] → R be continuous and C1 on (a, b). Assume that limx→a+ f
′(x) = l

and limx→b− f
′(x) = m exist. Show that f is C1 on [a, b].

Ex. 104. Let f : U ⊂ Rn → R be continuous on U and C1 on U \ {a} for a ∈ U . Assume
that `i := limx→aDif(x) exists for 1 ≤ i ≤ n. Prove that Dif(a) = `i and that f is C1 on U .

Ex. 105. Consider f : R→ R defined by

f(t) =

{
0 for t ≤ 0

exp(−1/t) for t > 0
.

f is differentiable on R \ {0}. (a) Observe that ex > xk

k! for k ∈ N. (b) Prove that
f(x) < k!xk for k ∈ N and hence conclude that f is continuous at x = 0. (c) Prove by
induction that f (k)(x) = pk(x

−1)f(x) for some polynomial of degree less than or equal to
k + 1 (for x 6= 0). Note that

|
[
f (k)(x)− f (k)(0)

]
x| =

∥∥f(x)x−1pk(x
−1)
∥∥

≤ n!xn−k

Conclude that f (k+1)(0) exists and hence f is infinitely differentiable on all of R.

Ex. 106. Carry out a similar analysis to conclude that f : R→ R defined by

f(t) =

{
e−

1
t2 t > 0

0 t ≤ 0

is infinitely differentiable.

Ex. 107. Let f be as in Ex. 106. Let ε > 0 be given. Define gε(t) := f(t)/(f(t) + f(ε− t))
for t ∈ R. Then gε is differentiable, 0 ≤ gε ≤ 1, gε(t) = 0 iff t ≤ 0 and gε(t) = 1 iff t ≥ ε.

Ex. 108. Let f, g be as in Ex. 107. For r > 0 and x ∈ Rn, define ϕ(x) := 1 − gε(‖x‖ − r).
Then ϕ is smooth and has the following properties: (i) 0 ≤ ϕ ≤ 1, (ii) ϕ(x) = 1 iff
‖x‖ ≤ r and ϕ(x) = 0 iff ‖x‖ ≥ r + ε.

Ex. 109. Let ψ(u) = u−keu for u > 0. Show that

ψ′(u) = (u− k)u−k−1eu

ψ′′(u) = [u2 − 2ku+ k(k + 1)]u−k−2eu
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Show that the expression in the brackets has a minimum when u = k and is positive at u = k.
Hence ψ′′(u) > 0 and for any u0

ψ(u) ≥ ψ(u0) + ψ′(u0)(u− u0).

If uo > k, then ψ′(u0) > 0 and the right hand side above tends to infinity as n→∞. Hence
conclude that ψ(u)→∞ as u→∞.

Ex. 110. Use the above exercise to prove that f as defined in Ex. 106 is smooth.

Ex. 111. Let 0 < a < b. Consider the functions fa : R→ R given by fa(t) = exp(−1/(t−a))
for t ≥ a and 0 otherwise. and gb : R → R given by gb(t) = exp(1/(t − b)) for t ≤ b and 0
otherwise. Then the product ϕ of these functions is a smooth function which is 0 outside the
interval [a, b]. Set η(x) := ϕ(‖x‖) for x ∈ Rn. List the properties of η.

Ex. 112. Let ϕ be as in Ex. 111. Define h on R as follows.

h(x) :=

(∫ b

x
ϕ(t) dt

)(∫ b

a
ϕ(t) dt

)−1
.

Then h is smooth with h(x) ≤ 1 for x ≤ a and h(x) = 0 if x ≥ b. Define ψ(x) := h(
∑

i x
2
i )

for x := (x1, . . . , xn) ∈ Rn, then ψ(x) = 1 for x ∈ B(0, a) and ψ(x) = 0 for ‖x‖ ≥ b.

Ex. 113. If K is a compact set in Rn and U is an open set containing K then there exists a
smooth function f on Rn which is 1 on K and 0 outside U (i.e., 0 on Rn \ U).
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