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Definition 1. Let (X,B) be a measurable space. Let Re stand for the extended real number
system. A map ν : (X,B)→ Re is said to be a signed measure if

(i) ν takes at most one of the values ∞, −∞.
(ii) ν(∅) = 0.
(iii) If {En : n ∈ N} is a countable family of pair-wise disjoint elements of B, then ν(∪nEn) =∑
n ν(En).

Example 2. 1. Any (positive) measure is a signed measure.

2. If µi, i = 1, 2 are (positive) measures on (X,B) and one of them is finite, then ν(E) :=
µ1(E)−µ2(E) is a signed measure. Hahn’s theorem says that any signed measure arises
this way.

3. Let (X,B, µ) be a measure space. Let f be real valued and f ∈ L1(X,B, µ). Define
ν(E) :=

∫
E f dµ. Then ν is a signed measure. (Verify the details.)

4. If ν is a signed measure, so is αν for 0 6= α ∈ R. In particular, if ν is a signed measure,
so is −ν where (−ν)(E) := −ν(E).

We shall assume that our signed measures take at most ∞ and not −∞. In the sequel,
whenever we say measure we mean a positive measure.

Remark 3. Note that the condition (iii) in the definition of a signed measure ensures the
convergence of

∑
n |ν(En)|.

Definition 4. Let ν be a signed measure on (X,B). A subset P ⊂ X is called a positive set
(with respect to ν or a ν-positive set) if ν(E) ≥ 0 for any measurable subset E ⊂ P .

A negative set is defined in a similar way.

A subset E ∈ B is said to be (ν-)-null if ν(F ) = 0 for any measurable F ⊆ E. It is same as
saying that E is a positive set as well as a negative set. Note that if E is null then ν(E) = 0
but not conversely.

Ex. 5. Let ν be as in Example 3. Can you find positive sets in this case?

Ex. 6. A subset E is ν-negative iff it is −ν-positive.

1



Ex. 7. If ν is a signed measure and ν(E) = 0 does it mean ν(F ) = 0 for any F ⊂ E?

Ex. 8. Give an example of a signed measure ν and a set E such that ν(E) = 0 but E is not
a null set.

Ex. 9. If P is a positive set, then µP (E) := ν(P ∩ E) is a (positive) measure on (X,B). If
N is a negative set, what can you say about νN (E) := −ν(N ∩ E)?

Ex. 10. Let (En) be a sequence of positive sets in a signed measure space. Show that
E := ∪nEn is a positive set. Is the analogue true for negative sets?

Theorem 11 (Hahn Decomposition). Let ν be a signed measure on (X,B). Then there exist
a positive set P and a negative set N such that X = P ∪N and P ∩N = ∅.

The pair (P,N) is called a Hahn decomposition of ν. It is obvious that it cannot be
unique, as we can remove a null set from N and add it to P . Note also that this proves our
claim made in Example 3, as ν = νP − νN with the notation of Ex. 9.

The key step is to construct a largest negative set N and show that its complement is
positive.

Proposition 12. Let ν be a signed measure on (X,B). If ν(E) < 0, then E contains a
negative set which is not null.

Proof. The idea is to find a ‘largest positive subset’ of E and take its complement.

Either E contains subsets of positive measure or it does not. If it does not, then any
subset of E has non-positive measure and hence E itself is a negative set. Then we are done.

So, the nontrivial case is when there exist subsets F ⊂ E such that ν(F ) > 0. Let
p1 := l.u.b. {ν(F ) : F ⊂ E}. Then p1 > 0. (It may happen that p1 = ∞.) By Archimedean
property, we know that there exists n such that np1 > 1. We now use well-ordering property
of N to find the least such n. Let n1 ∈ N be the smallest such that n1p1 > 1, that is,
1/n1 < p1. By definition of LUB and p1, there exists F1 ⊂ E such that 1/n1 < ν(F1) ≤ p1.

By our choice of n1, we note that 1/n1 < p1 ≤ 1/(n1 − 1).

If E \ F1 has no subsets of positive measure, then E \ F1 is a negative set and we have

ν(E \ F1) = ν(E)− ν(F1) < 0.

In particular, ν(E \ F1) is not null and we are done. If it is not a negative set, we let

p2 := l.u.b. {ν(F ) : F ⊂ E \ F1}.

As earlier, 0 < p2 ≤ ∞. Let n2 be the smallest integer such that 1/n2 < p2. Select F2 ⊂ E\F1

such that
1/n2 < ν(F2) ≤ p2.

We continue this process, Either it stops at a finite stage and so we end up with a non-null
negative subset of form E \ (F1 ∪ . . . ∪ Fn). In such a situation, the theorem is proved.

2



Or, we find a disjoint sequence (Fk) such that for all k we have

1

nk
< ν(Fk) ≤ pk ≤

1

nk − 1
. (1)

Using the countable additivity of ν, we see that

ν(E \ ∪kFk) +
∑
k

ν(Fk) = ν(E).

Since ν does not take the −∞, the first term on the left, namely, ν(E \ ∪kFk) 6= −∞.
The term on the right is a finite negative. Hence we conclude that

∑
k ν(Fk) is convergent.

Consequently, the series
∑

k(1/nk) is convergent and hence nk → ∞. In view of the last
inequality in (1), we deduce that pk → 0.

Let F := ∪kFk. We claim that E \ F is a negative set. Suppose not. Then there exists
A ⊂ E \ F such that ν(A) > 0. Since pk → 0, there exists N ∈ N such that ν(A) > pN .
Since A ⊂ E \ F ⊂ E \ (F1 ∪ . . . ∪ FN−1), this violates our choice of pN . Hence our claim is
established.

We need to show that E \ F is not null. Observe that

ν(E \ F ) +
∑
k

ν(Fk) = ν(E) < 0.

Since the second term, the sum of the series is positive, it follows that ν(E \ F ) < 0.

Proof. We now prove Hahn’s theorem. If N := {E ∈ B : ν(B) < 0} is empty, then X itself is
a positive set, that is, ν is a (positive) measure. So we take P = X and N = ∅.

If N 6= ∅, then there exists E with ν(E) < 0 and hence by the last proposition there exist
negative subsets.

Let q := inf{ν(E) : E is a negative set.}. Note that q < 0. Let En be such that each En
is a negative set and ν(En)→ q. Let B1 := E1 and B2 = B1∪ (E2 \B1). Then B2 is negative.
Inductively, define Bn := Bn−1∪(En\Bn−1). Then (Bn) is an increasing sequence of negative
sets such that ν(Bn)→ q. Let N := ∪nBn. Then N is negative and ν(N) = limn ν(Bn) = q.

We claim that P := X \N is a positive set. If not, then we can find a subset of P which
is of negative measure and hence a subset A of P which is negative. Note that N ∪ A is
negative. Since N and A are disjoint, we then conclude that ν(N ∪A) = ν(N) + ν(A). Since
ν does not assume the value −∞, in this equation all are finite negative reals and hence we
conclude ν(N ∪A) < q, contradicting our definition of q.

The “uniqueness” part of Hahn decomposition is as follows: if (P1, N1) and (P2, N2) are
two Hahn decompositions, then P1∆P2 and N1∆N2 are null sets.

For, P1 \P2 = P1 ∩N2 so that it is both positive and negative. Similarly, P2 \P1 is a null
set. The symmetric difference is the union of these two sets.

We now arrive at the Jordan decomposition of ν. Fix a Hahn decomposition (P,N) of ν.
Define

ν+(E) := ν(E ∩ P ) and ν−(E) := −ν(N ∩ E).
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Then ν+ and ν− are (positive) measures and we have ν = ν+− ν−. This is called the Jordan
decomposition associated with the Hahn decomposition.

How do Jordan decompositions associated with two Hahn decompositions differ? They
do not!

Proposition 13. The Jordan decompositions associated with two Hahn decompositions of a
signed measure ν are the same.

Proof. Let (P1, N1) and (P2, N2) be two Hahn decompositions of ν. Observe that

ν(P1 ∪ P2) = ν(P1 ∩ P2) + ν(P1∆P2) = ν(P1 ∩ P2),

by the uniqueness of Hahn decomposition.

Note that P1 ∩ P2 is ν-positive. For any E, we have

ν(E ∩ (P1 ∩ P2)) ≤ ν(E ∩ P1) ≤ ν(E ∩ (P1 ∪ P2)).

Interchanging P1 and P2 in the above we get

ν(E ∩ (P1 ∩ P2)) ≤ ν(E ∩ P2) ≤ ν(E ∩ (P1 ∪ P2)).

In each of these displayed equations, the first and the third terms are the same. Hence we
conclude that ν(E ∩P1) = ν(E ∩P2) for any E. Since ν = ν+− ν− we also conclude that ν−

corresponding to these Hahn decompositions also coincide.

Two measures µ and ν on (X,B) are said to be mutually singular if there exists a set A
such that µ(A) = 0 = ν(X \A). One denotes this by ν ⊥ µ. The measures ν+ and ν− in the
Jordan decomposition are mutually singular.

Proposition 14. If a signed measure ν is expressed as a difference of two measures which
are mutually singular, then such measures are unique.

Proof. The basic idea is to prove that any such expressions arises out of a Hahn decomposition
of ν and it is none other than the associated Jordan decomposition.

Let ν = ν1−ν2. Assume that ν1 ⊥ ν2. Assume that A is such that ν1(A) = ν2(X \A) = 0.
Let E ⊂ A. Then

ν(E) = ν1(E)− ν2(E) = −ν2(E) < 0. (2)

(We used the fact monotonicity of the positive measure ν1!) Hence A is a ν-negative set .
One shows in an analogous way that B := X \ A is a ν-positive. Hence (B,A) is a Hahn
decomposition of the signed measure ν. We claim that the decomposition ν = ν1 − ν2 is the
Jordan decomposition associated with the Hahn decomposition. For,

ν(E) = ν(E ∩A) + ν(E ∩B) = −ν2(E ∩A) + ν1(E ∩B),

by (2) and its analogue. This proves our claim.

In view of Proposition 13, the theorem follows.
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Definition 15. Given two measures µ, ν on a measurable space X, we say that ν is absolutely
continuous with respect to µ if µ(E) = 0 implies ν(E) = 0. We demote this by ν � µ.

Example 16. Let f be non-negative and measurable on (X,B, µ). Define ν(E) :=
∫
E f dµ.

Then ν � µ. We usually write this as dν
dµ = f .

Radon-Nikodym theorem says that this is the only way to get meausres absolutely con-
tinuous with respect to a (σ-finite) measure µ.

Example 17. Any measure ν on X is absolutely continuous with respect to a counting
measure.

Example 18. Consider the counting measure µ on N. Let ν be a measure which assigns the
weight pn at n ∈ N, that is, ν(E) =

∑
n∈E pn. Then each of these two measures is absolutely

continuous with respect to the other. Identify dν
dµ and dµ

dν .

Proposition 19 (Radon-Nikodym for Finite Measures). Let (X,B, µ) be a finite measured
space and let ν be a finite measure on (X,B) Assume further that ν � µ. Then there exists
a non-negative measurable function f such that ν(E) =

∫
E f dµ for all measurable E.

Proof. Let F(ν;µ) denote the set of all non-negative measurable functions f such that∫
E f dµ ≤ ν(E) for all E. Note that f = 0 lies in the set. Let M := l.u.b. {

∫
X f dµ :

f ∈ F(ν;µ}. Then there exists a sequence (fn) such that
∫
X fn dµ→M .

We claim that we may assume that the sequence (fn) is increasing. It suffices to show
that if f, g ∈ F(ν;µ), then h := max{f, g} ∈ F(ν;µ). Look at the following.∫

h dµ =

∫
E∩{f≥g}

f dµ+

∫
E∩{f<g}

g dµ

≤ ν(E ∩ {f ≥ g}) + ν(E ∩ {f < g})
= ν(E).

Let f = lim fn. By MCT, f ∈ F(ν;µ) and
∫
X f dµ = M .

We shall show that ν(E) =
∫
E f dµ for all E. Consider ν0(E) = ν(E)−

∫
E f dµ. Clearly,

ν0 is a measure, ν0 � µ.

We claim that the class F(ν0;µ) has only the zero function. For, if g ∈ F(ν0;µ), then∫
E
gdµ ≤ ν(E)−

∫
E
f dµ.

In particular,
∫
E(f +g) dµ ≤ ν(E). Hence f +g ∈ F(ν;µ). If g > 0 on a set whose µ-measure

is positive, then
∫
X(f + g) dµ > M , a contradiction.

Reason: Let A := {g > 0}. Then A is the limit of increasing sequence (An) where
An := {g > 1/n}. Thus if µ(A) > 0 then there exists N ∈ N such that for n ≥ N ,
µ(An) > 0. Since g ≥ 0, we obtain∫

X

g dµ ≥
∫
An

g dµ ≥ 1

n
µ(An) > 0.
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This implies ∫
X

(f + g) dµ =

∫
X

f dµ+

∫
X

g dµ ≥M +
1

n
µ(An) > M.

Hence F(ν0;µ) = {0}.

To complete the proof, we need to show that ν0 = 0. If not, let n ∈ N be such that
ν0(X) − 1

nµ(X) > 0. (This is possible, since µ is a finite measure. Is there any other place
where we invoked the finiteness of the measures?) Let σ := ν0 − 1

nµ. Let (P,N) be a Hahn
decomposition of σ. Let g = 1

nχP . We claim that g ∈ F(ν0;µ).We have∫
E

1

n
χP dµ =

1

n
µ(P ∩ E) = ν0(P ∩ E)− σ(P ∩ E) ≤ ν0(P ∩ E) ≤ ν0(E).

The claim is proved. By the Claim in the last para, we conclude that g = 0 a.e.[µ].

Hence χP = ng = 0 or µ(P ) = 0. Since ν0 � µ, we see that ν0(P ) = 0. Hence σ(P ) = 0.
That is, σ ≤ 0. We conclude that ν0(X) − 1

nµ(X) ≤ 0. This is a contradiction to our
assumption on n.

We now extend the result to σ-finite measures. Let {An} and {Bn} be countable partitions
of X such that µ(An) < ∞, ν(Bn) < ∞ for n ∈ N. Then the family {Am ∩ Bn : m,n ∈ N}
is countable partition of X each of whose members is µ as well as ν finite. So, we may
assume that we have a common σ-finite partition, say, {En} for both the measures. Let
Bn := {E ∩ En : E ∈ B}. It is a σ-algebra on En. Let µn(E) := µ(En ∩ E), E ∈ B defines a
finite measure on Bn. νn is defined similarly. Then νn � µn.

By the special case of Radon-Nikodym theorem, there exist functions fn such that νn(E) =∫
E fn dµn for all E. Note that νn(X \En) = 0. So, we may assume that fn(x) = 0 for x /∈ En.

We define f on X by setting f(x) = fn(x) if x ∈ En. Then f is a nonnegative measurable
function on X. Thus we obtain

ν(E ∩ En) =

∫
E∩En

f dµ, for all n and E ∈ B.

Summing over n, we get ν(E) =
∫
E f dµ.
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