Signed Measures Theorems of Hahn, Jordan and Radon-Nikodym

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Definition 1. Let (X, \mathcal{B}) be a measurable space. Let \mathbb{R}_e stand for the extended real number system. A map $\nu : (X, \mathcal{B}) \to \mathbb{R}_e$ is said to be a *signed measure* if

(i) ν takes at most one of the values ∞ , $-\infty$.

(ii) $\nu(\emptyset) = 0.$

(iii) If $\{E_n : n \in \mathbb{N}\}$ is a countable family of pair-wise disjoint elements of \mathcal{B} , then $\nu(\cup_n E_n) = \sum_n \nu(E_n)$.

Example 2. 1. Any (positive) measure is a signed measure.

- 2. If μ_i , i = 1, 2 are (positive) measures on (X, \mathcal{B}) and one of them is finite, then $\nu(E) := \mu_1(E) \mu_2(E)$ is a signed measure. Hahn's theorem says that any signed measure arises this way.
- 3. Let (X, \mathcal{B}, μ) be a measure space. Let f be real valued and $f \in L^1(X, \mathcal{B}, \mu)$. Define $\nu(E) := \int_E f \, d\mu$. Then ν is a signed measure. (Verify the details.)
- 4. If ν is a signed measure, so is $\alpha\nu$ for $0 \neq \alpha \in \mathbb{R}$. In particular, if ν is a signed measure, so is $-\nu$ where $(-\nu)(E) := -\nu(E)$.

We shall assume that our signed measures take at most ∞ and not $-\infty$. In the sequel, whenever we say measure we mean a positive measure.

Remark 3. Note that the condition (iii) in the definition of a signed measure ensures the convergence of $\sum_{n} |\nu(E_n)|$.

Definition 4. Let ν be a signed measure on (X, \mathcal{B}) . A subset $P \subset X$ is called a *positive set* (with respect to ν or a ν -positive set) if $\nu(E) \geq 0$ for any measurable subset $E \subset P$.

A negative set is defined in a similar way.

A subset $E \in \mathcal{B}$ is said to be $(\nu$ -)-null if $\nu(F) = 0$ for any measurable $F \subseteq E$. It is same as saying that E is a positive set as well as a negative set. Note that if E is null then $\nu(E) = 0$ but not conversely.

Ex. 5. Let ν be as in Example 3. Can you find positive sets in this case?

Ex. 6. A subset E is ν -negative iff it is $-\nu$ -positive.

Ex. 7. If ν is a signed measure and $\nu(E) = 0$ does it mean $\nu(F) = 0$ for any $F \subset E$?

Ex. 8. Give an example of a signed measure ν and a set E such that $\nu(E) = 0$ but E is not a null set.

Ex. 9. If P is a positive set, then $\mu_P(E) := \nu(P \cap E)$ is a (positive) measure on (X, \mathcal{B}) . If N is a negative set, what can you say about $\nu_N(E) := -\nu(N \cap E)$?

Ex. 10. Let (E_n) be a sequence of positive sets in a signed measure space. Show that $E := \bigcup_n E_n$ is a positive set. Is the analogue true for negative sets?

Theorem 11 (Hahn Decomposition). Let ν be a signed measure on (X, \mathcal{B}) . Then there exist a positive set P and a negative set N such that $X = P \cup N$ and $P \cap N = \emptyset$.

The pair (P, N) is called a Hahn decomposition of ν . It is obvious that it cannot be unique, as we can remove a null set from N and add it to P. Note also that this proves our claim made in Example 3, as $\nu = \nu_P - \nu_N$ with the notation of Ex. 9.

The key step is to construct a largest negative set N and show that its complement is positive.

Proposition 12. Let ν be a signed measure on (X, \mathcal{B}) . If $\nu(E) < 0$, then E contains a negative set which is not null.

Proof. The idea is to find a 'largest positive subset' of E and take its complement.

Either E contains subsets of positive measure or it does not. If it does not, then any subset of E has non-positive measure and hence E itself is a negative set. Then we are done.

So, the nontrivial case is when there exist subsets $F \subset E$ such that $\nu(F) > 0$. Let $p_1 := \text{l.u.b.} \{\nu(F) : F \subset E\}$. Then $p_1 > 0$. (It may happen that $p_1 = \infty$.) By Archimedean property, we know that there exists n such that $np_1 > 1$. We now use well-ordering property of \mathbb{N} to find the least such n. Let $n_1 \in \mathbb{N}$ be the smallest such that $n_1p_1 > 1$, that is, $1/n_1 < p_1$. By definition of LUB and p_1 , there exists $F_1 \subset E$ such that $1/n_1 < \nu(F_1) \leq p_1$.

By our choice of n_1 , we note that $1/n_1 < p_1 \le 1/(n_1 - 1)$.

If $E \setminus F_1$ has no subsets of positive measure, then $E \setminus F_1$ is a negative set and we have

$$\nu(E \setminus F_1) = \nu(E) - \nu(F_1) < 0.$$

In particular, $\nu(E \setminus F_1)$ is not null and we are done. If it is not a negative set, we let

$$p_2 := \text{l.u.b.} \{ \nu(F) : F \subset E \setminus F_1 \}.$$

As earlier, $0 < p_2 \leq \infty$. Let n_2 be the smallest integer such that $1/n_2 < p_2$. Select $F_2 \subset E \setminus F_1$ such that

$$1/n_2 < \nu(F_2) \le p_2.$$

We continue this process, Either it stops at a finite stage and so we end up with a non-null negative subset of form $E \setminus (F_1 \cup \ldots \cup F_n)$. In such a situation, the theorem is proved.

Or, we find a disjoint sequence (F_k) such that for all k we have

$$\frac{1}{n_k} < \nu(F_k) \le p_k \le \frac{1}{n_k - 1}.\tag{1}$$

Using the countable additivity of ν , we see that

$$\nu(E \setminus \bigcup_k F_k) + \sum_k \nu(F_k) = \nu(E).$$

Since ν does not take the $-\infty$, the first term on the left, namely, $\nu(E \setminus \bigcup_k F_k) \neq -\infty$. The term on the right is a finite negative. Hence we conclude that $\sum_k \nu(F_k)$ is convergent. Consequently, the series $\sum_k (1/n_k)$ is convergent and hence $n_k \to \infty$. In view of the last inequality in (1), we deduce that $p_k \to 0$.

Let $F := \bigcup_k F_k$. We claim that $E \setminus F$ is a negative set. Suppose not. Then there exists $A \subset E \setminus F$ such that $\nu(A) > 0$. Since $p_k \to 0$, there exists $N \in \mathbb{N}$ such that $\nu(A) > p_N$. Since $A \subset E \setminus F \subset E \setminus (F_1 \cup \ldots \cup F_{N-1})$, this violates our choice of p_N . Hence our claim is established.

We need to show that $E \setminus F$ is not null. Observe that

$$\nu(E \setminus F) + \sum_{k} \nu(F_k) = \nu(E) < 0.$$

Since the second term, the sum of the series is positive, it follows that $\nu(E \setminus F) < 0$. \Box

Proof. We now prove Hahn's theorem. If $\mathcal{N} := \{E \in \mathcal{B} : \nu(B) < 0\}$ is empty, then X itself is a positive set, that is, ν is a (positive) measure. So we take P = X and $N = \emptyset$.

If $\mathcal{N} \neq \emptyset$, then there exists E with $\nu(E) < 0$ and hence by the last proposition there exist negative subsets.

Let $q := \inf\{\nu(E) : E \text{ is a negative set.}\}$. Note that q < 0. Let E_n be such that each E_n is a negative set and $\nu(E_n) \to q$. Let $B_1 := E_1$ and $B_2 = B_1 \cup (E_2 \setminus B_1)$. Then B_2 is negative. Inductively, define $B_n := B_{n-1} \cup (E_n \setminus B_{n-1})$. Then (B_n) is an increasing sequence of negative sets such that $\nu(B_n) \to q$. Let $N := \bigcup_n B_n$. Then N is negative and $\nu(N) = \lim_n \nu(B_n) = q$.

We claim that $P := X \setminus N$ is a positive set. If not, then we can find a subset of P which is of negative measure and hence a subset A of P which is negative. Note that $N \cup A$ is negative. Since N and A are disjoint, we then conclude that $\nu(N \cup A) = \nu(N) + \nu(A)$. Since ν does not assume the value $-\infty$, in this equation all are finite negative reals and hence we conclude $\nu(N \cup A) < q$, contradicting our definition of q.

The "uniqueness" part of Hahn decomposition is as follows: if (P_1, N_1) and (P_2, N_2) are two Hahn decompositions, then $P_1 \Delta P_2$ and $N_1 \Delta N_2$ are null sets.

For, $P_1 \setminus P_2 = P_1 \cap N_2$ so that it is both positive and negative. Similarly, $P_2 \setminus P_1$ is a null set. The symmetric difference is the union of these two sets.

We now arrive at the Jordan decomposition of ν . Fix a Hahn decomposition (P, N) of ν . Define

$$\nu^+(E) := \nu(E \cap P) \text{ and } \nu^-(E) := -\nu(N \cap E).$$

Then ν^+ and ν^- are (positive) measures and we have $\nu = \nu^+ - \nu^-$. This is called the Jordan decomposition associated with the Hahn decomposition.

How do Jordan decompositions associated with two Hahn decompositions differ? They do not!

Proposition 13. The Jordan decompositions associated with two Hahn decompositions of a signed measure ν are the same.

Proof. Let (P_1, N_1) and (P_2, N_2) be two Hahn decompositions of ν . Observe that

$$\nu(P_1 \cup P_2) = \nu(P_1 \cap P_2) + \nu(P_1 \Delta P_2) = \nu(P_1 \cap P_2),$$

by the uniqueness of Hahn decomposition.

Note that $P_1 \cap P_2$ is ν -positive. For any E, we have

$$\nu(E \cap (P_1 \cap P_2)) \le \nu(E \cap P_1) \le \nu(E \cap (P_1 \cup P_2)).$$

Interchanging P_1 and P_2 in the above we get

$$\nu(E \cap (P_1 \cap P_2)) \le \nu(E \cap P_2) \le \nu(E \cap (P_1 \cup P_2)).$$

In each of these displayed equations, the first and the third terms are the same. Hence we conclude that $\nu(E \cap P_1) = \nu(E \cap P_2)$ for any E. Since $\nu = \nu^+ - \nu^-$ we also conclude that ν^- corresponding to these Hahn decompositions also coincide.

Two measures μ and ν on (X, \mathcal{B}) are said to be *mutually singular* if there exists a set A such that $\mu(A) = 0 = \nu(X \setminus A)$. One denotes this by $\nu \perp \mu$. The measures ν^+ and ν^- in the Jordan decomposition are mutually singular.

Proposition 14. If a signed measure ν is expressed as a difference of two measures which are mutually singular, then such measures are unique.

Proof. The basic idea is to prove that any such expressions arises out of a Hahn decomposition of ν and it is none other than the associated Jordan decomposition.

Let $\nu = \nu_1 - \nu_2$. Assume that $\nu_1 \perp \nu_2$. Assume that A is such that $\nu_1(A) = \nu_2(X \setminus A) = 0$. Let $E \subset A$. Then

$$\nu(E) = \nu_1(E) - \nu_2(E) = -\nu_2(E) < 0.$$
(2)

(We used the fact monotonicity of the positive measure ν_1 !) Hence A is a ν -negative set. One shows in an analogous way that $B := X \setminus A$ is a ν -positive. Hence (B, A) is a Hahn decomposition of the signed measure ν . We claim that the decomposition $\nu = \nu_1 - \nu_2$ is the Jordan decomposition associated with the Hahn decomposition. For,

$$\nu(E) = \nu(E \cap A) + \nu(E \cap B) = -\nu_2(E \cap A) + \nu_1(E \cap B),$$

by (2) and its analogue. This proves our claim.

In view of Proposition 13, the theorem follows.

Definition 15. Given two measures μ , ν on a measurable space X, we say that ν is absolutely continuous with respect to μ if $\mu(E) = 0$ implies $\nu(E) = 0$. We demote this by $\nu \ll \mu$.

Example 16. Let f be non-negative and measurable on (X, \mathcal{B}, μ) . Define $\nu(E) := \int_E f d\mu$. Then $\nu \ll \mu$. We usually write this as $\frac{d\nu}{d\mu} = f$.

Radon-Nikodym theorem says that this is the only way to get meausres absolutely continuous with respect to a (σ -finite) measure μ .

Example 17. Any measure ν on X is absolutely continuous with respect to a counting measure.

Example 18. Consider the counting measure μ on \mathbb{N} . Let ν be a measure which assigns the weight p_n at $n \in \mathbb{N}$, that is, $\nu(E) = \sum_{n \in E} p_n$. Then each of these two measures is absolutely continuous with respect to the other. Identify $\frac{d\nu}{d\mu}$ and $\frac{d\mu}{d\nu}$.

Proposition 19 (Radon-Nikodym for Finite Measures). Let (X, \mathcal{B}, μ) be a finite measured space and let ν be a finite measure on (X, \mathcal{B}) Assume further that $\nu \ll \mu$. Then there exists a non-negative measurable function f such that $\nu(E) = \int_E f d\mu$ for all measurable E.

Proof. Let $\mathcal{F}(\nu;\mu)$ denote the set of all non-negative measurable functions f such that $\int_E f d\mu \leq \nu(E)$ for all E. Note that f = 0 lies in the set. Let M :=l.u.b. $\{\int_X f d\mu : f \in \mathcal{F}(\nu;\mu)\}$. Then there exists a sequence (f_n) such that $\int_X f_n d\mu \to M$.

We claim that we may assume that the sequence (f_n) is increasing. It suffices to show that if $f, g \in \mathcal{F}(\nu; \mu)$, then $h := \max\{f, g\} \in \mathcal{F}(\nu; \mu)$. Look at the following.

$$\int h \, d\mu = \int_{E \cap \{f \ge g\}} f \, d\mu + \int_{E \cap \{f < g\}} g \, d\mu$$

$$\leq \nu(E \cap \{f \ge g\}) + \nu(E \cap \{f < g\})$$

$$= \nu(E).$$

Let $f = \lim f_n$. By MCT, $f \in \mathcal{F}(\nu; \mu)$ and $\int_X f d\mu = M$.

We shall show that $\nu(E) = \int_E f d\mu$ for all E. Consider $\nu_0(E) = \nu(E) - \int_E f d\mu$. Clearly, ν_0 is a measure, $\nu_0 \ll \mu$.

We claim that the class $\mathcal{F}(\nu_0;\mu)$ has only the zero function. For, if $g \in \mathcal{F}(\nu_0;\mu)$, then

$$\int_E g d\mu \le \nu(E) - \int_E f \, d\mu.$$

In particular, $\int_E (f+g) d\mu \leq \nu(E)$. Hence $f+g \in \mathcal{F}(\nu;\mu)$. If g > 0 on a set whose μ -measure is positive, then $\int_X (f+g) d\mu > M$, a contradiction.

Reason: Let $A := \{g > 0\}$. Then A is the limit of increasing sequence (A_n) where $A_n := \{g > 1/n\}$. Thus if $\mu(A) > 0$ then there exists $N \in \mathbb{N}$ such that for $n \ge N$, $\mu(A_n) > 0$. Since $g \ge 0$, we obtain

$$\int_X g \, d\mu \ge \int_{A_n} g \, d\mu \ge \frac{1}{n} \mu(A_n) > 0.$$

This implies

$$\int_X (f+g) \, d\mu = \int_X f \, d\mu + \int_X g \, d\mu \ge M + \frac{1}{n} \mu(A_n) > M$$

Hence $\mathcal{F}(\nu_0; \mu) = \{0\}.$

To complete the proof, we need to show that $\nu_0 = 0$. If not, let $n \in \mathbb{N}$ be such that $\nu_0(X) - \frac{1}{n}\mu(X) > 0$. (This is possible, since μ is a finite measure. Is there any other place where we invoked the finiteness of the measures?) Let $\sigma := \nu_0 - \frac{1}{n}\mu$. Let (P, N) be a Hahn decomposition of σ . Let $g = \frac{1}{n}\chi_P$. We claim that $g \in \mathcal{F}(\nu_0; \mu)$. We have

$$\int_E \frac{1}{n} \chi_P \, d\mu = \frac{1}{n} \mu(P \cap E) = \nu_0(P \cap E) - \sigma(P \cap E) \le \nu_0(P \cap E) \le \nu_0(E).$$

The claim is proved. By the Claim in the last para, we conclude that g = 0 a.e. $[\mu]$.

Hence $\chi_P = ng = 0$ or $\mu(P) = 0$. Since $\nu_0 \ll \mu$, we see that $\nu_0(P) = 0$. Hence $\sigma(P) = 0$. That is, $\sigma \leq 0$. We conclude that $\nu_0(X) - \frac{1}{n}\mu(X) \leq 0$. This is a contradiction to our assumption on n.

We now extend the result to σ -finite measures. Let $\{A_n\}$ and $\{B_n\}$ be countable partitions of X such that $\mu(A_n) < \infty$, $\nu(B_n) < \infty$ for $n \in \mathbb{N}$. Then the family $\{A_m \cap B_n : m, n \in \mathbb{N}\}$ is countable partition of X each of whose members is μ as well as ν finite. So, we may assume that we have a common σ -finite partition, say, $\{E_n\}$ for both the measures. Let $\mathcal{B}_n := \{E \cap E_n : E \in \mathcal{B}\}$. It is a σ -algebra on E_n . Let $\mu_n(E) := \mu(E_n \cap E), E \in \mathcal{B}$ defines a finite measure on \mathcal{B}_n . ν_n is defined similarly. Then $\nu_n \ll \mu_n$.

By the special case of Radon-Nikodym theorem, there exist functions f_n such that $\nu_n(E) = \int_E f_n d\mu_n$ for all E. Note that $\nu_n(X \setminus E_n) = 0$. So, we may assume that $f_n(x) = 0$ for $x \notin E_n$. We define f on X by setting $f(x) = f_n(x)$ if $x \in E_n$. Then f is a nonnegative measurable function on X. Thus we obtain

$$\nu(E \cap E_n) = \int_{E \cap E_n} f \, d\mu, \text{ for all } n \text{ and } E \in \mathcal{B}.$$

Summing over *n*, we get $\nu(E) = \int_E f d\mu$.