Singular Values and Spectral Theorem

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Ex. 1. Let us consider the vector space $M(n, \mathbb{R})$, the set of all real $n \times n$ matrices as \mathbb{R}^{n^2} via the map

$$A = (a_{ij}) \mapsto (a_{11}, a_{12}, \dots, a_{n1}, \dots a_{nn}).$$

Let $||A||^2 = \sum_{ij} a_{ij}^2$. Show that the following maps are continuous: (a) The map $(A, x) \mapsto Ax$ from $M(n, R) \times \mathbb{R}^n \to \mathbb{R}^n$. (Here $x \in \mathbb{R}^n$ is thought of as a

column vector and Ax is then the matrix product.)

(b) The map $(X, Y) \mapsto XY$ from $M(n, \mathbb{R}) \times M(n, \mathbb{R}) \to M(n, \mathbb{R})$.

(c) The map $A \mapsto A^*$ from $M(n, \mathbb{R})$ to $M(n, \mathbb{R})$. (Here A^* stands for the adjoint/transpose of A.)

Proposition 2. Let O(k) denote the set of all orthogonal matrices of type $k \times k$. If we consider $O(k) \subset \mathbb{R}^{n^2}$ via the map then O(k) is closed and bounded and hence is compact.

Proof. Note that $A^*A = I$ implies that $\sum_{ij} a_{ij}^2 = n$ and hence ||A|| as a vector in \mathbb{R}^{n^2} is \sqrt{n} . If $f: M(n, \mathbb{R}) \to M(n, \mathbb{R})$ is given by $f(A) = AA^*$, then f is continuous. Now, O(n) is closed since $O(n) := f^{-1}(I)$ where $f(A) = AA^*$.

Ex. 3. Let $0 \neq v \in \mathbb{R}^k$. Then there exists an $k \times k$ orthogonal matrix A such that whose first row is v/||v|| so that Av = (||v||, 0, ..., 0).

Theorem 4. Let A be a nonzero $m \times n$ matrix. Then there exist orthogonal matrices M and N such that

$$MAN = \begin{pmatrix} D & 0\\ 0 & 0 \end{pmatrix} \quad \text{where} \quad D = \begin{pmatrix} d_1 & 0\\ & \ddots & \\ 0 & & d_r \end{pmatrix} \quad \text{with } d_i \ge d_{i+1} > 0.$$

Proof. For any $k \times k$ matrix B, we let $a_{ij}(B)$ stand for the ij-th entry of B. Note that $a_{ij} = \langle Be_j, e_i \rangle$, where $\{e_k\}$ is the standard orthonormal basis of \mathbb{R}^k .

Let O(k) be the set of all $k \times k$ orthogonal matrices. For $M \in O(m)$ and $N \in O(n)$, let $f(M,N) := a_1 1(MAN)$. Then $f: O(m) \times O(n) \to \mathbb{R}$ is a continuous on the compact set $O(m) \times O(n)$ and hence attains its maximum value, say, d_1 . Let $f(M_1, N_1) = d_1$. Let

$$M_1AN_1 = \begin{pmatrix} d_1 & X \\ Y & A' \end{pmatrix}.$$

We claim that X and Y are zero as row and column vectors. For example, if $X \neq 0$, then the length d of the first row R_1 in M_1AN_1 will be greater than d_1 . If we multiply M_1AN_1 on the right by an orthogonal $m \times m$ matrix, say M'_1 which takes R_1 to $(d, 0, \ldots, 0)$, then $a_{11}(M'_1M_1AN_1) = d > d_1$, a contradiction. We can argue analogously, using column and left multiplication by an appropriate orthogonal matrix that Y = 0.

Note that none of entries $a_{ij}(A')$ can exceed d. For otherwise, we could permute the bases and bring that entry at the (1, 1)-th place. Now we can apply induction to A'.

Definition 5. The positive numbers $d_1 \ge \cdots \ge d_r$ are known as the *singular values* of A.

Ex. 6. Show that $A^*A = D^2$. In fact, show that

$$A^*Av_k = \begin{cases} d_k^2 v_k & \text{for } 1 \le k \le r \\ 0 & \text{for } r < k \le n \end{cases}$$

where v_k are the columns of N. Hint: Observe that $(MAN)^*(MAN) = N^*(A^*A)N$.

Ex. 7. Prove that the singular values of A are unique. *Hint:* Enough to show that d_k^2 are unique. Observe that if $(A^*A - \lambda I)(\sum_k a_k v_k) = 0$, then $(A^*A - \lambda I)v = \sum a_k(\lambda - d_k^2)v_k = 0$.

Ex. 8 (Polar Decomposition). Let m = n. Then A = PO, where P is positive semi-definite and $O = M^*N^*$ is orthogonal.

Ex. 9 (Spectral Theorem for Symmetric Matrices). If A is symmetric, then A has an eigen vector. *Hint:* If v_k is one of the columns of N, then

$$0 = (A^*A - d_k^2 I)v_k = (A + \lambda I)(A - \lambda I)v,$$

where $\lambda^2 = d_k^2$.

Ex. 10. Extend the above results to the complex case.